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ABSTRACT

Motivation: Not individual single nucleotide polymorphisms (SNPs),

but high-order interactions of SNPs are assumed to be responsible

for complex diseases such as cancer. Therefore, one of the major

goals of genetic association studies concerned with such genotype

data is the identification of these high-order interactions. This search

is additionally impeded by the fact that these interactions often are

only explanatory for a relatively small subgroup of patients. Most of

the feature selection methods proposed in the literature, unfortu-

nately, fail at this task, since they can either only identify individual

variables or interactions of a low order, or try to find rules that are

explanatory for a high percentage of the observations. In this article,

we present a procedure based on genetic programming and multi-

valued logic that enables the identification of high-order interactions

of categorical variables such as SNPs. This method called GPAS

cannot only be used for feature selection, but can also be employed

for discrimination.

Results: In an application to the genotype data from the GENICA

study, an association study concerned with sporadic breast cancer,

GPAS is able to identify high-order interactions of SNPs leading to a

considerably increased breast cancer risk for different subsets of

patients that are not found by other feature selection methods. As an

application to a subset of the HapMap data shows, GPAS is not

restricted to association studies comprising several 10 SNPs, but

can also be employed to analyze whole-genome data.

Availability: Software can be downloaded from http://ls2-www.cs.

uni-dortmund.de/�nunkesser/#Software

Contact: robin.nunkesser@uni-dortmund.de

1 INTRODUCTION

Variations in the human genome can alter the risk of

developing a disease. The by far most common type of such

genetic variations are single nucleotide polymorphisms (SNPs),

which occur when at a single base pair position different base

alternatives exist. Since a SNP is typically biallelic, it can take

three forms: a SNP is of the homozygous reference (or the

homozygous variant) genotype if both chromosomes show the

base that more (or less) frequently occur in the population, and

it is of the heterozygous genotype if one of the bases is the less,

and the other is the more frequent alternative.
One of the major goals of association studies is to identify

SNPs and SNP interactions that lead to a higher disease risk.

Since individual SNPs typically only have a slight to moderate

effect—in particular, when considering complex diseases such

as sporadic breast cancer—the focus is on the detection of

interactions (Culverhouse et al., 2002; Garte, 2001). The search

for such interacting SNPs is additionally impeded by the facts

that the interactions are usually of a high order, and that they

are explanatory for relatively small subgroups of the patients

(Pharoah et al., 2004).
Various methods have been suggested for and applied to

genotype data to identify SNP interactions. These procedures

reach from exhaustive searches based on, e.g. multiple testing

approaches (Boulesteix et al., 2007; Goodman et al., 2006;

Marchini et al., 2005; Ritchie et al., 2001) to methods based on

discrimination procedures (Lunetta et al., 2004). For overviews

on such approaches, see Heidema et al. (2006) and Hoh and

Ott (2003).

One of the most promising methods is logic regression

(Ruczinski et al., 2003), an adaptive classification and regression

procedure that tries to identify Boolean combinations of binary

variables associated with the response (e.g. the case-control

status). In several comparisons with other regression or

discrimination approaches, logic regression has shown a good

performance in its application to SNP data (Kooperberg et al.,

2001; Ruczinski et al., 2004; Schwender, 2007; Witte and Fijal,

2001). Moreover, logic regression can be employed for detecting

interactions and quantifying their importance (Kooperberg and

Ruczinski, 2005; Schwender and Ickstadt, 2007).
For an application of logic regression to genotype data, each

SNP needs to be coded by (at least) two dummy variables, as

logic regression can only handle binary predictors, but SNPs

can take three forms. Although this coding can be done in a

biologically meaningful way (one dummy variable codes for a

dominant effect, and the other for a recessive effect), it might be

preferable to include each SNP as one variable in the analysis.

Furthermore, the logic expressions generated by logic regres-

sion should be transformed into a disjunctive normal form*To whom correspondence should be addressed.
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(DNF) to identify the interactions, as the monomials included
in the DNF can be interpreted as interactions.
Therefore, our procedure called GPAS (Genetic Program-

ming for Association Studies) employs multi-valued logic, and

attempts to detect DNFs associated with the response directly.
To search for such DNFs, genetic programming (Koza, 1993) is

used. Genetic programming naturally provides not a single best
model, but a set of models (called individuals) that fit almost

equally well, which is an advantage in the analysis of genotype
data in which many competing models might exist.

