
SEMANTICS BASED MUTATION IN GENETIC PROGRAMMING:
THE CASE FOR REAL-VALUED SYMBOLIC REGRESSION

Nguyen Quang Uy1, Nguyen Xuan Hoai2, Michael O’Neill1
1 Natural Computing Research & Applications Group, University College Dublin, Ireland

2School of Computer Science and Engineering, Seoul NationalUniversity, Korea

quanguyhn@yahoo.com, nxhoai@gmail.com, m.oneill@ucd.ie

Abstract

In this paper we propose two new methods for implementing themutation operator in Genetic Programming called Se-
mantic Aware Mutation (SAM) and Semantic Similarity based Mutation (SSM). SAM is inspired by our previous work on
a semantics based crossover called Semantic Aware Crossover (SAC) [19] and SSM is an extension of SAM by adding
more control on the change of semantics of the subtrees involved in mutation operation. We apply these two new mutation
operators to a class of real-valued symbolic regression problems and compare them with the Standard Mutation (SM) of
Koza [13]. The results from the experiments show that while SAM does not help to improve the performance of Genetic
Programming, SSM helps to significantly enhance Genetic Programming performance on the problems tried. The experi-
ment results also show that the change of the semantics (fitness) in SSM is smoother than ones of both SAM and SM. This,
we argue that is the main reason to the significant performance improvement of SSM over SAM and SC.

Keywords: Genetic Programming, Semantics, Mutation Operator, Symbolic Regression

1 Introduction

Semantics is currently an emerging hot topic in the field of Genetic Programming with a number of papers being published
on this area in recent years (e.g.,[7, 8, 9, 11, 10, 1, 16, 19, 2]). Prior to this, a great deal of research in GP has focused
on syntactical issues of the GP representation, which has brought valuable insights and contributions on the behaviourof
GP. In particular grammar-based approaches to GP have been the focus of a large number of studies within the field. As
every programmer is aware, syntax is only a small part of the story when it comes to problem solving, rather they are
more concerned with the semantics, or meaning, of the syntax. In this paper we demonstrate that GP researchers should
be increasingly aware of semantics and how they might be employed to improve the efficiency of GP search. In terms of
research into representations in Evolutionary Computation, it is recognised that search operators such as mutation should
exhibit the property of locality [17, 18]. For example, small changes made to a solution (e.g., a GP tree) should result
in a correspondingly small fitness change, and similarly large changes to a solution should amount to a fitness change of
an equivalent magnitude. In this paper we demonstrate that through the adoption of semantics we can design a mutation
operator with improved locality and in turn improved performance on a set of symbolic regression problem instances.
We introduce two new mutation operators in GP calledSemantic Aware Mutation(SAM) andSemantic Similarity based
Mutation (SSM). These operators extend standard mutation through the addition of semantic information to control the
change of semantics of individuals during the evolutionaryprocess by only allowing to replace a subtree by a semantically
similar subtree when performing mutation. In so doing we expect that the change of fitness of individual will be less
abrupt, exhibiting better behaviour in terms of locality.

The remainder of this paper is organized as follows. In the next section, we give a review of related work on some
semantic based operators in GP. Section 3 contains the detailed descriptions of our new mutation operators. The exper-
iments is described in section 4 of the paper. The results of the experiments are then given and discussed in section 5.
Section 6 concludes the paper and highlights some potentialfuture extensions of this work.

2 Semantics in Genetic Programming

There is a growing literature on the use of semantics in Genetic Programming, and there are at least three ways in which
semantics can be represented, extracted and used to guide GPevolutionary process: use grammars [21, 2, 3], use formal
methods [7, 8, 9, 11, 10], and is based on GP s-tree representation [1, 16, 19]. In the first way, the most popular formalism
used to incorporate semantic information into GP is Attribute Grammars. By using an attribute grammar and adding some
attributes to individuals, some useful semantic information of individuals during the evolutionary process can be checked.



This information then can be used to eliminate bad individuals from the population as in [3] or to prevent generating
semantically invalid individuals as in [21, 2]. The attributes used to present semantics are usually problem dependentand
it is not always obvious to determine the attributes for eachproblem.

