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ABSTRACT

Axiom learning is an essential task in enhancing the quality
of an ontology, a task that sometimes goes under the name of
ontology enrichment. To overcome some limitations of recent
work and to contribute to the growing library of ontology
learning algorithms, we propose an evolutionary approach
to automatically discover axioms from the abundant RDF
data resource of the Semantic Web. We describe a method
applying an instance of an Evolutionary Algorithm, namely
Grammatical Evolution, to the acquisition of OWL class dis-
jointness axioms, one important type of OWL axioms which
makes it possible to detect logical inconsistencies and infer
implicit information from a knowledge base. The proposed
method uses an axiom scoring function based on possibility
theory and is evaluated against a Gold Standard, manually
constructed by knowledge engineers. Experimental results
show that the given method possesses high accuracy and
good coverage.

CCS CONCEPTS

�Computing methodologies�Ontology engineering;
Machine learning algorithms; Instance-based learn-
ing; Evolutionary algorithms;

KEYWORDS

Grammatical Evolution, Ontology Learning, OWL Axioms

ACM Reference Format:

Thu Huong Nguyen and Andrea G.B. Tettamanzi. 2019. An Evo-
lutionary Approach to Class Disjointness Axiom Discovery. In
IEEE/WIC/ACM International Conference on Web Intelligence
(WI ’19), October 14–17, 2019, Thessaloniki, Greece. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3350546.3352502

1 INTRODUCTION

An ontology [6, 7, 12] may be viewed as a formal represen-
tation of a shared domain knowledge. It can be defined by
a quadruple 𝒪 = ⟨𝒞,ℛ, ℐ,𝒜⟩, where 𝒞 is the set of concepts
represented in the form of classes; ℛ is the set of relations,
i.e. properties or predicates between classes; ℐ is the set of
all assertions, i.e. instances, in which two or more concepts
are related to each other; 𝒜 is the set of axioms. Ontologies
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provide a major support to modeling and sharing knowledge
among various applications in a specific domain. However,
ontology construction is limited by the obstacle known as
“knowledge acquisition bottleneck”. This can arise from the
requirement of involving domain experts and knowledge en-
gineers, which is highly expensive and time-consuming. This
problem may be tackled by the set of methods and techniques
that go under the name of ontology learning [8, 12, 13, 19].
These methods, by adopting learning algorithms from several
existing knowledge and information sources, can help allevi-
ate the overall cost of ontology construction by reducing or
eliminating altogether the need of domain experts. Ontology
learning may be viewed as a special case of knowledge discov-
ery from data (KDD) or data mining, where the data are in
a special format (assertions) and knowledge takes the form
of axioms of an ontology. At the starting point of ontology
learning, two fundamental aspects have to be defined: the
types of input data sources from which the system exploits
ontological knowledge and the ontological elements which
need to be learned.

The growth of the Web of data, also called the Semantic
Web, where the Linked Open Data (LOD) is a prominent
representative opens up exciting opportunities for learning
new knowledge in the context of an open world. The LOD
can be considered as a huge real-world knowledge base for
learning ontologies. Specifically, ontology learning on the
Semantic Web involves handling the enormous and diverse
amount of data in the Web and thus enhancing existing
approaches for knowledge acquisition instead of only focusing
on mostly small and uniform data collections.

The elements of the ontology to be learned, usually ax-
ioms formalized in the form of logical assertions, can then
be used to enhance and constrain the information contained
in the ontology and to check its correctness or deduce new
information [1, 19]. As a consequence, learning axioms is a
crucial task in ontology learning to discover implicit axioms
from existing ontologies or instance data, i.e. prior knowl-
edge or knowledge base (KB). In particular, class disjointness
axioms are useful for checking the logical consistency and
detecting undesired usage patterns or incorrect assertions. As
for the definition of disjointness [21], two classes are disjoint
if they do not possess any common individual according to
their intended interpretation, i.e., the intersection of these
classes is empty in a particular KB. A simple example can
demonstrate the potential advantages obtained by the ad-
dition of this kind of axioms to an ontology. A knowledge
base defining terms of classes like Mother, Man and asserting
that individual Tyler is both a Mother and a Man would be
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logically consistent, without any errors being recognized by
a reasoner. However, if a constraint of disjointness between
classes Mother and Man is added, the reasoner will be able to
reveal an error in the modeling of such a knowledge base. As
a consequence, logical inconsistencies of facts can be detected
and excluded—thus enhancing the quality of ontologies. As a
matter of fact, very few DisjointClasses axioms are currently
found in existing ontologies. For example, in the DBpedia
ontology, the query SELECT ?x ?y { ?x owl:disjointWith

?y } executed on May 11, 2019 returned only 25 solutions,
whereas the realistic number of class disjointness axioms
generated from hundreds of classes in DBpedia (738 classes
in DBpedia version 2015-04, 760 classes in DBpedia version
2016-04)1 where ?subject a owl:Class. is expected to be
much larger, in the order of the thousands or tens of thou-
sands. Hence, learning implicit knowledge in terms of axioms
from a LOD repository in the context of the Semantic Web
has been the object of research in several different approaches.

