
Grammar based function definition in Grammatical Evolution.

Michael O’ Neill & Conor Ryan
Dept. of Computer Science And Information Systems

University of Limerick
Ireland

Michael.ONeill@ul.ie & Conor.Ryan@ul.ie
Phone: +353-61-202730

Abstract

We describe the use of grammars as an approach to
automatic function definition in Grammatical Evo-
lution. The automatic generation of functions al-
lows the evolution of both the function and the code
belonging to the main body of the program which
has the ability to call upon the evolving function.
As proof of concept we apply a grammar using
automatic function definition to the Santa Fe ant
trail. Results show that the evolutionary search suc-
cessfully evolves code for the automatically defined
function and calls upon this function from the main
code to generate solutions to the Santa Fe trail. An
analysis of the number of successful runs shows a
speed-up in terms of the number of generations re-
quired to find a solution when compared to standard
Grammatical Evolution.

1 Introduction

Grammatical Evolution (GE) is an evolutionary algorithm ap-
proach to automatic program generation in which a popula-
tion is comprised of individuals composed of variable length
binary strings. The system employs a genotype-to-phenotype
mapping process in order to generate the output programs.
The mapping process employs a Backus Naur Form (BNF)
grammar definition that permits the system to evolve code in
any language, and ensures its syntactic correctness.

GE has been applied successfully to various prob-
lem domains including, symbolic regression, finding
trigonometric identities, robot control, and evolving
caching algorithms[Ryan et al. 98a] [Ryan et al. 98b]
[Ryan, O’Neill 98] [O’Neill, Ryan 99a] [O’Neill, Ryan 99b]
[O’Neill, Ryan 99e] [O’Neill et.al. 2000]. Some
analysis of the systems features has been con-
ducted in [O’Neill, Ryan 99c] [O’Neill, Ryan 99d]
[O’Neill, Ryan 2000].

We now demonstrate the use of the BNF grammar as

an approach to automatic function definition. The evo-
lution of functions has been examined by various re-
searchers in the Genetic Programming community including
[Angeline, Pollack 92] [Kinnear 94] [Rosca 95] [Koza 92]
[Koza 94], and have grown in sophistication since the orig-
inal ADF format adopted in [Koza 92].

Before describing our grammar based function definition ap-
proach we firstly give a brief overview of GE, and the problem
approached.

2 Grammatical Evolution

When tackling any problem with GE a suitable BNF defini-
tion must first be decided upon. The BNF can be either the
specification of an entire language, or perhaps more usefully
a subset of a language geared towards the problem at hand.
For example, a BNF for the Santa Fe Ant Trail could be;

N = {<code>,<line>,<condition>,<op>}

T = {left(),right(),move(),food_ahead(),
else,if,{,},(,)}

S = <code>

And P can be represented as:

(1) <code> :: = <line> (A)
| <code><line> (B)

(2) <line> :: = <condition> (A)
| <op> (B)

(3) <condition> :: = if(food_ahead()){
<line>

}
else{

<line>
}

(4) <op> :: = left(); (A)
| right(); (B)
| move(); (C)

where the operations left(), right(), move(), and
food_ahead(), are all functions written in the C program-
ming language, and N is the set of non-terminals, T, the set of
terminals, P, a set of production rules that map the elements
of N to T, and S is a start symbol which is a member of N.

The genotype is then used to map the start symbol onto ter-
minals by reading codons of 8 bits to generate a correspond-
ing integer value, from which an appropriate production rule
is selected. A rule is selected by using the following, (In-
teger Gene Value) MOD (Number of Production Rules for
the current non-terminal). Considering rule #4 from above,
i.e. given the non-terminal <op> there are three production
rules to select from. If we assume the codon being read pro-
duces the integer 6, then 6 MOD 3 = 0 would select rule
(A)left(). Each time a production rule has to be selected
to map from a non-terminal, another codon is read, and in this
way, the system traverses the genome.

