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The pressure distribution (PD) and leakage between the slipper and swash plate in an axial piston pump (APP) have a
considerable impact on the pump efficiency, affecting aspects such as the load bearing and wear performance of the slipper.
Herein, multigene genetic programming (MGGP) and artificial neural network (ANN) machine learning methods (MLMs) are
incorporated into a novel approach towards predictive modelling of the PD and leakage on the slipper, which can function
hydrostatically/hydrodynamically. Experimentally measured data are used as input for the MGGP and ANN models. The validity
of the MGGP and ANN models is verified using test data excluded from the analyses. In addition, the model results are compared
with analytic equations (AEs). Both MLMs are found to exhibit strong agreement with the measured data. In particular, the ANN

model exhibits superior prediction performance to the MGGP model and AEs.

1. Introduction

Axial piston pumps (APPs) are in frequent use because of
their ability to operate under high-pressure conditions.
Most of these devices require a swash plate and hydro-
static/hydrodynamic slipper to function. Therefore, the inter-
action between the slipper and swash plate affects the system
performance directly.

Many studies on slipper behaviour modelling have been
performed in the past 40 years, in which theoretical, analyti-
cal, numerical, and machine learning methods (MLM:s) have
been employed with the aim of improving APP performance.
Considering the tilt, grooves, and rotational speed of the
slipper and swash plate, Bergada et al. [1] developed new
equations based on the Reynolds lubrication equation. In
their model, the flow was considered to be dominant in the
radial course and the fluid was taken to be incompressible. In
addition, generalised equations for slippers with any number
of lands were established. The analytic equations have proven
to agree well with experiment data. In one of their studies,
Bergada et al. [2] examined the behaviour of a slipper
working hydrostatically/hydrodynamically and produced an
analytical formulation based on the Reynolds lubrication

equation. In addition, they supported this analytical formula-
tion through experiment and implemented a fluid dynamics
model. Similarly, by acknowledging that the slipper is parallel
to the swash plate, Kumar et al. [3] developed a model capable
of calculating fluid film pressure and leakage. That model was
established considering the tangent speed for different groove
sizes, using the complete Navier Stokes equations. The mean
fluid thickness and PD for invariable and dynamic operating
conditions were experimentally quantified and compared.
Furthermore, under the assumptions that the space between
the slipper and swash plate is fixed and that the slipper is
nontilted and straight, Johnson and Manring [4] developed
an analytic model based on classical lubrication theory,
which also considers tangential speed. They observed that
an increase in slipper pocket depth reduces friction. Tang
et al. [5, 6] developed a numerical model for a hydrostatic
slipper considering heat transfer and thermal effects. The
established model was used to study the effects of the struc-
tural parameters and material properties on the hydrostatic
bearing capacity.

In an experimental study, Canbulut et al. [7] investigated
the power loss in APPs and the effect of surface rough-
ness on the slipper. They designed an experiment setup to
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determine the slipper performance under different oper-
ational conditions. Those researchers also observed that
reduced surface roughness causes lower power loss and that
the power requirement is reduced with increased orifice
diameter and pressure. By varying the geometric features
of the slipper and its operational parameters, Canbulut [8]
studied the minimum frictional power loss and minimum oil
leakage, again by considering the slipper surface roughness.
Hence, it was observed that the frictional power loss and
oil leakage depend on the surface roughness, turning speed,
hydrostatic bearing area size, supply pressure, and orifice
diameter. Lin and Hu [9] considered the slipper rotational
speed, loading pressure, and oil viscosity and suggested a
tribodynamic model. To obtain a solution to this model, they
employed the niche genetic algorithm (GA). To quantify the
oil film thickness, they designed a test setup and observed
that the theoretical results and quantified results were in good
agreement. Chao et al. [10] developed a new Reynolds equa-
tion, which considers the slipper spin, by employing the equi-
librium equation and continuity equation. Those researchers
demonstrated that their proposed Reynolds equation has
the same form as its version in the literature; however,
the equations differ completely according to the velocity
boundary conditions. Moreover, in another study [11], the
same researchers designed a new experimental setup for
slipper spin and discovered that the slipper turning speed is
almost equal to that of the shaft. Considering the interaction
between the elastohydrodynamic behaviour and viscosity
temperature, Tang et al. [12] developed a new thermoelasto-
hydrodynamic lubrication model for the behaviour between
the APP and slipper. They demonstrated that the calculated
temperature and film thickness are in good harmony and that
the pressure exhibits a reasonable distribution compared to
earlier studies.