Among the early approaches to ontology development,
we summarize top-down and bottom-up techniques. In the
case of axiom learning, i.e., learning class disjointness ax-
ioms, recent methods [11, 22] apply top-down or intensional
approaches to learning disjointness which relies on schema-
level information, i.e., logical and lexical descriptions of the
classes. The contributions based on bottom-up or extensional
approaches [1, 21], on the other hand, require the instances
in the dataset to induce instance-driven patterns to suggest
axioms, e.g., disjointness class axioms.

Along the lines of extensional (i.e., instance-based) meth-
ods, we propose an evolutionary approach, based on gram-
matical evolution, for mining implicit axioms from RDF
datasets. The goal is to derive potential class disjointness
axioms of more complex types, i.e., defined with the help of
relational operators of intersection and union; in other words,
axioms like Dis(𝐶1, 𝐶2), where 𝐶1 and 𝐶2 are complex class
expressions including ⊓ and ⊔ operators. Also, an evaluation
method based on possibility theory is adopted to assess the
certainty level of induced axioms.

The rest of the paper is organized as follows. Section 2
describes briefly some related works. In Section 3, some foun-
dations are introduced. Section 4 sketches a GE approach for
learning OWL classes disjointness axioms. An axiom evalu-
ation method based on possibility theory is also presented
in this section. Section 5 provides experimental evaluation
and comparison. Section 6 concludes the paper with the final
remarks and the directions for future research.

2 RELATED WORK

The most prominent related work relevant to learning dis-
jointness axioms consists of the contributions by Johanna
Völker and her collaborators [5, 21, 22]. In early work, Völker
developed supervised classifiers from LOD incorporated in
the LeDA tool [22]. However, the learning algorithms need a

1These figures can be obtained by executing the querry
” SELECT (COUNT( DISTINCT ?subject) as ?numberClasses” on
http://dbpedia.org/sparql

set of labeled data for training that may demand expensive
work by domain experts. In contrast to LeDA, statistical
schema induction via association rule mining [21] was given
in the tool GoldMiner, where association rules are represen-
tations of implicit patterns extracted from large amount of
data and no training data is required. Association rules are
compiled based on statistical analysis of a transaction table,
which is built from the results of SPARQL queries. That
research only focused on generating axioms involving atomic
classes, i.e., classes that do not consist of logical expressions,
but only of a single class identifier.

Another relevant research is the one by Lorenz Bühmann
and Jens Lehmann, whose proposed methodology is imple-
mented in the DL-Learner system [11] for learning general
class descriptions (including disjointness) from training data.
Their work relies on the capabilities of a reasoning component,
but suffers from scalability problems for the application to
large datasets like LOD. In [1], they tried to overcome these
obstacles by obtaining predefined data queries, i.e., SPARQL
queries to detect specific axioms hidden within relevant data
in datasets for the purpose of ontology enrichment. Bühmann
and Lehmann also developed methods for generating more
complex axiom types [2] by using frequent terminological
axiom patterns from several data repositories. One important
limitation of their method is the time-consuming and com-
putationally expensive process of learning frequent axioms
patterns and converting them into SPARQL queries before
generating actual axioms from instance data. Also, the most
frequent patterns refer to inclusion and equivalence axioms
like 𝐴 ≡ 𝐵 ⊓ ∃𝑟.𝐶 or 𝐴 ⊑ 𝐵 ⊓ ∃𝑟.𝐶.

Here, we extend and enhance our recent proposal [14] of
an approach to generate class disjointness axioms from an
existing RDF repository using Grammatical Evolution (GE).
On the one hand, the enhancement concerns the fitness func-
tion used to score axioms, where we now include an improved
measure of generality and we removed the necessity measure,
which, as we will explain below, does not carry any useful
information when dealing with this type of axioms. On the
other hand, we greatly extend the experimental validation,
by systematically exploring a variety of parameter settings.
Along the lines of extensional (i.e., instance-based) methods,
we propose a number of improvements as well as more ex-
tensive experiments for mining implicit axioms from RDF
datasets in an evolutionary approach, based on grammati-
cal evolution to investigate its potential and suggest future
extensions. The goal is to derive potential class disjointness
axioms of more complex types, i.e., defined with the help of
relational operators of intersection and union.

3 FOUNDATIONS

3.1 The Semantic Web and Related
Concepts

The Semantic Web2 (SW) which is an extension of the
World Wide Web (WWW) can be considered as the movement

2https://www.w3.org/standards/semanticweb/
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from the Web of documents to the Web of data. In this,
semantic information containing the machine-processable
information called metadata—a fundamental component
of the SW—is embedded within Web content. Among the
metadata, IRIs (International Resource Identifiers) are used
to identify abstract or physical resources.

The Resource Description Framework (RDF)3 [17]
is mainly a data model of SW for describing machine pro-
cessable semantics of data. RDF uses as statements triples of
the form <Subject, Predicate, Object>. Each part of the
triples can be described in the form of IRIs and in the shorter
representation associated with the prefix aliases4. The query
language for RDF is SPARQL.5

Linked Open Data6 (LOD) is an association of Linked
Data 7 and Open Data where data can be linked while being
freely available for sharing and reuse. One of the prominent
representatives of the LOD is DBpedia,8 which comprises a
rather rich collection of facts extracted from the Wikipedia.

