Skip to main content
Log in

Correction of Gravimetric Geoid Using Symbolic Regression

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

In this study, the problem of geoid correction based on GPS ellipsoidal height measurements is solved via symbolic regression (SR). In this case, when the quality of the approximation is overriding, SR employing Keijzer expansion to generate initial trial function population can supersede traditional techniques, such as parametric models and soft computing models (e.g., artificial neural network approach with different activation functions). To demonstrate these features, numerical computations for correction of the Hungarian geoid have been carried out using the DataModeler package of Mathematica. Although the proposed SR method could reduce the average error to a level of 1–2 cm, it has two handicaps. The first one is the required high computation power, which can be eased by the employment of parallel computation via multicore processor. The second one is the proper selection of the initial population of the trial functions. This problem may be solved via intelligent generation technique of this population (e.g., Keijzer-expansion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Babu BV, Karthik (2007) Genetic Programming for symbolic regression of chemical process systems, Engineering Letters 14:2, EL-14 2 6 (advanced on line publication)

  • Banks C (2002) Searching for Lyapunov functions using genetic programming, Technical report, Virginia Polytechnic Institute and State University, Blacksburg

  • Cramer NL (1985) A representation for the adaptive generation of simple sequential programs. In: Grefenstette JJ (ed) Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications, Erlbaum, pp 183–187

  • Davidson JW, Savic DA, Walters GA (2003) Symbolic and numerical regression: experiments and applications. Inf Sci 150(12):95–117

    Article  Google Scholar 

  • Danila U (2006) Corrective surface for GPS-levelling in Moldova, Master’s of Sci. Thesis, Royal Institute of Technology (KTH) School of Architecture and the Built Environment, TRITA-GIT EX 06–001 Geodesy Report No. 3089, Stockholm, Sweden

  • Duquenne H, Jiang Z, Lemarie C (1995) Geoid determination and levelling by GPS: some experiments on the test network. IAG Symposia Gravity and Geoid, 113. Springer, pp 559–568

  • Featherstone W (2000) Refinement of gravimetric geoid using GPS and levelling data. J Surv Eng 126(2): 27–56

    Article  Google Scholar 

  • Ferreira C (2006) Gene expression programming: Mathematical modeling by an artificial intelligence, 2nd edn. Springer, Berlin

  • Fotopoulos G (2005) Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. J Geod 79(1–3):111–123

    Article  Google Scholar 

  • Fotopoulos G, Sideris MG (2005) Spatial modeling and analysis of adjusted residuals over a network of GPS-levelling bench marks. Geomatica 59(3):251–262

    Google Scholar 

  • Garg A, Tai K (2011) A hybrid genetic programming—artificial neural network approach for modeling of vibratory finishing process, 2011 International Conference on Information and Intelligent Computing IPCSIT vol 18. IACSIT Press, Singapore, pp 14–19

  • Heiskanen W, Moritz H (1967) Physical Geodesy. W H Freeman and Co., San Francisco

    Google Scholar 

  • Iliffe JC, Ziebart M, Cross PA, Forsberg R, Strykowski G, Tscherning CC (2003) OGSM02: a new model for converting GPS-derived heights to local height datums in Great Britain and Ireland. Surv Rev 37(290):276–293

    Article  Google Scholar 

  • Kavzoglu T, Saka MH (2005) Modelling local GPS/levelling geoid undulations using artificial neural networks. J Geod 78:520–527

    Article  Google Scholar 

  • Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models (complex adaptive systems). The MIT Press, Cambridge

    Google Scholar 

  • Keijzer M (2003) Regression with interval arithmetic and linear scaling. In: Genetic Programming, 6th European Conference, EuroGP 2003, vol 2610. Springer, pp 70–82

  • Kenyeres A, Virág G (1998) Testing recent geoid models with GPS/levelling in Hungary. Rep Finn Geod Inst Masal 98(4):217–223