During the genotype to phenotype mapping process it is pos-
sible for individuals to run out of codons, and in this case we
wrap the individual, and reuse the codons. This is quite an
unusual approach in EA’s, as it is entirely possible for cer-
tain codons to be used two or more times. The technique
of wrapping the individual draws inspiration from the gene
overlapping phenomenon which has been observed in many
organisms in nature [Elseth 95]. In GE, each time the same
codon is expressed it will always generate the same integer
value, but depending on the current non-terminal, may have
a different effect, that is, it may select a different production
rule. What is crucial, however, is that each time a particular
individual is mapped from its genotype to its phenotype, the
same output is generated. This is because the same choices
are made each time. It is possible that an incomplete mapping
could occur, even after wrapping, and in this event the indi-
vidual in question is given the lowest fitness value possible,
then the selection and replacement mechanisms should oper-
ate accordingly to increase the likelihood that this individual
is removed from the population.

An incomplete mapping could arise if the integer values ex-
pressed by the genotype were applying the same production
rules over and over. For example, given an individual with
three codons, all of which specify rule 0 from below,

(1) <expr> :: = <expr><op><expr> (0)
| (<expr><op><expr>) (1)
| <preop>(<expr>) (2)
| <var> (3)

even after wrapping the mapping process would be in-
complete and would carry on indefinitely unless stopped.
This occurs because the nonterminal <expr> is being
mapped indefinitely by production rule 0, i.e., it becomes

<expr><op><expr>. Therefore, the leftmost <expr>
after each application of a production would itself be mapped
to a <expr><op><expr>, resulting in an expression
continually growing as follows:
<expr><op><expr><op><expr><op><expr> etc.
Such an individual is dubbed “invalid” as it will never
undergo a complete mapping to a set of terminals.

To reduce the number of invalid individuals being passed
from generation to generation a steady state replacement
mechanism is employed. A consequence of the steady state
method is its tendency to maintain fit individuals at the ex-
pense of less fit, and in particular, invalid individuals.

Results presented in [O’Neill, Ryan 99d] show that the de-
generate genetic code employed in GE also plays a role in
preserving individual validity. With such a representation
scheme, different codes can represent the same symbol, or in
GE, the same production rule. Modifications are thus allowed
to occur to the genotype without affecting the phenotype, or
functionality. Mutation events which do not alter the phe-
notypic fitness are termed “neutral mutations” [Kimura 83]
[Banzhaf 94]. A degenerate coding mechanism is also em-
ployed in nature and a comparison between GE’s genetic code
and that of molecular biology can be seen in Figure 1.

G G A

G G G

G G C

Glycine

CODON AMINO ACID
(A group of 3 Nucleotides) (Protein Component)

GENETIC CODE PARTIAL PHENOTYPE

00010010

GE RULEGE CODON

<line>

00000010

00100010

i.e. (GE Codon Integer Value) MOD 2 = Rule Number

<code> :: = <line> (0)
 | <code><line> (1)

For Rule (1) in the example BNF, where

Figure 1: A comparison between genetic code degeneracy in
molecular biology and Grammatical Evolution, note how a s-
ingle point mutation at the third base in the biological genetic
code will always result in the selection of the amino acid G-
lycine. Amino acids are the components of proteins which
are responsible for phenotypic traits. In Grammatical Evo-
lution we give an example of how a single bit mutation in
a codon can result in the application of the same production
rule < line >. The production rules in Grammatical Evolu-
tion are combined in such a way as to produce a syntactically
correct program in the language specified by the grammar.

An overview of how GE operates in comparison with a bio-
logical genetic system can be seen in Figure 2. It can be seen

that genes are expressed as proteins which produce a pheno-
type. More than one protein may be responsible for produc-
ing any one phenotype, and a similar situation occurs in GE.
Here a codon results in the selection of rules which map non-
terminals onto either more non-terminals, or terminals, it is
a combination of these terminals and non-terminals that pro-
duce the phenotype, or program.

