SEMANTICSBASED MUTATION IN GENETIC PROGRAMMING:
THE CASE FOR REAL-VALUED SYMBOLIC REGRESSION

Nguyen Quang Uy, Nguyen Xuan Hodj Michael O’Neill*
! Natural Computing Research & Applications Group, Univgr€iollege Dublin, Ireland
2School of Computer Science and Engineering, Seoul Natidnadersity, Korea
quanguyhn@ahoo. com nxhoai @nail.com moneill @cd.ie

Abstract

In this paper we propose two new methods for implementingniltation operator in Genetic Programming called Se-
mantic Aware Mutation (SAM) and Semantic Similarity basedaton (SSM). SAM is inspired by our previous work on
a semantics based crossover called Semantic Aware Cras€awe€) [19] and SSM is an extension of SAM by adding
more control on the change of semantics of the subtreesviestah mutation operation. We apply these two new mutation
operators to a class of real-valued symbolic regressiorbfgms and compare them with the Standard Mutation (SM) of
Koza [13]. The results from the experiments show that whil $loes not help to improve the performance of Genetic
Programming, SSM helps to significantly enhance Genetigr@roming performance on the problems tried. The experi-
ment results also show that the change of the semanticssjtreSSM is smoother than ones of both SAM and SM. This,
we argue that is the main reason to the significant perforreanmprovement of SSM over SAM and SC.

Keywords: Genetic Programming, Semantics, Mutation Operator, SyimBegression

1 Introduction

Semantics is currently an emerging hot topic in the field afi&ie Programming with a number of papers being published
on this area in recent years (e.g.,[7, 8, 9, 11, 10, 1, 16, N9 P2ior to this, a great deal of research in GP has focused
on syntactical issues of the GP representation, which laggbt valuable insights and contributions on the behawbur
GP. In particular grammar-based approaches to GP have bedéacus of a large number of studies within the field. As
every programmer is aware, syntax is only a small part of tbeysvhen it comes to problem solving, rather they are
more concerned with the semantics, or meaning, of the syitatkis paper we demonstrate that GP researchers should
be increasingly aware of semantics and how they might bearaglto improve the efficiency of GP search. In terms of
research into representations in Evolutionary Computatias recognised that search operators such as mutatanidsh
exhibit the property of locality [17, 18]. For example, sh@ianges made to a solution (e.g., a GP tree) should result
in a correspondingly small fitness change, and similarilgdathanges to a solution should amount to a fithess change of
an equivalent magnitude. In this paper we demonstratetihatigh the adoption of semantics we can design a mutation
operator with improved locality and in turn improved perfance on a set of symbolic regression problem instances.
We introduce two new mutation operators in GP calbainantic Aware MutatiofBAM) andSemantic Similarity based
Mutation (SSM). These operators extend standard mutation throwghadtition of semantic information to control the
change of semantics of individuals during the evolutiormapgcess by only allowing to replace a subtree by a semalytical
similar subtree when performing mutation. In so doing weeetphat the change of fitness of individual will be less
abrupt, exhibiting better behaviour in terms of locality.

The remainder of this paper is organized as follows. In the section, we give a review of related work on some
semantic based operators in GP. Section 3 contains thdedketigEscriptions of our new mutation operators. The exper-
iments is described in section 4 of the paper. The resultseEkperiments are then given and discussed in section 5.
Section 6 concludes the paper and highlights some potduatiak extensions of this work.

2 Semanticsin Genetic Programming

There is a growing literature on the use of semantics in GeRebgramming, and there are at least three ways in which
semantics can be represented, extracted and used to guieeolonary process: use grammars [21, 2, 3], use formal
methods [7, 8, 9, 11, 10], and is based on GP s-tree repréiseritg 16, 19]. In the first way, the most popular formalism
used to incorporate semantic information into GP is Attigb@rammars. By using an attribute grammar and adding some
attributes to individuals, some useful semantic infororatf individuals during the evolutionary process can beckbd.