OWL9 (Web Ontology Language) is one of the data
modeling languages for describing RDF data. OWL is much
more expressive not only to describe classes and properties
but also to use in data modeling and reasoning. OWL con-
tains the constructors of complex class descriptions such as
owl:UnionOf, owl:IntersectionOf, owl:Complementary and
express relations between class descriptions by means of class
axioms such as owl:disjointWith.

3.2 Grammatical Evolution

GE is a grammar-based form of GP [9, 10]. It is a rela-
tively new evolutionary computation technique pioneered
by Michael O’Neill and his collaborators [15, 18]. By the
tradition of evolutionary algorithm (EA), a population of
individuals, i.e., potential solutions, is maintained by the GE
algorithm and iteratively refined to find the best solution.
At each iteration, known as a generation, the fitness of indi-
viduals in the population are evaluated. According to these
levels of fitness, the process of selecting individuals called
parents selection is performed to create a list of better quali-
fied parents as input for generating a new set of candidate
solutions, i.e. offspring, in the next generation. The offspring
of each generation is bred by applying genetic operators on
the selected parents.

As in [4] and unlike GP, GE has a clear distinction in rep-
resentation between the search space and the solution space.
Programs known as phenotypic solutions or phenotypes are
formed from the variable length binary strings, i.e., genotypic
individuals or genotypes through the transformation called
mapping process. Among them, the variable length binary
string genomes, i.e., chromosomes, are used in the form of

3https://www.w3.org/RDF/
4https://docs.microsoft.com/en-us/windows/desktop/winrm/uri-
prefixes
5https://www.w3.org/TR/rdf-sparql-query/
6https://lod-cloud.net/
7http://linkeddata.org/
8https://wiki.dbpedia.org/
9https://www.w3.org/TR/owl-ref/

consecutive groups of 8 bits called codon representing an
integer value. Meanwhile, the genotype-phenotype mapping
process requires a set of production rules expressed in the
form of formal grammar, namely a Backus-Naur form (BNF)
grammar which specifies the syntax of desired programs. BNF
grammar is a context-free grammar consisting of terminals
and non-terminals. A grammar can be represented in the
form of the tuple {𝑁,𝑇, 𝑃, 𝑆}, where 𝑁 is the sets of non-
terminals, which can be extended into one or more terminals;
𝑇 is the set of terminals which are items in the language; 𝑃
is the set of the production rules that map 𝑁 to 𝑇 ; 𝑆 is the
start symbol and a member of 𝑁 . In the mapping process,
codons are used consecutively to choose production rules
from 𝑃 in the BNF grammar according to the function:

(1)

Codons can be reused two or more times (called wrapping
technique) [4, 15]. In the advantageous cases, programs are
generated before the end of the genome is reached; otherwise,
a wrapping operator is applied and the reading of codons
will continue from the beginning of the chromosome, until
the maximum allowed number of wrapping events is reached.
An unsuccessful mapping will happen if the threshold on the
number of wrapping events is reached but the individual is
still not completely mapped; in this case, the individual is
assigned the lowest possible fitness.

Although GE uses the standard genetic operators of crossover
and mutation in the Evolutionary Algorithms (EA)[3, 16],
GE applies these operators on variable-length binary strings,
i.e., genotypes, instead of the actual programs, i.e., pheno-
types. In this, a standard single point crossover is employed
whereby two crossover points are chosen randomly, one on
each individual and the two sets of codons following these
points exchanged, i.e. the right part of each individual are
swapped. Also, a selected individual goes through with single
point mutation, i.e. a codon selected at random, and this
codon is replaced with a new randomly generated codon.

3.3 Possibility Theory

Possibility theory [23] is a mathematical theory of epistemic
uncertainty. Given a finite universe of discourse Ω, whose ele-
ments 𝜔 ∈ Ω may be regarded as outcomes of an experiment,
values of a variable, possible worlds, or states of affairs, a pos-
sibility distribution is a mapping 𝜋 : Ω → [0, 1], which assigns
to each 𝜔 a degree of possibility ranging from 0 (impossible,
excluded) to 1 (completely possible, normal). A possibility
distribution 𝜋 for which there exists a completely possible
state of affairs (∃𝜔 ∈ Ω : 𝜋(𝜔) = 1) is said to be normalized.

A possibility distribution 𝜋 induces a possibility measure
and its dual necessity measure, denoted by Π and 𝑁 respec-
tively. Both measures apply to a set 𝐴 ⊆ Ω (or to a formula
𝜑, by way of the set of its models, 𝐴 = {𝜔 : 𝜔 |= 𝜑}), and
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are usually defined as follows:

Π(𝐴) = max
𝜔∈𝐴

𝜋(𝜔); (2)

𝑁(𝐴) = 1−Π(𝐴) = min
𝜔∈𝐴

{1− 𝜋(𝜔)}. (3)

In other words, the possibility measure of 𝐴 corresponds to
the greatest of the possibilities associated to its elements;
conversely, the necessity measure of 𝐴 is equivalent to the
impossibility of its complement 𝐴.