Recently, Johnson has advocated for using formal methods asa way of adding semantic information in the evolutionary
process of GP [7, 8, 9]. In these methods, the semantic information extracted by using formal methods (such as by Abstract
Interpretation and Model Checking) is used to quantify the fitness of individuals in some problems which are difficult to
use a traditional sample point based fitness measure. Katz and his co-workers used a Model Checking with GP to solve
the Mutual Exclusion problem [11, 10]. In these works, semantics is also used to calculate the fitness of individuals.

With expression trees, semantic information has been incorporated mainly by modifying the crossover operator. In [1],
the authors investigated the effects of directly using semantic information to guide GP crossover on Boolean domains.
The main idea proposed in [1] was to check the semantic equivalence between offspring and parents by transforming the
trees to Reduced Ordered Binary Decision Diagrams (ROBDDs). Two trees have the same semantic if and only if they
reduce to the same ROBDD. The checking is then used to determine which of the individuals participating in crossover
will be copied to the next generation. If the offspring are semantically equivalent to their parents, then the parents are
copied into the new population. By doing this, the authors argue, there is an increase in the semantic diversity of the
evolving population and a consequent improvement in the GP performance.

In our previous work [19], we proposed a new crossover operator (SAC), based on the semantic equivalence checking
of subtrees. Our approach was tested on a family of real-value symbolic regression problems (e.g., polynomial functions).
Our empirical results showed that SAC improves GP performance. SAC differs from [1] in two ways. Firstly, the
test domain is real-valued rather than Boolean. For real-value domains, checking semantic equivalence by reduction to
common ROBDDs is not possible. Secondly, the crossover operator is guided not by the semantics of the whole program
tree, but by that of subtrees. This is inspired by recent workpresented in [16] for calculating subtree semantics.

While using semantics in GP has attracted a number of studiesin recent years and some of this research has inves-
tigated ways to use semantics to guide the crossover operator, to the best of our knowledge, there has been no research
in the literature on using semantics to guide the mutation operator. Although, most of GP researchers and users follow
Koza’s practice in [13] to use the crossover operator as the main search operator for GP, the comparative importance of
GP crossover and mutation operators is still the subject of much debate. An early argument of this debate was given
in [15] when the authors did an exclusive comparison betweencrossover and mutation and found that there was very
little different performance between these two operators.In a more recent work [20], White and Poulding have done an
experiment to compare the crossover and mutation in GP with the optimal conditions of the experiment settings for each
operator. Their results showed that there were only 2 out of 6tried problems, GP with crossover was better than GP with
mutation. These research suggest that mutation operator isalso important in GP and any improvement of the mutation
operator could potentially lead the improvement of GP performance.

So far, most of the modifications to GP standard subtree mutation is purely based on syntax with the usual objective
as reducing code bloat. An example of such modifications is torestrict the standard subtree mutation so that the increase
of the program depth after being mutated is no more than 15% ofits depth [12], or must be size-fair [14]. By contract,
our new approach is to constraint the mutation operator by semantics in that it forces the change of the semantics of
individuals after mutation as in SAM and try to keep this change smaller and smoother as in SSM.

3 Methodology

The first new mutation operator, SAM, is similar to SAC in [19], but adapted to constrain the semantics in mutation
rather than in crossover. As in SAC, the semantic equivalence of the two subtrees (replaced and replacing subtrees in
the mutation operation) is determined by comparing them on aset of random points in the domain. If the outputs of the
two subtrees on the set is close enough (subject to a parameter calledsemantic sensitivity) then they are designated as
semantically equivalent. The pseudo-code for semantically equivalence checking of subtrees St1 and St2 as follows:

If Abs(Value On Random Set(St1)-Value On Random Set(St2)< ǫ) then
Return St1 is semantically equivalent to St2.