This information then can be used to eliminate bad indivisifiaom the population as in [3] or to prevent generating
semantically invalid individuals as in [21, 2]. The attriba used to present semantics are usually problem depearutnt
it is not always obvious to determine the attributes for gardiblem.

Recently, Johnson has advocated for using formal methals/ag of adding semantic information in the evolutionary
process of GP [7, 8, 9]. In these methods, the semantic irftomextracted by using formal methods (such as by Abstract
Interpretation and Model Checking) is used to quantify tireeBs of individuals in some problems which are difficult to
use a traditional sample point based fitness measure. Kdthiarwo-workers used a Model Checking with GP to solve
the Mutual Exclusion problem [11, 10]. In these works, seticans also used to calculate the fithess of individuals.

With expression trees, semantic information has beenjmorated mainly by modifying the crossover operator. In [1],
the authors investigated the effects of directly using s#imanformation to guide GP crossover on Boolean domains.
The main idea proposed in [1] was to check the semantic elgniva between offspring and parents by transforming the
trees to Reduced Ordered Binary Decision Diagrams (ROBDDsb trees have the same semantic if and only if they
reduce to the same ROBDD. The checking is then used to detenvhiich of the individuals participating in crossover
will be copied to the next generation. If the offspring arenaetically equivalent to their parents, then the parergs ar
copied into the new population. By doing this, the authoggiar there is an increase in the semantic diversity of the
evolving population and a consequent improvement in the &fpnance.

In our previous work [19], we proposed a new crossover ope(&AC), based on the semantic equivalence checking
of subtrees. Our approach was tested on a family of reakv@tmbolic regression problems (e.g., polynomial functjon
Our empirical results showed that SAC improves GP perfoneanSAC differs from [1] in two ways. Firstly, the
test domain is real-valued rather than Boolean. For relalevdomains, checking semantic equivalence by reduction to
common ROBDDs is not possible. Secondly, the crossoveatqes guided not by the semantics of the whole program
tree, but by that of subtrees. This is inspired by recent vpoelsented in [16] for calculating subtree semantics.

While using semantics in GP has attracted a number of stidiexent years and some of this research has inves-
tigated ways to use semantics to guide the crossover opei@the best of our knowledge, there has been no research
in the literature on using semantics to guide the mutaticeragr. Although, most of GP researchers and users follow
Koza’s practice in [13] to use the crossover operator as thi@ search operator for GP, the comparative importance of
GP crossover and mutation operators is still the subjectwfhhdebate. An early argument of this debate was given
in [15] when the authors did an exclusive comparison betwessover and mutation and found that there was very
little different performance between these two operatbra more recent work [20], White and Poulding have done an
experiment to compare the crossover and mutation in GP héloptimal conditions of the experiment settings for each
operator. Their results showed that there were only 2 outtoéé problems, GP with crossover was better than GP with
mutation. These research suggest that mutation operaatsasmportant in GP and any improvement of the mutation
operator could potentially lead the improvement of GP penéince.

So far, most of the modifications to GP standard subtree muat& purely based on syntax with the usual objective
as reducing code bloat. An example of such modificationsiiegtrict the standard subtree mutation so that the increase
of the program depth after being mutated is no more than 1586 depth [12], or must be size-fair [14]. By contract,
our new approach is to constraint the mutation operator byagséics in that it forces the change of the semantics of
individuals after mutation as in SAM and try to keep this apasmaller and smoother as in SSM.

3 Methodology

The first new mutation operator, SAM, is similar to SAC in [18lt adapted to constrain the semantics in mutation
rather than in crossover. As in SAC, the semantic equival@iche two subtrees (replaced and replacing subtrees in
the mutation operation) is determined by comparing them set ®f random points in the domain. If the outputs of the
two subtrees on the set is close enough (subject to a panacadied semantic sensitivijythen they are designated as
semantically equivalent. The pseudo-code for semangiegllivalence checking of subtrees 8hd St as follows:

I f Abs(Val ue.On_RandomsSet (St ;) - Val ue_On_RandomsSet (St) <€) then

Return St; is semantically equivalent to Sts.