Nonlinear systems are difficult to model because of their
characteristics and the associated problems and because
prediction of their parameters is difficult [13]. MLMs are
frequently used to overcome such difficulties. In MLMs,
the relationship between the input and output data can be
predicted easily, with no need for acceptance. In the literature,
the artificial neural network (ANN) is one of the most
commonly used modelling systems for slippers. Canbulut et
al. [14] considered the orifice sizes and slipper pocket and
developed an ANN model to analyse the system rigidity in
a bearing. The results obtained for test data submitted to
the trained network exhibited close agreement with the
experiment results. In another study, Canbulut et al. [15]
investigated the effects of different surface areas and surface
roughness values on slipper performance; hence, they formed
an ANN model using their empirical results. The empirical
results for the leakage quantity were completely consistent
with the ANN model. In addition, those researchers observed
that the leakage quantity depends on the surface roughness,
orifice diameter, bearing area size, supply pressure, and rota-
tion speed. In another study, Canbulut et al. [16] investigated
the frictional power loss, both theoretically and experi-
mentally. They determined the minimum frictional power
loss for different study parameters and slipper geometries.
Additionally they demonstrated that the ANN model can
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be used in real time. Canbulut et al. [17] also used ANNs
for analysis of hydrostatic circular recessed slippers. They
correctly modelled the static and dynamic features of the
slipper using the developed ANN model. Further, Liu et al.
(18] calculated the form of the oil film through analysis of
the power balance, by applying the niche GA and treating the
calculation as an optimisation problem. Hence, they observed
that the rotational speed has a significant effect on the film
form.

Although ANNGs exhibit good modelling performance
when applied to slippers, they do not mathematically produce
a function, as the network generally develops a model based
on input and output data. In this study, we modelled the
complex behaviours between the slipper and swash plate of an
APP using MGGP and ANN. The PD on the slipper and the
leakage were incorporated into the MGGP and ANN models.
Further, the accuracies of both the ANN and MGGP models
were tested on empirical data not used for analysis and the
performance compared with that of analytic equations (AEs)
produced from the Reynolds equation.

The remainder of this article is structured as follows. In
Section 2, the APP working principle is briefly summarised.
In Section 3, the experiment setup is described. In Section 4,
the MGGP and ANN, parametric value selection, and perfor-
mance criteria used in this study are discussed. In Section 5,
the findings are presented and discussed. Finally, in Section 6,
the conclusion is presented and future work is consid-
ered.

2. Theory of the System

Figure 1(a) presents an illustration of a typical APP. Each
piston makes contact with the slipper via a ball-joint con-
nection; these ball joints allow the pistons to remain parallel
to the swash plate at all times. When working via the drive
shaft, the pump turns the cylindrical block. The swash plate is
oblique, which enables the pistons to move back and forth. A
steady oil flow is created by the piston motion, which, in turn,
generates pressure in the hydraulic network. Variation of the
swash plate angle changes the piston stroke; hence, variable
displacement is achieved. During operation, the piston is
under the load of the pressurised oil. This load is transferred
to the slippers through the orifice. The slipper bears this load
and slips over the swash plate during the pump operation.
At this point, if there is insufficient lubrication, metal-metal
friction develops; also, excess oil flow reduces the system
efficiency. Figure 1(b) shows the slipper and swash plate. With
rotation of the swash plate, the oil in the piston is transferred
to the slipper through the orifice and leakage occurs. As
a result, the force created by the pressure in the slipper
pocket diminishes somewhat. However, this reduction is
compensated for by the compressive force developing on
the slipper land, and the total pressure forces remain in
balance.