A generalization of the above definition can be obtained
by replacing the min and the max operators with any dual
pair of triangular norm and co-norm.

4 METHOD FOR LEARNING CLASS
DISJOINTNESS AXIOMS

We apply the GE approach introduced in Sec. 3.2 to learn
class disjointness axioms from instance data acquired from
an RDF repository, e.g., DBpedia. The workflow of such GE
approach is shown in Fig. 1. In the context of axiom discovery,
the definition of “programs” or “phenotypic solutions” in
GE are class disjointness axioms whose syntax is described
by a BNF grammar. Therefore, the first important task
is to design the grammar used for generating well-formed
class disjointness axioms. Afterwards, in the beginning of the
evolutionary process, we randomly generate a population of
axioms in genotypic representation, i.e., candidate genotypic
axioms, which are encoded as variable-length integer strings,
i.e., numerical chromosomes. According to the built grammar
and the principles of the mapping process, we are able to
decode these chromosomes into class disjointness axioms in
the form of logical expressions, i.e., candidate phenotypic
axioms. The set of candidate axioms is maintained by the
GE algorithm and iteratively refined to find axioms that
are both general and credible (two key quality measures for
discovered knowledge). The quality of the generated axioms
can be improved gradually during the evolutionary process
by applying genetic operators (crossover and mutation) on
genotypic axioms. In this section, we first briefly describe the
process of grammar construction and give a specific example
of the decoding phase to well-formed class disjointness axioms.
After that, possibilistic evaluation of generated axioms is
presented in detailed.

4.1 Structure of the BNF Grammar

We use the functional-style grammar in the extended BNF
notation used by the W3C to design the grammar for gen-
erating OWL class disjointness axioms10. The production
rules are adapted from the complete normative grammar
of OWL11. The noteworthy thing is that the use of a BNF
grammar here does not focus on defining what a well-formed
axiom may be, but on generating well-formed axioms which
may express the facts contained in a given RDF triple store.
Hence, only resources of the language that actually occur in
the RDF dataset should be generated. The BNF grammar is

10https://www.w3.org/TR/owl2-syntax/#Disjoint Classes
11https://www.w3.org/TR/owl2-syntax/

organized in two main parts (namely static and dynamic) as
follows:

∙ The static part contains production rules defining the
structure of the axioms, loaded from a hand-crafted
text file. Different grammars will generate different
kinds of axioms.

∙ The dynamic part contains production rules for the
low-level non-terminals, which we can call the primi-
tives. These production rules are automatically built
at runtime by querying the SPARQL endpoint of the
RDF repository at hand.

This approach to organizing the structure of a BNF grammar
ensures that changes in the contents of RDF repositories will
not require the grammar to be rewritten.

In the functional-style syntax of OWL12, class disjointness
axioms have the form DisjointClasses(𝐶1, 𝐶2, ..., 𝐶𝑛). Without
loss of generality, we focus on generating binary axioms such
as
DisjointClasses(𝐶1, 𝐶2), where 𝐶1 and 𝐶2 can be atomic ex-
pressions like in DisjointClasses(dbo : Film, dbo : WrittenWork)
or complex expressions involving relational operators like in-
tersection and union, like in DisjointClasses(dbo : Film,ObjectIntersectionOf
(dbo : Book,ObjectUnionOf (dbo : Comics, dbo : MusicalWork)))
13.

The pattern of the grammar structured for generating class
disjointness axioms is built as follows:

% Static part
(r1) Axiom := ClassAxiom

(r2) ClassAxiom := DisjointClasses

(r3) DisjointClasses := ’DisjointClasses’ ’(’ ClassExpression ’ ’ClassExpression ’)’

(r4) ClassExpression := Class (0)

| ObjectUnionOf (1)

| ObjectIntersectionOf (2)

(r5) ObjectUnionOf := ’ObjectUnionOf’ ’(’ ClassExpression ’ ’ ClassExpression ’)’

(r6) ObjectIntersectionOf := ’ObjectIntersectionOf’ ’(’ ClassExpression ’ ’ Class-

Expression ’)’

% Dynamic part - Primitives
(r.7) Class := % production rules are constructed by using SPARQL queries

The production rule of the primitive Class will be filled
by using a SPARQL query of the form

SELECT ?class WHERE { ?instance a ?class. }
to extract classes (represented by their IRI) from the RDF
dataset.

An example representing a small excerpt of an RDF triple
repository is the following:
PREFIX dbr: http://dbpedia.org/resource/

PREFIX dbo: http://dbpedia.org/ontology/

PREFIX rdf: http://www.w3.org/1999/02/22\-rdf-syntax-ns\#

dbr:Quiet_City_(film) rdf:type dbo:Film.

dbr:Cantata rdf:type dbo:MusicalWork.

dbr:The_Times rdf:type dbo:WrittenWork.

dbr:The_Hobbit rdf:type dbo:Book.

dbr:Fright_Night_(comics) rdf:type dbo:Comic

and options for the Class non-terminal are represented as
follows:
(r.7) Class := dbo:Film (0)

| dbo:MusicalWork (1)

| dbo:WrittenWork (2)

| dbo:Book (3)

| dbo:Comic (4)

12https://www.w3.org/TR/owl2-syntax/#Functional-Style Syntax
13 PREFIX dbo: http://dbpedia.org/ontology/
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Figure 1: Workflow of class disjointness axioms learning from an RDF repository using GE.