Here Abs is the absolute function ards a predefined constant called semantic sensitivity. THi@mation is then used
to guide the mutation operator by preventing replacing areetwith a semantically equivalent subtree. Notice tha¢ he
we also denote a randomly generated tree to replace a subtnegation operation as a subtree as it will become a subtree
of the individual after mutation. Algorithr@? shows how SAM works.

The second mutation operator (SSM) differs from SAM in twoysaFirstly, the concept of semantically equivalent
subtrees is replaced by the concept of semantically sisilatrees. Again, the semantic similarity of two subtreedse
checked by comparing them on a set of random points in the motfighe output of these subtrees on the set is within an
interval, then they are considered as semantically simmilbtrees. the pseudo-code for semantically equivalereszkiiy
as follows:

I f a<Abs(Val ue_.On_.RandomSet (St ;) - Val ue_.On_RandomsSet (Sts)) <8 then
Return St; is semantically simlar to Sts.

Algorithm 1: Semantic Aware Mutation

Algorithm 2: Semantic Similarity based Mutation

select Parer;

choose at random mutation pointsQtbtree; in P;

generate at random a subtrgebtrees;

If Subtree; is not equivalent wittbubtrees Then
execute mutation by replacaubtree; with Subtrees;
add the child to the new population ;
return true;

Else
choose at random mutation pointsSatbtree; in P;

select Parenp;
Count=0;
While CountMax AttemptDo
choose at random mutation poirftabtree; in P;
generate at random a subtigebtree; in P;
If Subtree; is similar toSubtrees Then
execute mutation by replacaubtree;, with Subtrees;
add the child to the new population ;
return true;

generate at random a subtigebtrees; Else

execute mutation by replacaubtree; with Subtrees; Count=Count+1;
add the child to the new population ; End If

return true; End While

End If If Count=MaxAttemptThen
choose at random mutation pointsQtbtree; in P;
generate at random a subtigebtree; in P;
execute mutation by replacaubtree; with Subtrees;
add the child to the new population ;
return true;

End If

Here Abs is also the absolute function andandg are two predefined constants. We will calslower bound semantic
sensitivity 3 asupper bound semantic sensitiviferhaps, the best values fower bound semantic sensitivisndupper
bound semantic sensitivigre problem dependent. However, we strongly believe theaetls a range of values that is
good for almost every symbolic regression problems (seose8). In this paper, we conducted the experiment with a
range of botHower andupper bound semantic sensitivitysee how SSM performs with different values.

The second difference between SSM and SAM is the way in whigB¢émantic similarity is used to guide the mutation
operation. In SAM the equivalent semantics is used to guid&ation by trying to select other subtrees to do mutation
only one time when two subtrees are semantically equivalar8SM, when two subtrees are considered as not similar,
we try a number of times to pick up another subtree in the pi@mth generate a new subtree. The reason is that choosing
two similar subtrees is more difficult than selecting notigglent two subtrees in SAM. Algorith?? shows how SSM
works.

In this paper, MaxAttempt is chosen as 4. The motivation for SAM is to encouthgaeplacement of a subtree by a
semantically different subtree that we hope will generataantically different individuals in the next generati@&M
is inspired from the requirement of trying to cause a smadingfe in term of semantics in the search process. In other
words, while forcing a semantic change of the individualthie population, we also want to keep this change bounded
and small. It is expected that a smoother change in fithesgeadhtividuals will be obtained.

4 Experimental Setup

Table 1: Symbolic Regression Functions
Fi=X3+X>4+X Fy=X°+ X'+ X34+ X2+ X
R=X'"+ X3+ X’ +X | L,=X°+ X"+ X"+ X34+ X’ + X

To investigate the effects of SSM, SAM and to compare therh sidndard subtree mutation (SM), we used four
real-valued symbolic regression problems of increasifiiicdity. These functions, from [6], are shown in table 1, and
parameter setting is given in table 2. The reason for chgogialower bound semantic sensitivities SSM as the
semantic sensitivitieef SAM is that these values helped to improve the performafic@AC as shown in [19]. The
reason for selecting thgpper bound semantic sensitivitissnspired from our experiments that these values are grific
to demonstrate the performance of SSM.