TRANSCRIPTION

TRANSLATION

DNA

RNA

Terminals

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Pheotypic EffectProgram

Biological System

Figure 2: A comparison between Grammatical Evolution and
molecular biology which shows the mapping process from
genotype to phenotype.

3 The Problem Space

Experiments were conducted using the Santa Fe ant trail as
described in [Koza 92]. A brief description of this problem
domain follows.

The Santa Fe ant Trail is a common problem tackled in the
area of Genetic Programming, and can be considered a de-
ceptive planning problem with many local and global optima
[Langdon, Poli 98]. GE has been previously shown to outper-
form GP on this problem [O’Neill, Ryan 99a]. The objective
is to find a computer program to control an artificial ant so that
it can find all 89 pieces of food located on a non-continuous
trail within a specified number of time steps. The trail is lo-
cated on a 32 by 32 square grid. The code evolved is then
executed in a loop until the number of time steps allowed has
elapsed. The ant can only turn left, right, move forward one
square, and may also look ahead one square in the direction
it’s facing to determine if that square contains a piece of food.
The actions left, right, and move each take one time step to
execute.

While there are many possible fitness cases to the Santa Fe
trail only one case was taken for the purposes of this exper-
iment. The ant started in the top left hand corner of the grid
facing the first piece of food on the trail. A summary of the
problem can be seen in Table 1.

Objective : Find a computer program to
control an artificial ant so
that it can find all 89 pieces of
food located on the Santa Fe trail.

Terminal Operands: left(), right(), move()
Terminal Operators food ahead()
Fitness cases One fitness case
Raw Fitness Number of pieces of food before

the ant times out with 615
operations.

Standardised Fitness Total number of pieces of
food less the raw fitness.

Hits Same as raw fitness.
Wrapper Standard productions to generate

C functions
Parameters Population = 500

Generations = 20

Table 1: Grammatical Evolution Tableau for the Santa Fe
Trail

4 Grammar Based Function Definition

The grammar that has been used previously on this problem
is presented in Section 2. Below is the grammar we used for
automatic function definition.

(1) <prog> :: = void evolved(){
<code>

}
void adf0(){

<adfcode>
}

(2) <code> :: = <line> (A)
| <code><line> (B)

(3) <line> :: = <condition> (A)
| <op> (B)

(4) <condition> :: = if(food_ahead()){
<line>

}
else{

<line>
}

(5) <op> :: = left(); (A)
| right(); (B)
| move(); (C)
| adf0(); (D)

(6) <adfcode> :: = <adfline> (A)
| <adfcode> <adfline> (B)

(7) <adfline> :: = <adfcondition> (A)
| <adfop> (B)

(8) <adfcondition> :: = if(food_ahead()){
<adfline>

}
else {

<adfline>
}

(9) <adfop> :: = left(); (A)
| right(); (B)
| move(); (C)

As can be seen from above, the grammar for automatic func-
tion definition would appear to be larger and more complex
than the standard grammar used on this problem. However,
appearances are deceptive in this case, as in fact the only dif-
ference is that the new grammar allows the main function to
call upon the automatically defined function, whereas the au-
tomatically defined function cannot call upon itself.

The first rule prog determines that the evolved code will be
comprised of a main function called evolved() which is called
in a loop until the predetermined number of time steps has
elapsed. This is the function into which the code evolved
by the grammar in Section 2 is placed. The second func-
tion in the rule prog is the automatically defined function
adf0(). The body for the main function and that of adf0() is
described by two separate non-terminals. The differentiation
is made to avoid recursive function calls by adf0(). Where-
as the main function can call upon the terminals operations
left(), right(), move(), and adf0(), the automati-
cally defined function can only call left(), right(), and
move().

The approach used here is similar to the one adopted in
[Koza 92] by predetermining the number of automatically de-
fined functions and their parameters. We also take this ap-
proach as we wish to demonstrate that GE can benefit from
grammar based function definition. A brief discussion on ex-
tensions to grammar based function definition can be found
in section 6.