HereAbs is the absolute function andǫ is a predefined constant called semantic sensitivity. This information is then used
to guide the mutation operator by preventing replacing a subtree with a semantically equivalent subtree. Notice that here
we also denote a randomly generated tree to replace a subtreein mutation operation as a subtree as it will become a subtree
of the individual after mutation. Algorithm?? shows how SAM works.

The second mutation operator (SSM) differs from SAM in two ways. Firstly, the concept of semantically equivalent
subtrees is replaced by the concept of semantically similarsubtrees. Again, the semantic similarity of two subtrees isalso
checked by comparing them on a set of random points in the domain. If the output of these subtrees on the set is within an
interval, then they are considered as semantically similarsubtrees. the pseudo-code for semantically equivalence checking
as follows:

If α<Abs(Value On Random Set(St1)- Value On Random Set(St2))<β then
Return St1 is semantically similar to St2.



Algorithm 1: Semantic Aware Mutation Algorithm 2: Semantic Similarity based Mutation
select ParentP; select ParentP ;
choose at random mutation points atSubtree1 in P ; Count=0;
generate at random a subtreeSubtree2; While Count<Max AttemptDo
If Subtree1 is not equivalent withSubtree2 Then choose at random mutation pointsSubtree1 in P ;

execute mutation by replaceSubtree1 with Subtree2; generate at random a subtreeSubtree1 in P ;
add the child to the new population ; If Subtree1 is similar toSubtree2 Then
return true; execute mutation by replaceSubtree1 with Subtree2;

Else add the child to the new population ;
choose at random mutation points atSubtree1 in P ; return true;
generate at random a subtreeSubtree2; Else
execute mutation by replaceSubtree1 with Subtree2; Count=Count+1;
add the child to the new population ; End If
return true; End While

End If If Count=MaxAttemptThen
choose at random mutation points atSubtree1 in P ;
generate at random a subtreeSubtree1 in P ;
execute mutation by replaceSubtree1 with Subtree2;
add the child to the new population ;
return true;

End If

HereAbs is also the absolute function andα andβ are two predefined constants. We will callα aslower bound semantic
sensitivity, β asupper bound semantic sensitivity. Perhaps, the best values forlower bound semantic sensitivityandupper
bound semantic sensitivityare problem dependent. However, we strongly believe that there is a range of values that is
good for almost every symbolic regression problems (see section 5). In this paper, we conducted the experiment with a
range of bothlower andupper bound semantic sensitivityto see how SSM performs with different values.

The second difference between SSM and SAM is the way in which the semantic similarity is used to guide the mutation
operation. In SAM the equivalent semantics is used to guide mutation by trying to select other subtrees to do mutation
only one time when two subtrees are semantically equivalent. In SSM, when two subtrees are considered as not similar,
we try a number of times to pick up another subtree in the parent and generate a new subtree. The reason is that choosing
two similar subtrees is more difficult than selecting not-equivalent two subtrees in SAM. Algorithm?? shows how SSM
works.

In this paper, MaxAttempt is chosen as 4. The motivation for SAM is to encouragethe replacement of a subtree by a
semantically different subtree that we hope will generate semantically different individuals in the next generation.SSM
is inspired from the requirement of trying to cause a small change in term of semantics in the search process. In other
words, while forcing a semantic change of the individuals inthe population, we also want to keep this change bounded
and small. It is expected that a smoother change in fitness of the individuals will be obtained.

4 Experimental Setup

Table 1: Symbolic Regression Functions
F1 = X3 + X2 + X F3 = X5 + X4 + X3 + X2 + X

F2 = X4 + X3 + X2 + X F4 = X6 + X5 + X4 + X3 + X2 + X

To investigate the effects of SSM, SAM and to compare them with standard subtree mutation (SM), we used four
real-valued symbolic regression problems of increasing difficulty. These functions, from [6], are shown in table 1, and
parameter setting is given in table 2. The reason for choosing the lower bound semantic sensitivitiesof SSM as the
semantic sensitivitiesof SAM is that these values helped to improve the performanceof SAC as shown in [19]. The
reason for selecting theupper bound semantic sensitivitiesis inspired from our experiments that these values are sufficient
to demonstrate the performance of SSM.