As the supply pressure increases or decreases, the pocket
pressure also increases or decreases. Thus, the thickness of
the oil film between the slipper and swash plate adjusts,
and the generated compressive force remains in constant
balance. As apparent from Figure 1(b), the load capacity,
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FIGURE 1: Schematic presentation: (a) axial piston pump and (b) slipper/swash plate used in this study.

which is caused by the supply pressure (P,) and acts on
the slipper, is balanced by the pressure between the slipper
bearing surface and the anticoincident elements [7]. The PD
on land under these circumstances can be explained through
solution of the Reynolds equation in cylindrical coordi-
nates for flat slipper including average oil film thickness

[2]:
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where r, represents the radius of the orifice, r, the radius of
the slipper pocket, r; the outer slipper radius, P, the slipper
pocket pressure, and P the pressure at any point on the slipper
land. With the omission of the paralleling conditions between
slipper/swash plate and 7, the dynamic viscosity of the fluid,
Q, is as follows:
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3. Experimental System

3.1. Experimental Setup. The experimental setup shown in
Figure 2(a) was prepared based on the experimental setups
in [14-17]. The apparatus consisted of a main test unit, a
section in which measurements were performed and data
acquired, and units supplying the system with pressurised
oil.

3.1.1. Main Test Unit. The structure of the main test unit is
shown in Figure 2(b). This unit comprised a hydraulic load-
ing block, slippers, a swash plate, lowering shaft, microme-
tres, and oil inlet and outlet sections. Pressurised oil was

forced into the system through the inlet. The oil dis-
charged from the slippers was transported back to the oil
tank.

3.1.2. Measurement of Data. The swash plate was prepared
using steel that was quenched before its surface was ground.
An axial ball-bearing was used for the swash plate, which was
directly connected to a 5-kW servo motor (Mitsubishi MR-
J2S-500A) for driving. The swash plate had a mean surface
roughness of 1.33 ym and operated with a runout of 3-10
pm depending on the pressure and speed. As apparent from
Figure 2(b), there were three slippers at an angle of 120°. Thus,
each slipper was loaded equally. The slippers were made of
brass and their dimensions are given in Table 1. The pressure
measurement was performed for one of the slippers, while the
slipper runout was measured for another slipper. There were
four holes on the slipper created for pressure measurement
(Figure 3).

One of these holes was located in the slipper pocket
(labelled ‘4’), and the remaining three were positioned at
1.5 mm interior to the outer diameter and at an angle of
120° (Figures 3(a) and 3(b), labelled 1, 2 and ‘3’). For
pressure measurement, 0.6-mm holes were opened on the
slipper edges and copper pipes were welded to those holes.
A Keller PA-21-SR 0-60-bar piezoresistive pressure sensor
was used for measurement. In addition, another pressure
sensor measured the supply pressure before oil entered the
system. Figure 3(a) shows that a thermocouple was connected
to the slipper (labelled ‘6’), while the temperature of the
oil in the slipper was measured through the hole labelled
‘5. Runout quantification was performed using a Mitutoyo
Absolute Digimatic Indicator with an Output Comparator,
which has a sensitivity of 1 gm. For the runout, mean values
were used, because the rotation speed of the swash plate
under the slipper is very high. All slippers were produced

using the same manufacturing parameters, and an orifice of
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TaBLE 1: Slippers used in experiment.

Symbol Parameter Value
7 Radius of the capillary tube 0.45
7, Inner radius 12
T3 Outer radius 20
r Radius of pressure point 18.5
R Rotation radius 45
R, Swash plate radius 86
"o, Pressure point 1 of slipper from swashplate centre 48.5
", Pressure point 2 of slipper from swashplate centre 30.8
", Pressure point 3 of slipper from swashplate centre 613
D, Piston diameter 30
) Length of the capillary tube 20
0, Angle of the pressure point 1 from slipper center 4.71
0, Angle of the pressure point 2 from slipper center 0.52
0, Angle of the pressure point 3 from slipper center 2.62
b Slipper/swash plate distance before experiment 3
«unit of the lengths are mm.
*xunit of the angles are radian.
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FIGURE 2: Experimental setup: (a) experiment set and (b) the disassembly appearance of experimental set.