5 Results

The grammar described in Section 3 was used to successfully
evolve solutions to the Santa Fe trail. An example solution
produced is given below.

void evolved(){
if(food_ahead()){
move();

}
else{
adf0();

}
if(food_ahead()){

move();
}
else{

adf0();
}
move();
right();
if(food_ahead()){

adf0();
}
else{

right();
}

}

void adf0(){
if(food_ahead()){

left();
}
else{

right();
}

}

Note how the main function efficiently utilises the automati-
cally defined function to call upon its generalised behaviour
of turning either left or right depending on the presence or
absence of food in the neighbouring grid.

A preliminary examination has revealed that in the case of the
Santa Fe trail there is an improvement in performance when
using the grammar based function definition. Figure 3 shows
the number of successful runs out of 20 over 20 generations
in the case of both grammars presented in this paper. Here we
can see that in the presence of the grammar defined function
definition, runs are successful faster in terms of the number
of generations elapsed and frequency of successful runs is in-
creased.

6 Discussion

The results presented show that in the presence of grammar
based function definition we get better solutions faster, than
in their absence, and the output code is in a more readable for-
mat. The use of automatically defined functions has the po-
tential to yield generalisation properties as has been demon-
strated with Genetic Programming, by their incorporation into
automatically defined functions. For further discussion on the
role of automatically defined functions in genetic program-
ming please refer to [Koza 94] as a starting point.

In order to prevent the grammar defined function (adf0) from
calling itself we specified a new non-terminal <adfcode>
that differentiates the content of the function from the main

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

N
um

be
r

of
 S

uc
ce

ss
fu

ll
R

un
s

Generation

Grammatical Evolution

No ADF
With ADF

Figure 3: A comparison between Grammatical Evolutions
performance in the case when grammar based function def-
inition is employed and when it is absent. In the presence of
grammar based function definition there are a greater number
of successful runs in the intitial generations, and more suc-
cessful runs in total than in the case when they are absent.

code. The distinction meant that there was a repetition of sim-
ilar rules from the main function in the rules for <adfcode>.
Repetition of these rules could have been avoided had an at-
tribute grammar being employed. Attribute grammars are
context sensitive and would allow us to specify if the cur-
rent non-terminal was part of the grammar defined function
or belonging to the main calling code. Future work will in-
volve adapting the mapping process of GE to allow the use of
attribute grammars.

In Section 3 we described the grammar for automatic function
definition. Notice that there are no parameters or return state-
ments, however, with a simple modification to the grammar
these can be incorporated with ease. For example, in order to
pass a float to the automatically defined function the rules for
<prog> and <op> would become:

(1) <prog> :: =

void evolved(){
<code>

}
void adf0(float floatvar){

<adfcode>
}

(5) <op> :: = left(); (A)
| right(); (B)
| move(); (C)
| adf0(floatvar); (D)

Similarly we could incorporate additional automatically de-
fined functions by simple modifications to the grammar. In
the case that more than one automatically defined function ex-
isted in the grammar we could impose a hierarchical approach
to their invocation similar to that employed in [Koza 94]. In
order to allow the dynamic definition of functions with GE,
one approach would be to modify the grammar on the fly to
incorporate any new function definitions that are generated
during the mapping process, the initial grammar having been
given this ability. The above approach will, however, require
further investigation.

7 Conclusions

We have successfully demonstrated the use of grammar based
function definition in Grammatical Evolution by evolving so-
lutions to the Santa Fe ant trail. Results also indicate an im-
provement in performance for Grammatical Evolution when
grammar based function definition is employed on the prob-
lem domain examined. Future work will involve an investiga-
tion into dynamic grammar based function definition and the
use of attribute grammars in GE.

References

[Angeline, Pollack 92] Angeline P.J., Pollack J.B. The Evo-
lutionary Induction of Subroutines. In Proceedings of the
Fourteenth Annual Conference of the Cognitive Science
Society, Hillsdale, New Jersey: Lawrence Erlbaum Asso-
ciates Inc, pp 236-241.