In the following section, GPAS is introduced in detail.
Afterwards, GPAS is applied to the genotype data from the

GENICA study, a study dedicated to the identification of
genetic and gene-environment interactions leading to a higher

risk of developing sporadic breast cancer. In the analysis of this
data set, GPAS is able to detect high-order SNP interactions

associated with the case-control status. But GPAS is not
restricted to association studies comprising several 10 SNPs.

It can also be used to analyze data from whole-genome studies.

To exemplify this, GPAS is also applied to a subset of the
HapMap data (The International HapMap Consortium, 2003).

Moreover, GPAS cannot only be employed for feature selection,
but also for discrimination. In a comparison with other

discrimination methods, GPAS shows the smallest misclassifica-
tion rates when applied both to the real data sets from the

HapMap and the GENICA study and to simulated data.

2 METHODS

We propose to use evolutionary algorithms—more precisely genetic

programming (Koza, 1993)—for the analysis of genotype data.

In genetic programming, a set of individuals called population

undergoes adaptions and afterwards a selection process based on

fitness leading to a new generation of individuals. This procedure

summarized in Algorithm 1 is iterated until a termination criterion is

fulfilled.

ALGORITHM 1 (Basic Genetic Programming Algorithm).

(1) Create an initial random population.

(2) Perform the following steps on the current generation:

(a) Select individuals in the population based on a selection

scheme.

(b) Adapt the selected individuals.

(c) Evaluate the fitness value of the adapted individuals.

(d) Select individuals for the next generation according to a

selection scheme.

(3) If the termination criterion is fulfilled, then output the final

population. Otherwise, set the next generation as current and go to

step 2.

2.1 Genetic programming for association studies

In the following, we customize the basic genetic programming

algorithm presented in Algorithm 1 for our purpose, leading to our

method GPAS.

2.1.1 Structure of the individuals In GPAS, multi-valued logic

expressions in disjunctive normal form (DNF) are used as the structure

for the individuals, where these logic expressions may exhibit any

number of input states. In the application to SNP data, e.g. an input

can take one of the following three states: (1) coding for the

homozygous reference, (2) heterozygous and (3) homozygous variant.

A logic expression in DNF is a disjunction of one or more

monomials, where a monomial is a single literal or a conjunction of

literals. Given, e.g. a set of variables X1, . . . , Xm, each of which can take

K values, the literals used in GPAS are

Xi ¼ kð Þ and Xi 6¼ kð Þ; k ¼ 1; . . . ;K; i ¼ 1; . . . ;m:

In Figure 1, examples of generic tree representations of such logic

expressions in DNF resulting from analyzing SNPs are shown. For

example, the tree labeled ‘Original individual’ represents the logic

expression

L ¼
�
ðSNP1 ¼ 3Þ

�
_

�
ðSNP2 6¼ 1Þ ^ ðSNP3 ¼ 1Þ

�
:

When used as a predictor in a case-control study, a patient would be

classified as case if L is true, i.e. if all SNPs in at least one of the

two monomials ((SNP1¼ 3)) and
�
ðSNP2 6¼ 1Þ ^ ðSNP3 ¼ 1Þ

�
show

the genotypes indicated by the corresponding literals. Otherwise, the

patient would be classified as control.

To store a logic expression in memory we use trees (Cormen et al.,

2001) that are built according to the depicted tree representation as data

structure. Using trees allows some very flexible and inexpensive

operations: all of the adaptions described in the following are possible

in amortized constant time when the children of a node in the tree are

stored in a dynamic array.

2.1.2 Operations for adapt individuals Initially, a population

composed of two individuals, each consisting of one randomly selected

literal, is created (corresponding to step 1 of Algorithm 1).

The set of candidate individuals for a new generation is constructed

in steps 2a and b by selecting

� all individuals for reproduction, i.e. copying all individuals from the

current generation,

� two individuals uniformly at random for crossover, i.e. combining

one of the two individuals with one randomly chosen monomial

from the other individual to create a new individual,

� five individuals uniformly at random for mutation, i.e. applying a

random change to each of the individuals, where each of the

following possible mutations is applied to exactly one of the five

individuals:

� inserting a new literal,

� deleting a literal,

� replacing a literal by a new literal,

� inserting a new literal as a new monomial,

� deleting a monomial.