0.9 mm in diameter was in the exact centre of the slipper
(label ‘9%). Also, labels 7 and 8 in Figure 3(a) show slipper
land and pocket, respectively. For data acquisition from the
experiment setup, a 20-channel AHLBORN data logger was
used (Figure 2(a)). The obtained data were processed in the
electronic environment with the aid of the AMR WinControl
program and adjustments were made such that one datum
per second was recorded. In addition, two thermocouples
were connected to the data logger: one to measure the oil

temperature in the tank, and the other to measure the ambient
temperature.

3.1.3. System Pressured Oil. A 0.37-kW Gamak AGM 71 4b
motor with three phases was used to transport the pressurised
oil to the experiment apparatus. Before sending oil to the
apparatus, which incorporated a 25-L oil tank, the pressure
was adjusted using a Bourdon gauge. The same pressure
values were also read by means of a pressure sensor.
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3.2. Experimental Method. Before beginning the experi-
ments, the hydraulic load unit was lowered via the lowering
shaft until the space between the slipper and swash plate
was 3 mm. Then, the pump in the apparatus was operated
to transport the pressurised oil to the hydraulic load unit.
First of all, the slipper goes down 3 mm and in this way the
hydraulic load unit (lowest point) is guaranteed not to come
into contact with the slipper (upper point of land) during
operation. Thus, the slipper, moving freely up and down,
balanced itself according to the required oil thickness. This
oil generated pressure in the slipper pocket and slipper
land. For PD modelling, supply pressures of 20, 30, 40, 50,
and 60 bar were considered. Note that data could not be
obtained at 10-bar pressure owing to insufficient oil flow at
the measurement points. For leakage modelling, however, the
10-60-bar pressure range was considered. In addition, owing
to the orifice diameter-slipper pocket-piston diameter ratio,
the supply pressure in the system did not exceed 65 bars. As
pressure measurement could not be performed at the pressure
measurement points at high speeds, swash plate rotation rates
of 0, 200, 400, 600, 800, and 1000 rpm were selected. During
the experiment, the oil temperature was fixed at 25°C by
means of an air-cooled system. Shell Tellus 68 hydraulic oil
(n=0,12278 N s/m?*) was used as the fluid. Each experiment
was repeated three times.

4. Material and Methods

4.1. ANN Model Development. ANNs inspired by the bio-
logical nervous system consist of process elements (artificial
nerve cells) connected to each other. In an ANN, each
connection has a certain weight, and the information pos-
sessed by the network is concealed in the weight values
distributed throughout the network. An ANN generally has
an input layer, one or more hidden layers, and an output

Swash Plate
Slipper
3 ‘(r7ps{
Recess I
Land Swash Plate
Center
1,

(b)

FIGURE 3: Slipper: pressure measurement points (1-4), thermocouple and its hole (5-6), slipper land and pocket (7-8), and orifice (9).

layer (Figure 4). Data are brought to the network through the
input layer, processed in the hidden layers, and sent to the
output layer. The weight values of the network are determined
through data processing and are also defined as part of the
network learning [19].

4.1.1. Settings of Parameters of Proposed ANN Model. In this
work, the ANN inputs were the data obtained from the
experiment. The activation functions employed in this study
are logarithmic sigmoid, hyperbolic tangent sigmoid, and
pure linear activation functions (Egs. (3)-(5)) most frequently
used for similar problems in the literature [14-17].

1

logsig (x) = Tr e (3)
tansig (x) = m -1 (4)
pureline (x) = x (5)

In this study, two hidden layers were used to form the
ANN model. For each activation function combination, the
minimum error rate was determined based on the mean
squared error (MSE) for 400 trials in

(0,1’
MSE =y —— (6)
2N

where o; represents the outputs of the ANN model, ¢; the
experimentally measured values, and N the number of test
data elements. Figure 5 shows the errors obtained for 70%
training data, 15% validation data, and 15% test data, when
logarithm sigmoid, pureline linear, and tangent sigmoid
activation functions were implemented in the input, hidden,
and output layers, respectively. The trial and error PD results
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FIGURE 5: Error for number of neuron combinations in hidden tabs
for an ANN model.

of the ANN model are also shown. For this combination of
activation functions, the network structure with the most
favourable performance had 3.2153e-05 MSE; this result was
achieved for a model with 13 and 7 neurons in the first and
second layers, respectively.