5 Resultsand discussion

To compare the effect of SSM and SAM with SM we recored a nurabexperimental results. The first one is to compare
the number of successful runs over 100 runs of three mutapenators. The results are shown in Table 3. In this table,

Table 2: Run and Evolutionary Parameter Values

Parameter Value Parameter Value
Generations 50 Population size 500
Selection Tournament| Tournament size 3
Crossover probability 0.2 Mutation probability| 0.8
Initial Max depth 6 Max depth 15
Max depth of mutation 5

Non-terminals +, -, *, /, sin, cos, exp, log (protected versions)
Terminals X, 1

Number of samples 20 random points from-1. . . 1]

Successful run sum of absolute error on all fitness cases.1
Termination max generations exceeded

Lower semantic sensitivities 0.02,0.04,0.06

Higher semantic sensitivities 8, 10, 12

Trials per treatment 100 independent runs for each value.

Table 3: The comparison of the percentage of successful runs

sensitivities F F Fs F4
low | high| SM | SAM | SSM| SM | SAM | SSM | SM | SAM | SSM | SM | SAM | SSM
8 23 18 36 5 3 12 3 3 13 0 1 4
0.02| 10 | 23 18 46 5 3 14 3 3 6 0 1 7
12 | 23 18 39 5 3 14 3 3 11 0 1 7
8 23 15 38 5 8 12 3 3 7 0 0 2
0.04| 10 | 23 15 39 5 8 16 3 3 8 0 0 5
12 | 23 15 38 5 8 13 3 3 7 0 0 2
8 23 17 38 5 5 8 3 2 7 0 0 2
0.06| 10 | 23 17 41 5 5 15 3 2 7 0 0 5
12 | 23 17 44 5 5 14 3 2 8 0 0 4

the best results (the biggest values) are bold faced. It essebn from Table 3 that the performance of SM and SAM
on the tested problems are almost identical. For the eamigettfunctions like |, SM was slightly better than SAM.
However, on the more difficult target functions;, F=3, and F, the difference in terms of the percentage of successful
runs of two these mutation methods is almost diminishech@lgh, SAM did not help GP to improve its performance in
solving these problems, SSM is by far better than both SM akd.S-or example, consider the case witdwer bound
andhigher bound semantic sensitivisg 0.02 and 12, the number of successful runs of SM, SAM, ail f86F;, F,

Fs, and i were in turn (23, 18, 39), (5, 3, 14), (3, 3, 11), and (0, 1, Me Tost significant improvement achieved on
the most difficult function, Ir. For this problem, SM could not find any solution (over 100)I8AM could only find 1
solution for all cases, while SSM found solutions more frefly (up to 7% of the runs).

The second line of results given in Table 4 is the average stfdmutions found in all runs of all GP systems. In this
table,senis the shorthand fosensitivity Figure 1 shows the average of best fithess and the averagerafge fithess
(over 100 runs) in each of 50 generations watver boundandhigh upper bound semantic sensitivities 0.02 and 12
respectively. It is noted that, in this figure, we only show shatistics from the 0 generation. The reason is that at some