4.2 Mapping Process

In this section, we illustrate the transformation of an inte-
ger chromosome into an OWL class disjointness axiom in
functional-style syntax through an example. Let the chromo-
some be (253, 213, 397, 387, 268, 342, 321, 408, 182, 132) and
let the BNF grammar and the RDF store be as in Sec. 4.1.
We apply Eq. 1 in Sec. 3.2 to choose production rules from
the grammar. Table 1 illustrates the steps of the mapping to a
class disjointness axiom expression relevant to the considered
example.

There is only one production for non-terminals Axiom,
ClassAxiom, DisjointClasses, ObjectIntersectionOf, and
ObjectUnionOf as it can be seen from Rules 1–3, 5, and
6. In these cases, we skip using any codons for mapping
and concentrate on reading codons for non-terminals hav-
ing more than one production, like in Rules 4 and 7. We
begin by decoding the first codon, i.e. 253, by Eq. 1. The
result, i.e 253 modulo 3 = 1, is used to determine which
production is chosen to replace the leftmost non-terminal
(ClassExpression) from its relevant rule (Rule 4). In this
case, the leftmost ClassExpression will be replaced by the
value of ObjectUnionOf. The mapping goes on like this until
eventually there is no non-terminal left in the expression. Not
all codons were required and extra codons have been simply
ignored in this case.

4.3 Axiom Evaluation

Some facts (instances) in the RDF repository may be missing
or erroneous as a result of the heterogeneous and collabora-
tive character of the LOD. This incompleteness and noise
determines a sort of epistemic uncertainty in the evaluation
of the quality of a candidate axiom. In order to properly
capture this type of uncertainty, typical of an open world,
which contrasts with the ontic uncertainty typical of ran-
dom processes, we follow [14] in adopting an axiom scoring
heuristics based on possibility theory (cf. Section 3.3), which
is well-suited to incomplete knowledge. This appears to be
a justified choice for assessing knowledge extracted from an
RDF repository. We now summarize this scoring heuristics
which was applied in [14] and we point out how our definition
of the fitness function differs from [14].

In the case of possibilistic axiom scoring, the basic principle
for establishing the possibility of a formula 𝜑 should be that
the absence of counterexamples to 𝜑 in the RDF repository
means Π([𝜑]) = 1, i.e., that 𝜑 is completely possible. Let 𝜑
be an axiom that we wish to evaluate (i.e., a theory). The
content of an axiom 𝜑 that we wish to evaluate is defined as
a finite set of logical consequences

content(𝜑) = {𝜓 : 𝜑 |= 𝜓}, (4)

obtained through the instantiation of 𝜑 to the vocabulary
of the RDF repository; every formula 𝜓 ∈ content(𝜑) may
be readily tested by means of a SPARQL ASK query. Let us
define 𝑢𝜑 = ‖content(𝜑)‖ as the support of 𝜑. Let then 𝑢+

𝜑

be the number of confirmations (basic statements 𝜓 that
are satisfied by the RDF repository) and 𝑢−𝜑 the number of

counterexamples (basic statements 𝜓 that are falsified by the
RDF repository).

The possibility measure Π(𝜑) and the necessity measure
𝑁(𝜑) of an axiom have been defined as follows in [20]: for
𝑢𝜑 > 0,

Π(𝜑) = 1−

⎯⎸⎸⎷1−

(︃
𝑢𝜑 − 𝑢−𝜑
𝑢𝜑

)︃2

; (5)

𝑁(𝜑) =

⎯⎸⎸⎷1−

(︃
𝑢𝜑 − 𝑢+

𝜑

𝑢𝜑

)︃2

, if Π(𝜑) = 1, 0 otherwise.(6)

The cardinality of the sets of the facts in the RDF repository
reflects the support of each axiom. An axiom is all the more
necessary as it is explicitly supported by facts, i.e., confirma-
tions, and not contradicted by any fact, i.e., counterexamples,
while it is the more possible as it is not contradicted by any
fact. In principle, the fitness of axiom 𝜑 should be directly
proportional to its necessity 𝑁(𝜑) and to its possibility Π(𝜑).