    Google Scholar 

  • Kotsakis C, Fotopulos G, Sideris MG (2001) Optimal fitting of gravimetric geoid undulations to GPS/levelling data using an extended similarity transformation model. In: The 27th Annual Meeting of the Canadian Geophysical Union, Ottawa, Canada

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge

    Google Scholar 

  • Kwon YK, Moon BR (2005) Critical heat flux function approximation using genetic algorithms. IEEE Trans Nuclear Sci 52(2):535–545

    Article  Google Scholar 

  • Langdon WB, Gustafson SM (2010) Geneteic programming and evolvable machines: 10 years of reviews. Genet Program Evolvable Mach 11:321–338

    Article  Google Scholar 

  • Lin Lao-Sheng (2007) Application of a back-propagation artificial neural network to regional grid-based geoid model generation using gps and levelling data. J Surv Eng 133(2):81–89

    Article  Google Scholar 

  • Liu XG, Wu XP, Wang K (2012) Construction of least squares collocation models for single component and composite components of disturbed gravity gradient. Chin J Geophys 55(2):294–302

    Article  Google Scholar 

  • Morales CO (2004) Symbolic regression problems by genetic programming with multi-branches. MICAI 2004: Advances in Artificial Intelligence, pp 717–726

  • Nahavandchi H, Soltanpour A (2004) An attempt to define a new height datum in Norvay. The Geodesy and Hydrography Days, 4–5 Nov. Sandnes, Norway

  • Paláncz B, Awange JL (2012) Application of Pareto optimality to linear models with errors-in-all-variables. J Geod 86(7):531–545

    Article  Google Scholar 

  • Parasuraman K, Elshorbagy A, Carey SK (2007) Modelling the dynamics of the evapotranspiration process using genetic programming. Hydrol Sci J 52(3):563–578. doi:10.1623/hysj.52.3.563

    Article  Google Scholar 

  • Santini M, Tettamanzi A (2001) Genetic Programming for financial time series prediction. In: Euro GPO’01 Proceedings, Lectures Notes in Computer Science 2038, Genetic Programming, pp 361–371

  • Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324:81–85

  • Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic regression. In: Genetic Programming Theory and Practice II. Springer, Ann Arbor USA, pp 283–299

  • Soltanpour A, Nahavandchi H, Featherstone WE (2006) Geoid-type surface determination using wavelet-based combination of gravimetric quasi/geoid and GPS/levelling data. Geophys Res Abstr 8:4612

    Google Scholar 

  • Wu CH, Chou HJ, Su WH (2007) A genetic approach for coordinate transformation test of gps positioning. IEEE Geosci Remote Sens Lett 4(2):297–301

    Article  Google Scholar 

  • Wu CH, Chou HJ, Su WH (2008) Direct transformation of coordinates for GPS positioning using techniques of genetic programming and symbolic regression on partitioned data. Eng Appl Artif Intell 21:1347–1359

    Article  Google Scholar 

  • Wu CH, Su WH (2013) Lattice-based clustering and genetic programming for coordinate transformation in GPS applications. Comput Geosci 52:85–94

    Article  Google Scholar 

  • Zaletnyik P, Paláncz B, Völgyesi L, Kenyeres A (2007) Correction of the gravimetric geoid using GPS leveling data. Geomatikai Közlemények, vol X, pp 231–240 (In Hungarian)

  • Zaletnyik P, Völgyesi L, Paláncz B (2008) Modelling local GPS/leveling geoid undulations using support vector machines. Period Polytech Civ Eng 52(1):39–43

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor and the Reviewers for their comments and suggestions during the review period of the manuscript, but take the responsibility of any errors. This is a TIGeR publication No. 583. This research was funded partially by OTKA project No. 76231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Völgyesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paláncz, B., Awange, J.L. & Völgyesi, L. Correction of Gravimetric Geoid Using Symbolic Regression. Math Geosci 47, 867–883 (2015). https://doi.org/10.1007/s11004-014-9577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9577-3

Keywords

Navigation