In the latter adaption, the literals or monomials that should be deleted

are chosen uniformly at random, and the new literals are also selected at

random and inserted into a randomly chosen monomial or as a new

monomial. An overview on the crossover and the mutations is given in

Figure 1.

Note that the usage of crossover is discussed controversial (see e.g.

Banzhaf et al., 1998). However, the crossover operation we propose

does not disrupt the structure of the individuals and is therefore

different from the criticized crossover operations. In the applications

considered in this article, it accelerates computation.

2.1.3 Fitness and selection To determine which of the new and

reproduced individuals are selected to be part of the next generation, we

compute the fitness for each individual and select the best ones

(corresponding to steps 2c and d of Algorithm 1, respectively).
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We are interested in logic expressions that explain as many

observations as possible, while being as short as possible. To achieve

both goals equally well, we conduct a multi-objective optimization

by using multidimensional fitness values. The basic objectives of our

optimization may be transferred to fitness values easily. Explaining as

many observations as possible, for instance, translates to fitness values

measuring the amount of data values fulfilled.

In the context of multi-objective optimization, an individual

dominates another individual, if at least one component of its fitness

value is superior, and none is inferior. An individual is pareto optimal, if

it is not dominated by another individual. Consequently, we seek to find

pareto optimal individuals that offer a set of well fitting models.

For the new generation of individuals that is derived after the

adaptions, we choose only individuals that are not dominated by other

individuals. Thus, we conduct a domination selection. As a consequence,

none of the objectives is preferred, i.e. no additional weighting scheme is

employed. For our purposes, we use three objectives (see Sections 2.2

and 2.3). That leads to a bigger population and allows a more

specialized search. For our two tasks—identification of interesting

interactions and discrimination—we employ two slightly different

fitness functions that are also described in Sections 2.2 and 2.3,

respectively.

The major computational part of the fitness evaluation is to

determine the number of cases and controls classified correctly by the

logic expression.

For fast fitness computation, we additionally store a bitset in each

node of the tree representing the logic expression. The bitset consists of

as many bits as there are observations in the data set, and the ith bit is

true if the logic expression is true for the SNP forms of the ith

observation and false otherwise.

The bitsets of the literals are initially computed for all possible literals.

If a monomial of the logical expression is changed during a mutation

operation the bitset of themonomial is recomputed using the bitsets of its

literals. The computation is sped up, since the bitsets of the other

monomials remain unchanged and can be reused to compute the bitset of

the whole logic expression. In addition, bitsets are compact and allow

fast logic operations. For example, one logic operation of the bitset of the

whole logic expression with the bitset describing the case-control status

suffices to compute the number of cases and controls predicted correctly.

2.1.4 Termination criterion We need termination criteria for the

genetic programming process in order to derive a final population

building the models (step 3 of Algorithm 1). Natural termination

criteria used by GPAS are the excess of a certain number of generations

or of a certain fitness value. Another possibility is to terminate the

execution if the algorithm stagnates, i.e. no new individuals survived

selection for a given number of generations.

2.2 Identification of interactions

A major influence factor on the objective of an analysis is the choice of

the fitness evaluation function. Interactions that explain subsets of the

cases have to contradict with as few controls as possible. We, therefore,

employ a fitness evaluation function that emphasizes this by including

the number of correctly predicted controls in two of the objectives.

The fitness of an individual is thus evaluated by the fitness function f1
that maps a logic expression to the following triple (corresponding to

three objectives):

� (Maximize the) mean of the proportions of correctly classified

cases and correctly classified controls.

� (Maximize the) number of controls the logic expression correctly

predicts.

� (Minimize the) length of the logic expression, i.e. the number of

literals of the logic expression.

Including the number of correctly predicted controls in two

objectives leads to a preference of models that contradict with few

controls during the domination selection. After the search, we obtain a

population of individuals that are not dominated by each other.

A further modification of the general genetic algorithm is that we do

not allow individuals to become too big. In the search for high-order

Fig. 1. Examples for the crossover and the different mutations used in GPAS.
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interactions, we, furthermore, prohibit the algorithm from constructing

polynomials, i.e. individuals, with more than two monomials.