The other models in the study were also similarly opti-
mised using the trial and error method. Code developed
in MATLAB was used. The ANN training and structural
parameters are presented in Table 2. All three activation
functions for the hidden and output layers were attempted
in all combinations. Results were obtained for hidden layers
with all neuron numbers between 1 and 20.

4.2. MGGP Model Development. First developed by Koza
on the basis of the GA, GP is an MLM [20]. In GP, data
are stored as computer programs in the form of tree struc-
tures containing functions and terminals. The functions may
include mathematical functions (sin, cos, x, e*, In, log, power,

TABLE 2: Parameters of proposed ANN.

Parameters Values
Training data set 4799
Validation data set 1028
Testing data set 1028
Number of hidden layers 2
Number of neurons in

. 1-20
hidden layers
Activation functions Tag51g—L9g51g-

Pureline

Number of epochs 10000
Learning rate 0.7

Architecture selection Trial-Error

Target goal mean square
error

10-7

Minimum performance

gradient 107

etc.), logic functions (AND, OR, NOT, NOR, XOR, etc.),
arithmetic functions (+, -, X, and /), and programming
functions. Terminals can contain input variables, quantita-
tive variables, logical constants, etc. [21]. The function and
terminal selection randomly generate an initial population.
Then, a new population is produced according to a suitability
function determined by means operators such as regener-
ation, mutation, and crossover. Thus, a tree structure with
a minimised error ratio is obtained. This process continues
until one of the defined stopping criteria is satisfied [22-26].
MGGP exploits a weighted linear combination of the outputs
of a series of GP trees, for which each tree may be regarded as
a gene. In the equation given in Figure 6, a, b, and c are input
values; y is the output value; A is the bias (offset) term; and
A, A, and A; are gene weights.

4.2.1. Settings of Parameters of MGGP. Parameter adjust-
ments have an important influence on the efficiency of
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FIGURE 6: Example of a multigene genetic symbolic model.

TABLE 3: Parameters of proposed MGGP.

Parameters Values assigned

Population size 100-500
Number of generations 100-400
Tournament size 15-20-25
e
Elite fraction 0.08-0.09-0.1
Maximum depth of tree 4-5-6
Max genes 4-5-6

%5 4/ tanh, exp, log, abs,
cube, negexp, mult, add, sqrt, neg

(x1, x2, x3, x4, x5, x6 [-10 10])

Functional set (F)

Terminal set (T)

ERC probability 0.1
Crossover probability rate 0.84
High-Level crossover 0.2
Low-Level crossover 0.8
Mutation probabilities 0.14

the MGGP algorithm. In this study, these parameters were
identified with reference to the literature and are listed in
Table 3. All combinations were implemented and a compact
model with minimum error was sought.

The elements in the terminal set, the input values from
the empirical data, and the random constants are selected
randomly, taking experiment/human error with a range of
[-10 10] into consideration [23]. It has been reported that
restriction of G,,,, (the maximum gene number) and D,
(maximum tree depth) in particular enables evolution of
relatively compact individuals, even if there are many inputs
[27, 28]. Thus, in this study, G,,,, and D, ,, were set to six.
In addition, it has been noted that the population number
and generation number of the training data influence the
MGGP performance for large datasets in different engineer-
ing applications [29-31]. Therefore, in the present study, the
population size was in the 100-500 range, and generation
numbers of 100 to 400 were studied, with increments of
100 in each instance. In this study, for multigene symbolic
regression, the open source GPTIPS software developed in

MATLAB was used [27]. The fitness values for the measured
and predicted outputs were obtained using the root mean
square error (RMSE) in GPTIPS (Eq. (7)) and a trial and error
method similar to ANN.