In addition, what we are looking for is not only credible
axioms, but also general ones. As suggested in [14], the gen-
erality of an axiom may be defined as the cardinality of its
support, 𝑢𝜑. In other words, an axiom is more general as the
extension of its components contains more facts. In case one
of the components of an axiom is not supported by any fact,
its generality will be zero.
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Table 1: An illustration of mapping process to an expression of class disjointness axiom

Codon Rule Option Mapped Expression

- (r.1) - ClassAxiom

- (r.2) - DisjointClasses

- (r.3) - ’DisjointClasses’’(’ClassExpression’ ’ ClassExpression’)’
253 (r.4) (1) ’DisjointClasses’ (ObjectUnionOf’ ’ClassExpression’)’
- (r.5) - ’DisjointClasses’’(’’ObjectUnionOf’’(’ClassExpression’ ’ClassExpression’)’ClassExpression’)’

213 (r.4) (0) ’DisjointClasses’’(’’ObjectUnionOf’’(’Class’ ’ClassExpression’)’ ’ClassExpression’)’
397 (r.7) (2) ’DisjointClasses’”(’’ObjectUnionOf’’(’dbo:WrittenWork’ ’ClassExpression’)’ ’ClassExpression’)’
387 (r.4) (0) ’DisjointClasses’’(’’ObjectUnionOf’’(’dbo:WrittenWork’ ’Class’)’ClassExpression’)’
268 (r.7) (3) ’DisjointClasses’’(’’ObjectUnionOf’’(’dbo:WrittenWork’ ’dbo:Book’)’ClassExpression’)’
342 (r.4) (0) ’DisjointClasses’’(’’ObjectUnionOf’’(’dbo:WrittenWork’ ’dbo:Book’)’Class’)’
321 (r.7) (1) ’DisjointClasses’’(’’ObjectUnionOf’’(’dbo:WrittenWork’ ’dbo:Book’)’dbo:MusicalWork’)’

A definition of the fitness function that satisfies all the
above requirements is

𝑓(𝜑) = 𝑢𝜑 · Π(𝜑) +𝑁(𝜑)

2
, (7)

which was adopted by [14].
However, it should be noticed that negation is not sup-

ported by the syntax of RDF. Negated assertions can of
course be expressed using the vocabulary of OWL, but then
the services of an OWL reasoner would have to be used to
infer the negation of an assertion thus expressed; however,
that would be way more expensive than using SPARQL to
query the dataset and also of little use, since very few or no
negated assertions at all do occur in real-world RDF datasets.
As a result, an RDF dataset will naturally provide counterex-
amples for the disjointness axioms (e.g., an individual that is
asserted to belong in the two supposedly disjoint classes). On
the other hand, confirmations, which should take the form of
negated assertions, like “such individual, which belongs to
either of the supposedly disjoint classes, does not belong in
the other”, will be completely missing. The simple solution
of taking the absence of a counterexample as a confirmation
(i.e., letting 𝑢+

𝜑 = 𝑢𝜑 − 𝑢−𝜑 ) would betray the open-world
hypothesis that underlies the SW and is, therefore, not satis-
factory. However, this problem can be overcome by actually
scoring axioms based on counterexamples only, which is, after
all, much in agreement with the falsificationist approach that
underlies the current practice in Science (to corroborate a
hypothesis, one should not look for easy confirmations, but
should rather try hard to find counterexamples). Since the
number of confirmations 𝑢+

𝜑 only appears in the definition of

𝑁(𝜑), we can safely drop 𝑁(𝜑) from Equation 7.
A second refinement of the definition of fitness stems from

the observation that, for a disjointness axiom of the form
Dis(𝐶,𝐷), a better measure of its generality would be given
by the minimum of the cardinalities of the extensions of the
two classes involved, 𝐶 and 𝐷, in the RDF dataset, whereas
𝑢Dis(𝐶,𝐷) is the cardinality of the extension of 𝐶 ⊔𝐷. Let us
denote by [𝐶] the extension of class 𝐶 in the RDF dataset at
hand: this is the set of instances of 𝐶 returned by a SPARQL
query of the form

SELECT DISTINCT ?x WHERE { ?x a 𝐶 . }
Then we define the generality of axiom Dis(𝐶,𝐷) as

𝑔Dis(𝐶,𝐷) = min{‖[𝐶]‖, ‖[𝐷]‖} (8)

and use it instead of 𝑢𝜑 in Equation 7. This yields the fol-
lowing improved definition of the fitness function,

𝑓(𝜑) = 𝑔𝜑 ·Π(𝜑), (9)

which is the one used in our method.
In order to measure the fitness of class disjointness axioms

Dis(𝐶,𝐷), with 𝐶 and 𝐷 class expressions, the numbers of
the confirmations, the counterexamples and the support are
counted by executing the corresponding SPARQL queries
via an accessible SPARQL endpoint. Such SPARQL queries
are based on graph patterns that are a direct translation
of the expression of the OWL2 axiom considered. A graph
pattern here is a mapping 𝑄(E, ?x) from OWL2 expressions
to SPARQL graph patterns where E is an OWL 2 class expres-
sion, x is a variable such that the query SELECT DISTINCT ?x

WHERE {𝑄(E, ?x) } returns all individuals that are instances
of E. We define 𝑄(E, ?x) when

∙ E is an atomic class expression of an entity A

𝑄(A, ?x) = ?x 𝑎 A. (10)

where A is a valid IRI.
∙ E is an complex class expression involving relational
operators, i.e., intersection and union. In this case, Q
can be inductively extended to complex expressions:
– if E is an intersection of classes 𝐶𝑖 : 𝐶1 ⊓ ... ⊓ 𝐶𝑛,