[Banzhaf 94] Banzhaf, W. 1994. Genotype-Phenotype Map-
ping and Neutral Variation - A case study in Genetic Pro-
gramming. In Parallel Problem Solving from Nature III.
Springer.

[Elseth 95] Elseth Gerald D., Baumgardner Kandy D. 1995.
Principles of Modern Genetics. West Publishing Compa-
ny

[Kimura 83] Kimura, M. 1983. The Neutral Theory of
Molecular Evolution. Cambridge University Press.

[Kinnear 94] Kinnear K. Alternatives in Automatic Function
Definition: A Comparison of Performance. In K. Kinnear,
ed., Advances in Genetic Programming, MIT Press, 1994,
pp 119-141.

[Koza 92] Koza, J. 1992. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press.

[Koza 94] Koza, J. 1994. Genetic Programming II: Automat-
ic Discovery of Reusable Programs. MIT Press.

[Langdon 98] Langdon, W. 1998. Genetic Programming and
Data Structures. Kluwer Academic Publishers.

[Langdon, Poli 98] Langdon, W. & Poli, R. Why Ant’s Are
Hard. In Proceedings of Genetic Programming 1998,
pages 193-201 .

[O’Neill et.al. 2000] O’Neill M., Collins J.J., and Ryan C.
Automatic Generation of Robot Behaviours using Gram-
matical Evolution. In Proceedings of AROB 2000: The
Fifth International Symposium on Artificial Life and
Robotics, Oita, Japan.

[O’Neill, Ryan 2000] O’Neill M., Ryan C. Crossover in
Grammatical Evolution: A Smooth Operator? In Pro-
ceedings of the Third European Workshop on Genetic
Programming 2000.

[O’Neill, Ryan 99a] O’Neill M., Ryan C. Evolving Multi-
line Compilable C Programs. In Proceedings of the Sec-
ond European Workshop on Genetic Programming 1999.

[O’Neill, Ryan 99b] O’Neill M., Ryan C. Automatic Gener-
ation of Caching Algorithms. In Proceedings of EURO-
GEN’99: A short course on Evolutionary Computation,
Jyvaskyla, Finland, pages 127-134.

[O’Neill, Ryan 99c] O’Neill M., Ryan C. Under the Hood of
Grammatical Evolution. In Proceedings of GECCO’99:
The Genetic and Evolutionary Computation Conference
1999, Vol. 2, pp. 1143-1148.

[O’Neill, Ryan 99d] O’Neill M., Ryan C. Genetic Code De-
generacy: Implications for Grammatical Evolution and
Beyond, in ECAL’99: Proceedings of the Fifth European
Conference on Artificial Life, Lausanne, Switzerland.

[O’Neill, Ryan 99e] O’Neill M., Ryan C. Steps Towards
Khepera Dance Improvisation. In Proceedings of the First
International Khepera Workshop 1999.

[Rosca 95] Rosca J.P. An Analysis of Hierarchical Genet-
ic Programming. Technical Report 566, University of
Rochester, Computer Science Department, New York.

[Ryan et al. 98a] Ryan C., Collins J.J., O’Neill M. 1998.
Grammatical Evolution: Evolving Programs for an Arbi-
trary Language. Lecture Notes in Computer Science 1391,
Proceedings of the First European Workshop on Genetic
Programming, pages 83-95 . Springer-Verlag.

[Ryan et al. 98b] Ryan C., O’Neill M., Collins J.J. 1998.
Grammatical Evolution: Solving Trigonometric Identi-
ties. In Proceedings of Mendel ’98: 4th International
Conference on Genetic Algorithms, Optimization Prob-
lems, Fuzzy Logic, Neural Networks and Rough Sets,
pages 111-119.

[Ryan, O’Neill 98] Ryan C., O’Neill M. Grammatical Evolu-
tion: A Steady State Approach. In Late Breaking Papers,
Genetic Programming 1998, pages 180-185.