4.3. Comparison of Performances of ANN and MGGP Models.
The data obtained from the experiment described in Section 3
were used incorporated in the AEs, MGGP, and ANN.
Before implementation, the dataset was mixed randomly and
divided into three separate datasets, to obtain 70% training,
15% validation, and 15% test data. To evaluate the model per-
formance, the following accuracy indexes were used: RMSE,
the coefficient of determination (R?), relative error (RE),
mean absolute percentage error (MAPE), and multiobjective
error (MO), as expressed in (7)-(11), respectively.

N
RMSE = % Y (o t,)° )
i=1
2
RP=1- Y (0 - t,) (8)
Zgl (0; - 61’)2
¢
RE (%) = loi=tl 10 9)
i
N
—t
MAPE = % Y| ’l (10)
i=1 i
MO - MAPE 1:2 RMSE -

In cases where there are sufficiently large input and output
datasets, R? becomes important. In this study, a total of 6855
data obtained from the experiment were used for PD analysis,
while 2484 data elements were used for leakage analysis. Note
that the proximity of R* to 1 shows the degree of agreement
between the observed results and model outputs. However,
if the data in the model change equally, R* does not change.
The RMSE and MAPE indexes show the relative error, but not
the correlation. Therefore, the MO error function, which is a
combination of functions, was also used [32].



5. Results and Discussions

5.1 Pressure Distribution on the Slipper. The APP working
conditions are some of the most important factors affecting
the PD on the slipper. Supply pressure (P;) is exerted as a
downward force on the slipper. Oil (Q) flows into the slipper
pocket through the orifice. This, in turn, creates an upward,
recess pressure (P,) and an opposite force. The two forces
do not balance each other completely. The power balance is
realised via the hydrodynamic lubrication on the slipper land.
In addition, the flow rate changes somewhat with the runout
on the slipper(r,,) and the swash plate rotation rate (n). This,
however, affects the slipper pocket pressure and the PD on the
slipper. In the MGGP and ANN models, the variable input
data were considered to predict the PD. Output data were
taken for the pressure values measured on points 1, 2, and
3 of the slippers, depending on the angle (6) value of the
experimental setup. Thus,

P = f(Ps’Pr’Q’n’rro’e) (12)

From the experiments, the following parameters were found
to be most favourable: population size = 500, generation
number = 400, tournament size = 15, Pareto tournament
probability = 0.5, elite fraction = 0.08, D,,, = 6, and G, =
6. Hence, the equation yielding the most favourable PD was

in

P =0.0588 + 0.00462 (n +

7., — 0 + tanh (nzrm)

(0.5P,)
0

- (6.66e146)
(7.21e16 (P, - 0) + 1.44e176|)

B[+

) +0.03526°

+0.127 (P, - 0)

(4.58¢15 tanh (n — 0))
(7.21e16n + 3.6e16 (Q> - 6%))

s (2.65e — 23 (7.65e15 (0 — expn))) \ 2680 (13)
(6 + |P,| + n/6? + P> - 9.29)°

-4 (tanh (P,-0)

exp (P,)
|P,]

n+ 6 + tanh (0) +

n
+ él - nb* +Ql/2

- nzpsrro (Ps - 9))

(1.08e - 19 (9.91e14 (n + 96) + 1.98e159))
- |6 +2|P,| + 6] + exp P,/n|
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TABLE 4: Assessment of MO for the PD MLMs.

Models Training Data Test Data
Py 0.7436 0.7990
Pycop 10219 1.0420

TABLE 5: Relative error (%) statistical performance for PD of MLMs.

Models Pycap Pinn

Mean 1.0344 0.7933
LCI 95% 0.9611 0.7272
UCI 95% 1.1077 0.8593
Tr mean 5% 0.8760 0.6532
SD 11979 1.0792
Median 0.7387 0.5563
Min 0.0023 0.0014
Max 11.3905 13.9012

In the ANN model, however, two layers were used. The
neuron numbers in the hidden layers (1-20) and the activation
functions in (3)-(5) were tried, in all combinations. The
model with the lowest MSE (2.6558e-05) had 16 and 13
neurons in the first and second hidden layers, respectively,
and incorporated the tansig activation function.