To aid the detection of high-order interactions, we additionally devise

a visualization of the resulting models. The interactions in the model are

displayed in a tree showing many different interactions at a glance. To

obtain this visualization (for an example of a resulting tree, see Fig. 2),

we proceed as follows:

(1) Obtain the set M of all monomials occurring in the resulting

models.

(2) Search for the most common literal ‘ in M, and determine the set

M‘ of monomials containing ‘.

(3) Exclude ‘ from all monomials in M‘ to construct M� ‘.

(4) Repeat steps 2–3 with M:¼M�‘ and M:¼M\M‘ until M¼;.

We additionally store information on how often the resulting

interactions and partial interactions occur, and on how many

observations they explain.

2.3 Discrimination

In the case of discrimination, the correct prediction of cases and

controls is treated as equally important. Therefore, the first objective of

f1 is replaced by (maximize the) number of cases the logic expression

predicts correctly leading to the fitness function f2. Thus, predicting

cases is treated in the same way as predicting controls. To elucidate the

difference between f1 and f2 consider, e.g. two individuals a and b with

the same length, where a predicts 50% of the cases and 90% of the

controls correctly and b predicts 89% of the cases and 50% of the

controls correctly. When we use f1, a dominates b, while it does not

dominate b when we use f2.

Additionally, we restrict the size of the individuals, but not the

number of monomials comprised in an individual.

For class prediction of new observations, either the single best

individual, i.e. the individual with the lowest misclassification rate

(for a given length), is used, or an ensemble of models is considered

either by averaging over a set consisting of the best individuals or by

applying bagging (Breiman, 1996) to GPAS.

2.4 GPAS

To summarize, we propose the following specialized genetic program-

ming algorithm called GPAS for the analysis of genotype data.

ALGORITHM (GPAS).

(1) Create an initial random population composed of two individuals

each of which consists of one randomly selected literal.

(2) Perform the following steps on the current generation:

(a) Select all individuals in the population for reproduction, and

draw seven of the individuals uniformly at random.

(b) Conduct each of the following adaptions to one (mutations) or

two (crossover) of the seven randomly selected individuals.

� Perform a crossover.

� Insert a new literal.

� Delete a literal.

� Replace a literal by a new literal.

� Insert a new literal as a new monomial.

� Delete a monomial.

(c) Evaluate the fitness value of the adapted and reproduced

individuals with fitness function f1 or f2.

(d) Select all adapted and reproduced individuals that are not

dominated for the next generation.

(3) If the termination criterion is fulfilled, then output the final population.

Otherwise, set the next generation as current and go to step 2.

3 DATA SETS

3.1 GENICA

The GENICA study is an age-matched and population-based

case-control study carried out by the Interdisciplinary Study

Group on Gene ENvironment Interaction and Breast CAncer

in Germany (http://www.genica.de), a joint initiative of

researchers dedicated to the identification of genetic and

environmental factors associated with sporadic breast cancer.

Cases and controls have been recruited in the greater Bonn,

Germany, region. Apart from exogenous risk factors such as

reproduction variables, hormone variables and life style factors,

the genotypes of about 100 polymorphisms have been assessed

from these women (for details on the GENICA study, see

Justenhoven et al., 2004).
In this article, the focus is on a subset of the genotype data

from the GENICA study. More precisely, data of 1258 women

(609 cases and 649 controls) and 63 SNPs are available for the

analysis. Since a small number of observations show a large

number of missing values, we remove all women with more

than five missing values leading to a total of 1191 observations

(561 cases and 630 controls). The remaining missing values are

replaced SNP-wise by random draws from the marginal

distribution.

3.2 HapMap

The goals of the International HapMap Project (The

International HapMap Consortium, 2003; http://www.hap

map.org) are the development of a haplotype map of the

human genome and the comparison of genetic variations of

individuals from different populations. To achieve this goal,

millions of SNPs have been genotyped for each of 270 people

from four different populations.
In this article, the SNP data of 45 unrelated Han Chinese

from Beijing and 45 unrelated Japanese from Tokyo measured

by employing the Affymetrix GeneChip Mapping 500K Array

Set are considered.
This array set consists of two chips (the Nsp and the Sty

array named after the restriction enzymes used on these chips)

each enabling the genotyping of about 250 000 SNPs. Here,

we focus on the BRLMM genotypes (Bayesian Robust Linear

Model with Mahalanobis distance; Affymetrix 2006) of the

262 264 SNPs from the Nsp array that can be downloaded from

http://www.affymetrix.com/support/technical/sample_data/

500k_hapmap_genotype_data.affx. All SNPs showing one or

more missing genotypes (54 400 SNPs), for which not all three

genotypes are observed (75 481 SNPs), or that have a minor

allele frequency less than or equal to 0.1 (10 609 SNPs) are

excluded in this order from the analysis leading to a data set

composed of the genotypes of 121 774 SNPs and 90 individuals.