𝑄(𝐶1 ⊓ ... ⊓ 𝐶𝑛, ?x) = 𝑄(𝐶1, ?x)...𝑄(𝐶𝑛, ?x) (11)

– if E is a union of classes 𝐶𝑖 : 𝐶1 ⊔ ... ⊔ 𝐶𝑛,

𝑄(𝐶1⊔. . .⊔𝐶𝑛, ?x, ?y) = {𝑄(𝐶1, ?x)} UNION · · · UNION {𝑄(𝐶𝑛, ?x)}.
(12)

The support 𝑢Dis(𝐶,𝐷) can thus be computed with the follow-
ing SPARQL query:

SELECT( count (DISTINCT ?x) 𝐴𝑆 ?u)
WHERE {𝑄(C, ?x) UNION 𝑄(D, ?x)} (13)

The generality 𝑔Dis(𝐶,𝐷) can be obtained by computing the
min value in the supports of axiom components 𝑔𝐶 , 𝑔𝐷 with
the following SPARQL queries.

SELECT( count (DISTINCT ?x) 𝐴𝑆 ?u C)WHERE {𝑄(C, ?x)}
SELECT( count (DISTINCT ?x) 𝐴𝑆 ?u D)WHERE {𝑄(D, ?x)}

(14)
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4.4 Gold Standard Construction

In order to evaluate the effectiveness of our method in dis-
covering disjointness class axioms, we use a manually created
benchmark of class disjointness axioms, which we call the
Gold Standard.

The process of creating the Gold Standard was carried
out by knowledge engineers and consisted of two phases il-
lustrated in Fig. 2. In the first phase, the disjointness of
the top-most classes to their siblings was assessed manually.
Therefrom, two sibling classes being disjoint will automat-
ically imply the disjointness of their corresponding pair of
subclasses. This process was repeated in the same way on
the next level of concepts. The second phase consisted in
manually annotating the disjointness for the not yet assessed
pairs of classes which did not belong to the cases given in
the previous phase. The result of the completion of the Gold
Standard is a matrix representing the disjointness evaluation
between pairs of distinct atomic class expressions. We first
constructed the (62× 62) matrix14 of class disjointness ax-
ioms relevant to the Work topic of DBpedia 2015-04. This
matrix contains (0 and 1) values representing the disjointness
evaluation between 3,844 pairs of classes relevant to the topic,
with 1,891 pairs of distinct asymmetric classes.

In compliance with the Gold Standard thus constructed,
we can measure the quality of class disjointness axioms in-
volving both atomic and more complex types, i.e. involving
the intersection and union operators. Algorithm 1 describes
in detail how a complex axiom is assessed using the Gold
Standard.

Sibling

class pairs 
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disjointness of 

sibling classes 

The disjointness information of 

sibling classes 
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Figure 2: The process of Gold Standard creation

5 EXPERIMENTS & RESULTS

5.1 Experimental Protocol

We applied the proposed approach, introduced in Section 4,
to mining class disjointness axioms from DBpedia, a large
real-world RDF dataset.

The axioms involving both atomic and complex classes
relevant to topic Work are systematically generated and eval-
uated on DBpedia version 2015-04 in English as the reference

14
https://bitbucket.org/RDFMiner/disjointnessclassaxiomge/src/master/GoldStandard.csv

RDF fact repository. Of 62 classes about the Work topic in
DBpedia 2015-04, 53 classes with 5,195,019 instances are rele-
vant to our experiments. All data used in this experiment are
represented by RDF triples, as in the examples of Section 4.1.

We use the BNF grammar of disjointness axioms shown in
Section 4.1. However, to increase the success of the mapping
to complex axiom expressions, we double the appearance
probability of non-terminal ClassExpression. Rule (r4) in
the grammar is thus modified to
(r4) ClassExpression := Class (0)

| Class (1)

| ObjectUnionOf (2)

| ObjectIntersectionOf (3)

Although the main purpose of our research is to focus
on exploring complex disjointness axioms involving intersec-
tion and union, we also performed experiments to generate
axioms involving atomic classes only, for comparison pur-
pose. In that case, Rule (r4) is simplified to only one option
ClassExpression := Class .

We also increase the length of chromosomes initlenChrom
(in the case of complex axioms) to 30 instead of 20 in [14].

The algorithm parameters, summarized in Table 2, were
empirically determined by performing a systematic explo-
ration of a grid of possible settings. A prototype system of
the proposed method was developed in Java, using Apache
Jena to interface with SPARQL endpoints and GEVA v.2.0
15, a Java implementation of GE. To avoid overloading DB-
pedia’s SPARQL endpoint, we set up a local mirror16 using
the Virtuoso Universal Server.

All the experiments have been performed on a HP ZBook
15 G3 Mobile Workstation equipped with an eight-core Intel
i7 CPU 6820HQ processor at 2.7GHz clock speed, with 32
GB RAM, 1 TB of disk space under the Ubuntu 16.04 LTS
64-bit operating system.