Table 4: The comparison of the average best fithess over 130 ru
sen F F F3 F4
low | high| SM | SAM | SSM| SM | SAM | SSM| SM | SAM | SSM | SM | SAM | SSM
8 |[0.28| 033|019 | 0.43| 049 | 027 | 0.56| 0.57 | 0.36 | 0.62| 0.63 | 0.45
0.02| 10 | 0.28| 0.33 | 0.19 | 0.43]| 0.49 | 0.29 | 0.56| 0.57 | 0.37 | 0.62| 0.63 | 0.42
12 | 0.28] 0.33 | 019 | 0.43| 0.49 | 0.28 | 0.56| 0.57 | 0.33 | 0.62| 0.63 | 0.41
8 [0.28| 0.35| 0.18 | 0.43| 0.43 | 027 | 0.56| 0.59 | 0.36 | 0.62| 0.63 | 0.44
0.04| 10 [0.28] 0.35| 018 | 0.43] 0.43 | 029 | 0.56| 0.59 | 0.38 | 0.62| 0.63 | 0.42
12 [0.28] 0.35| 019 | 0.43| 0.43 | 0.32 | 0.56| 059 | 0.31 | 0.62| 0.63 | 0.40
8 |028| 032|019 | 043| 042 | 027 | 0.56| 0.55| 0.35 | 0.62| 0.63 | 0.42
0.06| 10 | 0.28] 0.32 | 018 | 0.43] 0.42 | 029 | 0.56| 0.55 | 0.38 | 0.62| 0.63 | 0.42
12 [0.28] 0.32 | 018 | 0.43| 0.42 | 0.34| 0.56| 055 | 0.33 | 0.62| 0.63 | 0.38

The average of best fitness
The average of best fithess

0 I I I I I I I 0 I I I I I I I
10 15 20 25 35 40 45 50 10 15 20 25 35 40 45 50

30 30
Generations Generations
F3 Fa

25—

The average of best fitness
The average of best fitness

0 I I I I I I I 0 I I I I I I I
10 15 20 25 35 40 45 50 10 15 20 25 35 40 45 50

30 30
Generations Generations

Figure 1: The average of best fithess with0.02,5=12

first generations, the values of those statistics are yshigl(which is expected as the fithess of individuals at théyea
stage of evolution is usually very bad). Therefore, it isidifit to scale the graphs to highlight the difference. Maero
at these early generations, the statistics on fithess veleiesalmost similar in all of GP system runs regardless ottvhi
mutation operator is used.

The results in Table 4 are consistent with those in Table Bah$SM is also superior than both SAM and SM finding
solutions with better quality and also there is a very smifiléence between SAM and SM. To measure the statistical
significance of the results in Table 4, we also conducted sstatéstical tests. Here the t-test was used to see if the
improvement over the average best fithess of SSM over SMisfisignt. The t-test of SAM in comparison with SM is
also calculated for the ease of comparison. The resultesfttis then used to decide if the improvement of SSM over Sm
and the difference between SAM and SM are remarkable. if ineyemarkable, the corresponding values in Table 4 are
bold faced.

It can be seen from Table 4 that while the difference in terfrth® average best fithess of runs of SAM and SM is
not significant, the improvement of SSM over SM is considbralgnificant in most situations. The exceptions only lie
in the quite easy-to-learn function FOn the contrary, in the most two complicated and hard tanléamctions, i, F;,
there is no exception. The results support the confirmakianthe SSM is better than SM in terms of the average of best
solutions. Figure 1 shows that SSM not only outperforms &k and SM in terms of best fithess of runs but also better
in terms of the average of best fithess and the average ofgevéaess in each generations.

The next set of experimental results are for the investigadif the locality property of SSM. It is well known that
using a high-locality representation (small change in ggmocorresponds to small change in phenotype) is impaidant
efficient evolutionary search [5]. It is also widely admittinat designing a search operator for GP that could correspo
a small change in syntax (genotype) to a small change in g@agphenotype) is very difficult. Therefore, nearly all
current GP representations and operators are low-local#gning that a small (syntactic) change in a parent care@us
big or even uncontrollable (semantical) change in theildcan. Our new mutation operator (SSM) is different withasth
mutation operators in the literature in that aspect, trymgchieve high-locality by controlling the small changedmms
of semantics.