Detecting high-order interaction

3283

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/24/3280/264004 by guest on 09 April 2024

http://www.genica.de
http://www.hap
http://www.affymetrix.com/support/technical/sample_data/


3.3 Simulated data

In the discrimination case, simulated data mimicking SNP data

from real association studies are considered as well. Genotypes

for 50 SNPs and 1000 observations are randomly generated,

where each of these unlinked SNPs exhibits a minor allele

frequency of 0.25. The case-control status y is then randomly

drawn from a Bernoulli distribution with mean Prob(Y¼ 1),

where

logit ðProbðY ¼ 1Þ
�
¼ �0:5þ 1:5L1 þ 1:5L2

with L1 ¼
�
SNP3 ¼ 1

�
^
�
SNP9 ¼ 1

�
^
�
SNP10 ¼ 0

�
and

L2 ¼
�
SNP6 6¼ 1

�
^
�
SNP7 ¼ 1

�
such that the probability for

being a case is 0.924 if for an observation both L1 and L2 are

true, and is 0.731 if one of these logic expressions is true. This

probability is still 0.378 if an observation does not exhibit one

of these two interactions intended to be influential for the risk

of developing the disease of interest in this simulated

association study. A reason for this might be that there are

other genetic (or environmental) factors that have not been

considered in this study, but have an influence on the disease

risk.

This procedure is repeated 50 times such that 50 data sets are

generated.

4 RESULTS

The following analyses are conducted on a Pentium 4 CPU with

2.56 GHz and 1024 MB of RAM.

4.1 Identification of interesting SNP interactions

In association studies concerned with sporadic breast cancer, it

is assumed that not individual SNPs, but combinations of many

SNPs have an high impact on the cancer risk, and that each

of these interactions is a risk factor for a particular (relatively

small) subgroup of patients (Pharoah et al., 2004). In the

analysis of the GENICA data set, we are thus interested in

identifying high-order interactions explaining several 10 cases,

but only a few controls.
As mentioned in Section 2, we therefore constrain each

individual in GPAS to consist of a maximum of two

monomials. As SNPi 6¼ 1 codes for a dominant effect of SNPi,

and SNPi ¼ 3 for a recessive effect, we restrict the set of literals

used in GPAS to these two literals and their respective

complements, i.e. SNPi ¼ 1 and SNPi 6¼ 3.

In this application of GPAS to the GENICA data set, we

gather the individuals of 50 independent runs each of which

stops after 500 000 generations, which takes �10 min. From the

resulting 49 564 individuals, the tree visualization described in

Section 2.2 is constructed. An excerpt from this tree is shown in

Figure 2. For example, the eight literals marked by a gray

background form an interaction that explains, i.e. a monomial

that is true for, 81 cases and only 12 controls, and is contained

in 404 of the individuals.

Figure 2 also reveals that the interesting SNP interactions

contain ðERCC2 6540 ¼ 1Þ ^ ðERCC2 18880 6¼ 1Þ, i.e. an

interaction of the two SNPs ERCC2_6540 (refSNP ID:

rs1799793) and ERCC2_18880 (rs1052559) from the gene

ERCC2 (Excision Repair Cross-Complementing group 2;

Fig. 2. Excerpt from the tree visualization of the models resulting from the application of GPAS to the GENICA data set. Each path from the root to

an inner node or leaf represents an interaction occurring in the final population. The first line in each node consists of the number of monomials

containing the corresponding interaction and the percentage of monomials consisting of the ancestral interaction that also contain the literal

represented by the node, where this literal is displayed in the second line. The third line shows the number of cases and controls explained by the

corresponding interaction.
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formerly XPD), which itself explains 149 cases and 70 controls.