5.2 Results

In order to measure the effectiveness of the method, we ran
it 3 times with the parameters shown in Table 2 on either
version of the BNF grammar of axioms, involving atomic and
complex expressions: the results are available on line.17. We
also carried out a comparison of our results with [14] and
GoldMiner [21]. Precision and recall are computed against
a publicly available Gold Standard18 of class disjointness
axioms introduced in sec. 4.4.

The results, shown in Table 3, confirm that the accuracy
and the coverage of our approach in extracting atomic axioms
are higher than the results of [14] and GoldMiner. In terms of
generating complex axioms, we witness a quite higher accu-
racy than in [14] and a superiority of our method compared
with GoldMiner. In the recall comparison for the case of
atomic axioms, we can also observe that the coverage of the
set of generated atomic axiom in each run is much higher
than the result in [14]. The recall value in GoldMiner is con-
stant, namely 0.38, because that algorithm is deterministic,

15
http://ncra.ucd.ie/Site/GEVA.html

16
https://joernhees.de/blog/2015/11/23/setting-up-a-linked-data-mirror-

from-rdf-dumps-dbpedia-2015-04-freebase-wikidata-linkedgeodata-with-
virtuoso-7-2-1-and-docker-optional/
17

https://bitbucket.org/RDFMiner/classdisjointnessaxioms/src/master/Results/
18

https://bitbucket.org/RDFMiner/classdisjointnessaxioms/src/master/Results/GoldStandard.csv
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Algorithm1 - CheckDisjointClasses(classexpr1(n), classexpr2(m))

Input: classexpr1(n), classexpr2(m): class expressions being arguments in axiom,
n,m: the numbers of the classes contained in the class expressions;
G: matrix of Gold Standard

Output: R: Results of disjointness - returns to a non- negative integer value
if the return value is greater 0, classexpr1(n) and classexpr2(m) are disjoint
if the return value equals 0, classexpr1(n) and classexpr2(m) are non-disjoint

1: if both 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛) and 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟(2(𝑚) are atomic expressions
𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(1) ← 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛)
𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(1) ← 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚)

R ← CheckDisjointAtomicClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1[1],𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2[1])
CheckDisjointAtomicClasses(classexpr1,classexpr2) scans in the matrix G and returns 0,
i.e. non-disjoint or 1, i.e disjoint.

else
if 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛) is a complex expression containing union operator ”ObjectUnionOf”
R ← CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1[1],𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚)) + CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛− 1),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚))

if 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛) is a complex expression containing union operator ”ObjectIntersectionOf”
R ← CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1[1],𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚)) * CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛− 1),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚))

if 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚) is a complex expression containing union operator ”ObjectUnionOf”
R ← CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2[1]) + CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚− 1))

if 𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚) is a complex expression containing union operator ”ObjectIntersectionOf”
R ← CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2[1]) * CheckDisjointClasses(𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟1(𝑛),𝑐𝑙𝑎𝑠𝑠𝑒𝑥𝑝𝑟2(𝑚− 1))

2: return R

Table 2: Parameter values for the GE

Parameter Atomic Axioms Complex Axioms
initLenChrom 5 30
maxWrap 2 2
pCross 80% 80%
pMut 1% 1%
popSize 2,000 2,000
nGenerations 25 5

while ours is stochastic. Therefore, the comparison in this
case is unnecessary. Also, the overall recall value gets much
higher, namely 0.323 over 3 runs, and would easily overtake
the results of GoldMiner and [14] simply by executing more
runs. We do not present the recall for complex axioms, be-
cause it is not clear how the cardinality of the set of all true
complex axioms should be computed; under the most general
assumptions, this set is infinite, although enumerable.

Fig. 3 plots the generality of discovered axioms against
their possibility degree. Most discovered axioms are highly
possible (Π(𝜑) close to 1) and most are supported by a large
number of facts (instances) both in the atomic and complex
case. In terms of generality, some discovered axioms have a
particularly high generality, i.e. true axioms, such as Disjoint-
Classes(dbo:Article dbo:Image) (𝑔𝜑 = 2, 220, 106) or Disjoint-
Classes(dbo:Image ObjectUnionOf(ObjectUnionOf( dbo:Album
dbo:TelevisionShow)
dbo:Website)) (𝑔𝜑 = 190, 783). This can be explained by
the existence of classes supported by a huge number of in-
stances (like dbo:Article or dbo:Image) in the content of the
generated axioms.

6 CONCLUSION

We have proposed an improved fitness function for a method
using GE to learn OWL class disjointness axioms from RDF
datasets. We have thoroughly tested the proposed method
on a subset of DBpedia through extensive experiments with
different parameter settings, to investigate the effectiveness
of the method.

The results support the effectiveness of the proposed method
to generate atomic axioms with high accuracy and coverage
and suggest further improvements in the case of complex
axioms. The results also shed more light on the use of GE
to learn axioms. Based on their analysis, some promising
research directions clearly emerge:

(1) tune the fitness function to better suit complex axioms;
(2) implement the method on parallel hardware to carry

out a more ambitious experimental validation using
bigger datasets.
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