Figure 7 shows the compatibility of the results for the
training, validation, and test data given by the MGGP and
ANN models with the experiment results for the PD on the
slipper. It is apparent that both methods could learn very
well during the training and validation stages (Figures 7(a)
and 7(b)), with a very low error ratio. During the test stage,
however, the ANN model could somewhat better predict
the nonlinear relationship between the input and output
variables, with a high R value exceeding 0.99. The abundance
of data enabled both models to achieve higher-accuracy
predictions [13]. The MO values for both models were
calculated on the training and test data, as detailed in Table 4.

The mean statistical performance, lower confidence inter-
val (LCI) of the mean at 95%, upper confidence interval (UCI)
of the mean at 95%, trimmed mean (Tr mean) 5%, standard
deviation (SD), median, minimum (Min), and maximum
(Max) are summarised in Table 5.

The low MO values on the test data, the LCI, and the low
values of the other statistical data suggest that the ANN model
exhibited somewhat superior performance to the MGGP
model. Table 6 presents a comparison of the developed
MLMs with AE derived from classical Reynolds equations.
AE that comply with the measurement principles of the
experiment setup were used.

AE-1 was derived by assuming that the pressure does
not change throughout the angle and vibration, without
considering flow rate. However, a hydrodynamic oil wedge
is formed by the rotation of the swash plate. Therefore, small
differences are observed in pressure measurement points. In
Table 6, it is clear that the MLMs produced superior results
to AE-1.
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FIGURE 7: (a) Training data, (b) validation data, and (c) compatibility to test data, of the models developed with MLM:s for PD.
TaBLE 6: Comparison of AE with MLMs for PD.
Models Performance
R’ RMSE MAPE MO
AE-1[2] 0.6650 0.1089 16.0833 24.3492
MGGP 0.9989 0.0063 1.0344 1.0420
ANN 0.9992 0.0052 0.7933 0.7990
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TABLE 7: Evaluation of the MO error of MLMs for leakage.
Models Training Data Test Data
Qunn 0.0002 0.0003
Qucor 0.0752 0.0689

TABLE 8: Relative error % statistical performance of MLMs for
leakage.

Mathematical Problems in Engineering

5.2. Leakage on the Slipper. The flow between a slipper with
small clearance and the swash plate in an APP is generally
considered to be laminar. This flow has an effect proportional
to the amplitude of the runout on the flow and the thickness of
the oil film [2]. For leakage, the mean of the runout measured
on the slipper was computed (r,,). In addition, normalised
logarithms of the output data were considered in order to
determine the leakage quantity measured for the experiment
setup, within (14). The leakage in this study is limited to the

Models Qucer Qann slipper/swash plate pair.
Mean 0.068156 0.000276
LCI 95% 0.061743 0.000234 Q= f (P P.onr ) (14)
UCI 95% 0.074568 0.000319 e
Tr mean 5% 0.061236 0.000216 . o .
D 0.0629366 0.0004211 In the trials, a population size of 500, generation number of
Medi 0 052302 0 000179 400, tournament size of 15, Pareto tournament probability of

_—— : : 0.6, elite fraction 0of 0.1, D, of 6, and G, ,, of 6 were found to
Min 0.0000 0.0000 be the best parameters. The equation yielding the best leakage
Max 0.3704 0.0040 result was as follows:

1/2 1/2
O - 0g06s 270B(1+R) (4.34¢ - 19) (7.83¢15 (n+ exp (P}/?) + P}/?)) (452 5yexp (exp (7 )1,2)1/4
TP T (231e31P3 — 5.99631) NG R AN
r exp (exp (P,) )

1/2
+0.0328 (P, - 7.767,,, - 1.0tanh (P,r,,)""*)

(5.81e15 (n+n” + P/*) - 3.93¢16)

(15)

' (2.95e20 (n—exp(P,)) - (1.97e — 5) (nabs (P,l/2 -1.0n+ Psz) -n(n+ Ps)))

1/2

-tanh (P,r,,)"" (P, +2.0r,,)

For the ANN model, the parameters in Section 4.1.1 were
used, along with the tangent sigmoid function in the hidden
layers and the pure linear activation function in the output
layer; hence, the lowest MSE of 1.4605e-11 was obtained, with
19 and 14 neurons in the first and second hidden layers,
respectively.