This two-way interaction has already been found by

Justenhoven et al. (2004) and by Schwender and Ickstadt,

(2007), but they were not able to identify interactions of higher

orders with better odds ratios.

For comparison, GPAS is again applied to the GENICA

data set using random assignments of the case-control status to

the women. In this case, all detected individuals show ratios of

explained cases to explained controls that are smaller than the

ratios of comparable interactions found in the original

application. For example, the individual that is best compa-

rable with the interaction that is marked by gray background in

Figure 2 and explains 81 cases and 12 controls is an logic

expression that is true for 89 cases and 30 controls.

To examine if the exclusion of (SNPi¼ 2) and (SNPi 6¼ 2) has

a large influence on the detection of interesting interactions, we

also apply GPAS to the GENICA data set using the complete

set of literals. In this analysis, some of the literals in the

identified monomials are indeed of this type. However, these

literals have mostly only a small effect, or they are equivalent

to, e.g. (SNPi¼ 1). For example, the interaction

ðERCC2�6540 ¼ 1Þ ^ ðERCC2�18880 6¼ 1Þ

^ ðTFR�424 6¼ 1Þ ^ ðCYP1A1�2452 ¼ 1Þ

^ ðMDR1�1 6¼ 2Þ ^ ðTP53�1778 6¼ 2Þ

detected in this application, which explains, i.e. is true for,

73 cases and 16 controls, contains two literals of the

form (SNPi¼ 2). However, (MDR1_1 6¼ 2) is actually

(MDR1_1¼ 1), as none of the observations exhibit the

homozygous variant genotype at this SNP, and replacing

(TP53_1778 6¼ 2) by (TP53_1778¼ 1) would reduce the number

of correctly predicted cases from 73 to 72, while the number of

explained controls stays at 16.
To exemplify that GPAS is not restricted to data sets

consisting of several ten to a few hundred SNPs, but can also be

applied to data from whole -genome studies, we apply GPAS to

the subset of the HapMap data set described in Section 3.2.

As it might be possible that individual SNPs have a large

influence in this example, we do not restrict the number of

monomials in an individual. Furthermore, we only run GPAS

once but without a termination criterion. All other settings

remain unchanged compared to the analysis of the GENICA

data set.
After running for 9 min, GPAS detects an individual

composed of 10 literals in generation 13 683 that can be used

to distinguish between the Japanese and the Han Chinese

unambiguously: if at least one of the six monomials�
ðSNP�A� 1840639 ¼ 1Þ

�
,
�
ðSNP�A� 1862578 ¼ 1Þ

�
;�

ðSNP�A� 1888933 ¼ 3Þ
�
,
�
ðSNP�A� 1983282 ¼ 1Þ ^

ðSNP�A� 2227333 ¼ 3Þ
�
,
�
ðSNP�A� 1849099 6¼ 1Þ ^

ðSNP�A� 2046537 6¼ 1Þ
�
, and

�
ðSNP�A� 2030395 ¼ 1Þ ^

ðSNP�A� 1940113 6¼ 1Þ ^ ðSNP�A� 4200881 6¼ 3Þ
�

is true,

then the person is from Japan (or more exactly, from Tokyo).

Otherwise, it is a Han Chinese from Beijing.
This individual can still be optimized by reducing the number

of SNPs (which is the third objective used in GPAS). Shortly

after detecting this individual, GPAS finds individuals down to

length six (see Fig. 3), and finally in generation 16 691 641 an

individual composed of five literals/SNPs and displayed in

Figure 4 is identified, where each of these individuals predict all

observations correctly.
For comparison, GPAS is applied to the HapMap data set

using random group assignments. Not surprisingly, these

applications also lead to perfect separations of the two

groups. However, the detected logic expressions are composed

of more than five individuals, and it takes much longer to detect

these individuals (for an example of the results of such an

application, see Fig. 3).

4.2 Discrimination

To examine how the misclassification rate depends on the

number of variables in the model, GPAS is applied to the

GENICA data set considering individuals composed of

differing numbers of literals. For each number of variables

considered, we let GPAS run for 10 000 generations, which

takes about 1 min for each run.
For comparison, the GENICA data set is also analyzed using

logic regression (Ruczinski et al., 2003), where the number of

variables allowed is constrained in the different applications.