To compare the locality property of SSM with SAM and SM, anemiment was conducted where the fithess change
of individuals before and after mutation is measured. Fangxe, if an individual having fitness of 15 is selected to for
being mutated, and that after mutation operation, its offigghas fitness of 9. Then, the change of fitness of this iddai

Table 5: The average individual fitness change before apd@fbssover operation
sen F F F3 F4
low | high| SM | SAM | SSM| SM | SAM | SSM| SM | SAM | SSM | SM | SAM | SSM
8 | 110 115| 96 | 12.0| 124 | 100 | 13.9| 12.7 | 105 | 13.9| 12.8 | 11.1
0.02| 10 | 11.0] 115| 94 |12.0] 12.4| 92 | 139| 12.7 | 100 | 13.9| 12.8 | 103
12 | 11.0| 115| 74 | 120| 124 | 85 | 139| 12.7| 89 | 13.9| 12.8 | 88
8 |11.0| 116 | 92 |120| 126 | 95 | 13.9| 12.7| 105 | 13.9| 13.0 | 110
0.04| 10 |11.0] 1126 | 89 |12.0] 126 | 90 | 139 12.7| 95 | 139 130 | 99
12 | 11.0| 116 | 76 | 120| 126 | 86 | 13.9| 12.7| 93 | 13.9| 13.0| 89
8 |11.0| 11.1| 92 | 12.0| 12.8 | 100 | 13.9| 12.4 | 106 | 13.9| 13.1 | 110
0.06| 10 |11.0] 112.1| 90 |12.0] 12.8| 96 | 139 124 | 98 | 139 131 | 99
12 [11.0] 111 | 75 | 120 12.8| 83 | 139| 124 | 92 | 13.9| 13.1| 87

is Abs(15 —9) = 6. Here Abs is again the absolute function. This value is then averagedwhole population and over
100 runs as well as for 50 generations. The results about#rage of the fithess change of individuals before and after
mutation is shown in Table 5. Again, in this table, the bestits (the smallest values) are bold faced.

In the Figure 2 we show the change of the average of fitness mmavieof 100 runs for each of 50 generations with
lower boundandupper bound semantic sensitivitias 0.02 and 12. Table 5 and Figure 2 show that the step of tlesditn
change of SSM is smaller than both SAM and SM. This means keathange of fithess over generations of SSM is
smoother than SAM and SM. The table and figure also show tedittiess change of SM is only slightly smoother than
SAM in two easy functions, £ F, and this value of SAM is slightly smoother than SM in two moifficult functions,

Fs, F4. These results explain why SSM is much better than SAM and Bhhe problems tried, while SAM is not better
than SM.

6 Conclusion and future works

In this paper, we have proposed two new semantics basediomuaerators for GP (SAM and SSM). The new operators
were tested and analysed on a class of real-valued symiggjiession problems and the results was compared with
the standard mutation of Koza. The experimental resultsvghat SSM helps to improve the performance of GP in
comparison with SAM and SM while SAM is not better than SM. Bx@erimental results also show that SSM makes
a smaller change of fithess during the evolutionary proaessinparison with SAM and SM. We argue that this is the
main reason why SSM outperformed SAM and SM on the probleiets. tr

In the near future, we are planning to extend the work in a remobways. Firstly, we are aiming to apply SSM on
more difficult symbolic regression problems (the problehet tare multi-variable and more complex in the structure of
the solutions). For these problems, we predict that makisguall change in semantics is more difficult and also more
important. Another potential research direction is to gff$M on other kind of problem domains such as on Boolean
problems that have been investigated in [16]. It could banaewere difficult to generate the children that are different
with their parents in terms of semantics. Lastly, we arestigating the range dbwer bound semantic sensitiviand
upper bound semantic sensitivityat are good for a class of problems. In this paper, thesgegare manually and
experimentally specified. However, these value might chaadpptively during the evolutionary process as the way to
self-adaptation the parameters of generic algorithm iedéh

Acknowledgments

This paper was funded under a Postgraduate ScholarshigirfisinkResearch Council for Science Engineering and Tech-
nology (IRCSET).

References

[1] L. Beadle and C. Johnson. Semantically driven crossoveenetic programming. |Rroceedings of the IEEE
World Congress on Computational Intelligenpages 111-116. IEEE Press, 2008.

[2] R. Cleary and M. O’Neill. An attribute grammar decoder the 01 multi-constrained knapsack problem. In
Proceedings of the Evolutionary Computation in Combin@lddptimization pages 34-45. Springer Verlag, April
2005.