Figure 8 shows the compatibility of the training, vali-
dation, and test data for leakage obtained in experiment
with the MGGP and ANN model results. For a flat slipper,
the leakage change increases as the inlet pressure rises, but
decreases by a certain degree as its rotation speed increases
[2]. As apparent from Figure 8, this relationship can allow
creation of highly predictive models using either of the
developed MLMs. In this study, similar to existing ANN
models designed to model the slipper flow rate [15], high
predictive values were obtained. The ANN model was slightly
more efficient than MGGP. The MO values for the leakage
prediction of the MLMs were computed for the training
and test data; the results are listed in Table 7. In addition,
the statistical performance of the two MLMs for leakage is
summarised in Table 8.

From the low statistical values, which were obtained
because the leakage data were in a more definable range,

—9.89 exp (-1.0P - 2.3)

it is apparent that the ANN model exhibited superior per-
formance to the MGGP. Furthermore, a comparison of the
results with AE is presented in Table 9.

AE-2 shows the flow on the orifice. Because the 0.9 mm
diameter orifice is used, the inertia effects of the flow are
effective [15]. AE-3 shows the flow between the slipper/swash
plates. According to Table 9, although the AEs exhibited satis-
factory performance as regards leakage, the MLMs displayed
superior performance.

6. Conclusion

In this study, an alternative approach to modelling PD and
leakage, which directly affect the friction and wear of the
slipper of an APP, was presented; the proposed approach
is based on MGGP and ANN MLMs. Data were obtained
using a specially designed experiment setup. To assess the
efficiency of the suggested models, data excluded from the
analyses was employed as test data. Additionally, the results
were compared with AEs reported in the literature, which
were obtained with acceptances on the basis of the Reynolds
equation. Compatible parameter sets were determined for
both MLMs by taking parameters employed for similar
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FIGURE 8: The compatibility of the models produced with MLMs to (a) training data, (b) validation data, and (c) test data.

problems in the literature as references and through the trial
and error method.

The results revealed that both MLMs have high predictive
performance as regards PD and leakage. The AEs, however,
exhibited inferior performance to the MLMs, as they are
based on certain assumptions, such as ignoring inertia and
system noise. But it should be noted that analytical equations

are more meaningful to define physical relationships math-
ematically. As for the ANN, although it exhibited superior
performance to the MGGP, it could not produce a mathemati-
cal model. The proposed MLMs can be used as a preliminary
design stage by engineers. The current study was restricted
to the steady conditions and operational parameters of the
slipper. In the future, through investigations focusing on



12 Mathematical Problems in Engineering
TaBLE 9: Comparison of AEs with MLMs for leakage.
Model Performance
R? RMSE MAPE MO

AE-2[16] 0.8534 0.0099 0.8621 1.0218
AE-3[2] 0.9932 0.0021 0.2629 0.2668
MGGP 0.9993 6.8537e-4 0.0681 0.0689
ANN 0.9999 3.8216e-6 0.0003 0.0003

the rotation operational conditions of the slippers, different
slipper geometries, sudden load changes, the oil temperature
effect, and the operational duration, a multipurpose model
will be produced using strong optimisation algorithms con-
sidering all axial piston pumps.

Nomenclature
PD: Pressure distribution
APP:  Axial piston pump

MGGP: Multigene genetic programming
ANN: Artificial neural network
MLMs: Machine learning methods
AEs:  Analytic equations

GA: Genetic algorithm

GP: Genetic programming

MO:  Multiobjective error

MAPE: Mean absolute percentage error
RE: Relative error

RMSE: Root mean square error

MSE:  Mean squared error.
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