Since the cases and the controls are age-matched in the

GENICA study, conditional logistic regression (Breslow and

Fig. 4. Individual composed of five SNPs that is identified by GPAS[]

in the HapMap data set. It can be used to distinguish between Japanese

and Han Chinese.
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Fig. 3. Number of generations (in thousands) in which individuals of

certain lengths predicting all observations correctly are found in the

application of GPAS to the HapMap data set using the real ethnicity

(solid line) and a random group assignment (dashed line).
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Day, 1980) that takes this matching into account is also applied

to this data set. Here, the variables are chosen by forward

selection.
As both logic regression and conditional logistic regression

require binary predictors, the ith SNP, i¼ 1, . . . ,m, is split into

the two dummy variables

SNPi1: ‘SNPi is not of the homozygous reference genotype.’

SNPi2: ‘SNPi is of the homozygous variant genotype.’

where SNPi1 codes for a dominant effect of SNPi, and SNPi2

for a recessive effect. Note that SNPi1, SNPi1, SNPi2 and SNPi2

correspond to SNPi 6¼ 1, SNPi¼ 1, SNPi¼ 3 and SNPi 6¼ 3,

respectively.
In Figure 5, the resulting misclassification rates estimated

by 10-fold cross-validation are displayed. This figure shows

that the misclassification rates of both GPAS and logic

regression are equal if the number of literals is less than 3.

This is due to the fact that both use ((ERCC2_6540¼ 1))

or ((ERCC2_6540¼ 1) ^ (ERCC2_18880 6¼ 1)), respectively,

as classification rule in any of the respective iterations of the

cross-validation. However, the misclassification rate of GPAS

becomes smaller than the one of logic regression if the models

are allowed to be composed of three to eight variables. Both

GPAS and logic regression outperform conditional logistic

regression that exhibits a minimum estimated misclassification

rate of 42.4%. As in the applications of GPAS and logic

regression, ERCC2_65401 and ERCC2_188801 are always

identified by the conditional logistic regression to be the two

most important variables. However, when considering models

composed of these two variables, the misclassification rate of

conditional logistic regression is higher than the one of the

other two approaches (see Fig. 5). A reason for this is that in

the conditional logistic regression models ERCC2_65401
and ERCC2_188801 are considered as additional effects,

whereas in GPAS and logic regression the interaction�
ðERCC2�6540 ¼ 1Þ ^ ðERCC2�18880 6¼ 1Þ

�
is used as predic-

tor. This shows an advantage of GPAS (and logic regression):

while in approaches such as conditional logistic regression it is

necessary to include all n
p

� �
p-way interactions of n variables to

identify important p-way interactions, GPAS is able to detect

such interactions using only the n variables as inputs.

For a comparison of GPAS with further tree-based

discrimination methods, CART (Breiman et al., 1984), bagging

(Breiman, 1996) and Random Forests (Breiman, 2001) are

applied to the GENICA data set, where the parameters of the

latter two procedures are optimized over several values.

(In both bagging and Random Forests, different numbers of

trees are considered. Additionally, different numbers of

randomly chosen variables at each node are used in Random

Forests.)
In Table 1, the misclassification rates of these applications

are summarized. This table reveals that GPAS leads to less

misclassifications than the other discrimination procedures.
For the application of these discrimination methods to the

HapMap data set, the number of variables has to be reduced to

a size that these approaches can handle. We therefore use the

Significance Analysis of Microarrays (SAM; Tusher et al.,

2001) adapted for categorical data (Schwender, 2005) to reduce

the number of SNPs from 121 774 to 157, where this subset of

SNPs exhibits an estimated FDR (False Discovery Rate)

of 0.069.

All discrimination methods are then applied to this subset of

SNPs, and the misclassification is estimated by 9-fold cross-

validation, where each of the nine subsets is composed of five

randomly chosen Han Chinese and five randomly chosen

Japanese.
Since for each of the training sets several models might exist

that predict all training observations correctly, we use the

bagging version of GPAS to stabilize the discrimination. We

also stop after 10 000 generations, which takes �12 min for one

training (consisting of 100 runs due to the use of bagging).
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Fig. 5. Misclassification rates of GPAS (top), logic regression (middle)

and conditional logistic regression (bottom) in their applications to the

GENICA data set with restricted numbers of literals/variables in the

individuals/models. While the solid dots mark the respective mean

misclassification rate, the vertical lines represent the corresponding

95% confidence intervals.
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As Table 1 shows, both GPAS and Random Forests

only misclassify one observation, whereas the discrimination

methods that use a single model as classification rule, i.e.