[3] M. de la Cruz Echeanda, A. O. de la Puente, and M. AlfonsAtiaibute grammar evolution. IRroceedings of the
IWINAC 2005 pages 182-191. Springer Verlag Berlin Heidelberg, 2005.

e = N
e 5 & 8

The average of fitness movement

o

20

The average of fitness movement

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

F1 F2

20

15 - —

The average of fitness movement

I I I 0 I I I I I I I

I I I
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Generations Generations

F3 F4
T 20 T

The average of fitness movement

I I I I I I I I I 0 I I I I I I I I I
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Generations Generations

Figure 2: The average fithess movement before and afteras@saith «=0.04,5=10

K. Deb and H. G. Beyer. Self-adaptation in real-paramgénetic algorithms with simulated binary crossover. In
Proceedings of the Genetic and Evolutionary Computationf@ence pages 172-179. Morgan Kaufmann, July
1999.

J. Gottlieb and G. Raidl. The effects of locality on thendynics of decoder-based evolutionary searctPrbteed-
ings of the Genetic and Evolutionary Computation Confeeepage 283290. ACM, 2000.

N. X. Hoai, R. McKay, and D. Essam. Solving the symbolignession problem with tree-adjunct grammar guided
genetic programming: The comparative resultsPioceedings of the 2002 Congress on Evolutionary Compmutati
(CEC2002) pages 1326-1331. IEEE Press.

C. Johnson. Deriving genetic programming fithess prigeby static analysis. IRroceedings of the 4th European
Conference on Genetic Programming (EuroGP20@2pes 299-308. Springer, 2002.

C. Johnson. What can automatic programming learn fromoititical computer science. Rroceedings of the UK
Workshop on Computational Intelligendéniversity of Birmingham, 2002.

C. Johnson. Genetic programming with fithness based oneindtecking. InProceedings of the 10th European
Conference on Genetic Programming (EuroGP20@2pes 114-124. Springer, 2007.

G. Katz and D. Peled. Genetic programming and modelldhgc Synthesizing new mutual exclusion algorithms.
Automated Technology for Verification and Analysis, Leciotes in Computer Sciend811:33—-47, 2008.

G. Katz and D. Peled. Model checking-based geneticpamging with an application to mutual exclusiofools
and Algorithms for the Construction and Analysis of Systei963:141-156, 2008.

K. E. Kinnear. A rigorous evaluation of crossover andation in genetic programming. Proceedings of the 12th
European Conference on Genetic Programming, Eurp@®es 881-888. IEEE Press, July 1998.

J. Koza.Genetic Programming: On the Programming of Computers byiNdSelection MITPress, MA, 1992.

[14] W. B. Langdon. The evolution of size in variable lengépresentations. IRroceedings IEEE International Con-
ference on Evolutionary Computatigmage 633638. IEEE Press, May 1998.

[15] S. Luke and L. Spector. A comparison of crossover andatian in genetic programming. IRroceedings of the
Second Annual Conference on Genetic Programppages 240-248. San Francisco, CA, USA, April 1997.

[16] N. McPhee, B. Ohs, and T. Hutchison. Semantic builditogks in genetic programming. IRroceedings of 11th
European Conference on Genetic Programmipages 134-145. Springer.

[17] F. Rothlauf.Representations for Genetic and Evolutionary Algorith®gringer, 2nd edition edition, 2006.

[18] F. Rothlauf and M. Oetzel. On the locality of grammalteeolution. InProceedings of the 9th European Conference
on Genetic Programmingrages 320-330. Lecture Notes in Computer Science, Sprizgel 2006.

[19] N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware crossr for genetic programming: the case for real-valued
function regression. IRroceedings of EuroGPOSpringer.

[20] D. White and S. Poulding. Evolving a sort: Lessons ingenprogramming. IfProceedings of the 1993 Interna-
tional Conference on Neural Networksages 57—69. LNCS, 5481, April 2009.

[21] M. L. Wong and K. S. Leung. An induction system that leapnograms in different programming languages using
genetic programming and logic grammars.Pimceedings of the 7th IEEE International Conference ondadth
Artificial Intelligence 1995.