CART and logic regression, show a comparatively high

misclassification rate.
Furthermore, the five discrimination methods are applied to

the 50 simulated data sets described in Section 3.3, where each

of these data sets is used once as training set and once as test

set. (The classification rule trained on data set 1 is tested on

data set 2, the rule trained on data set 2 is tested on data set

3, and so on.) As Table 1 reveals, GPAS again shows a

misclassification rate that is smaller than the ones of the four

other discrimination procedures, and that comes close to the

actual misclassification rate of 32.6%.

5 DISCUSSION

A major goal of association studies is the identification of SNPs

and more importantly SNP interactions that lead to a higher

risk of developing a disease. When considering complex

diseases such as sporadic breast cancer, such interactions are

typically of a high order and only explain relatively small

subsets of the patients. Thus, approaches are needed that are

able to detect these risk factors.
In this article, we have presented a procedure based on

genetic programming that can cope with this task. Genetic

programming has the advantage that it is a general purpose

method that can handle changing demands flexibly such as

different fitness functions or size-constraints. In addition, the

maintenance of candidate solutions is expedient for the multi-

objective problems we tackle.

In the analysis of the GENICA data set, the presented method

called GPAS identifies high-order interactions that explain sets

of about 100 observations from which only a few are controls.

Some of the detected interactions will have an impact on the risk

of developing sporadic breast cancer, whereas others will only

show up in the considered data set. Thus, the identified

interactions need to be tested on an independent data set

consisting of new observations to determine which of these

interactions are in fact important risk factors.

As the application to the 121 774 SNPs from the HapMap

data set shows, GPAS can also be used to analyze whole-

genome data. In this application, a logic expression composed

of five SNPs is identified by GPAS that allows to unambigu-

ously distinguish between the two HapMap populations

Japanese from Tokyo and Han Chinese from Beijing.

However, it might be harder to detect influential high-order

SNP interactions when the disease status instead of ethnicity is

the covariate of interest – in particular if only a few SNPs that

themselves might only have a low effect are assumed to be

involved in the development of the disease, and the sample size

is small.
GPAS is not restricted to feature selection, but can also be

employed for classification, where it outperforms other tree-

based discrimination methods in the applications to both

simulated data and the real data sets from the GENICA and

the HapMap study.
Although GPAS has been developed in the context of SNP

data, it can also be used to analyze other types of categorical

data, where the numbers of levels the variables can take might

differ between variables. For example, it can also be applied to

non-biallelic genetic polymorphisms such as microsatellites or

to haplotypes. However, GPAS currently is not able to take

into account the uncertainties that show up if the haplotypes

are estimated using procedures such as PHASE (Stephens and

Donelly, 2003).
Furthermore, the design of GPAS is flexible: by default, the

set of literals is composed of all possible values for any of the

variables and their corresponding complements. It is, however,

possible to constrain this set of literals. For ordinal data,4and

5 can be used as operators additionally to or instead of ¼ and

6¼ . Another possibility is to exclude any of the moves. For

example, removing crossover from the move set might not

worsen the results, but is likely to increase the computation

time, as more generations have to be considered before the best

solution is found.
Currently, the inputs, but not the output of GPAS can be

multi-valued, as we are mainly interested in case-control

studies. However, an extension of the two-class to the multi-

class case is planned.

Another idea is to formulate—similar to logic regression—

GPAS in a regression framework so that continuous responses,

that are, e.g. of interest in QTL (Quantitative Trait Loci)

analyses, can also be considered.
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Table 1. Means and SDs of the misclassification rates of the

applications of several discrimination methods to the GENICA, the

HapMap and the simulated data sets

GENICA HapMap Simulation

GPAS Mean 0.392 0.011 0.335

SD 0.047 0.034 0.025

Logic Mean 0.405 0.144 0.342

Regression SD 0.049 0.103 0.022

CART Mean 0.429 0.356 0.371

SD 0.034 0.101 0.025

Bagging Mean 0.453 0.022 0.382

SD 0.031 0.044 0.018

Random Mean 0.450 0.011 0.379

Forests SD 0.021 0.034 0.018
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