5 Results and discussion

To compare the effect of SSM and SAM with SM we recored a numberof experimental results. The first one is to compare
the number of successful runs over 100 runs of three mutationoperators. The results are shown in Table 3. In this table,



Table 2: Run and Evolutionary Parameter Values
Parameter Value Parameter Value
Generations 50 Population size 500
Selection Tournament Tournament size 3
Crossover probability 0.2 Mutation probability 0.8
Initial Max depth 6 Max depth 15
Max depth of mutation 5
Non-terminals +, -, *, /, sin, cos, exp, log (protected versions)
Terminals X, 1
Number of samples 20 random points from[−1 . . . 1]
Successful run sum of absolute error on all fitness cases< 0.1
Termination max generations exceeded
Lower semantic sensitivities 0.02, 0.04, 0.06
Higher semantic sensitivities 8, 10, 12
Trials per treatment 100 independent runs for each value.

Table 3: The comparison of the percentage of successful runs
sensitivities F1 F2 F3 F4

low high SM SAM SSM SM SAM SSM SM SAM SSM SM SAM SSM

0.02
8 23 18 36 5 3 12 3 3 13 0 1 4
10 23 18 46 5 3 14 3 3 6 0 1 7
12 23 18 39 5 3 14 3 3 11 0 1 7

0.04
8 23 15 38 5 8 12 3 3 7 0 0 2
10 23 15 39 5 8 16 3 3 8 0 0 5
12 23 15 38 5 8 13 3 3 7 0 0 2

0.06
8 23 17 38 5 5 8 3 2 7 0 0 2
10 23 17 41 5 5 15 3 2 7 0 0 5
12 23 17 44 5 5 14 3 2 8 0 0 4

the best results (the biggest values) are bold faced. It can be seen from Table 3 that the performance of SM and SAM
on the tested problems are almost identical. For the easier target functions like F1, SM was slightly better than SAM.
However, on the more difficult target functions, F2, F3, and F4, the difference in terms of the percentage of successful
runs of two these mutation methods is almost diminished. Although, SAM did not help GP to improve its performance in
solving these problems, SSM is by far better than both SM and SAM. For example, consider the case withlower bound
andhigher bound semantic sensitivityas 0.02 and 12, the number of successful runs of SM, SAM, and SSM for F1, F2,
F3, and F4 were in turn (23, 18, 39), (5, 3, 14), (3, 3, 11), and (0, 1, 7). The most significant improvement achieved on
the most difficult function, F4. For this problem, SM could not find any solution (over 100 runs), SAM could only find 1
solution for all cases, while SSM found solutions more frequently (up to 7% of the runs).

The second line of results given in Table 4 is the average of best solutions found in all runs of all GP systems. In this
table,senis the shorthand forsensitivity. Figure 1 shows the average of best fitness and the average of average fitness
(over 100 runs) in each of 50 generations withlower boundandhigh upper bound semantic sensitivitiesas 0.02 and 12
respectively. It is noted that, in this figure, we only show the statistics from the 10th generation. The reason is that at some

Table 4: The comparison of the average best fitness over 100 runs
sen F1 F2 F3 F4

low high SM SAM SSM SM SAM SSM SM SAM SSM SM SAM SSM

0.02
8 0.28 0.33 0.19 0.43 0.49 0.27 0.56 0.57 0.36 0.62 0.63 0.45
10 0.28 0.33 0.19 0.43 0.49 0.29 0.56 0.57 0.37 0.62 0.63 0.42
12 0.28 0.33 0.19 0.43 0.49 0.28 0.56 0.57 0.33 0.62 0.63 0.41

0.04
8 0.28 0.35 0.18 0.43 0.43 0.27 0.56 0.59 0.36 0.62 0.63 0.44
10 0.28 0.35 0.18 0.43 0.43 0.29 0.56 0.59 0.38 0.62 0.63 0.42
12 0.28 0.35 0.19 0.43 0.43 0.32 0.56 0.59 0.31 0.62 0.63 0.40

0.06
8 0.28 0.32 0.19 0.43 0.42 0.27 0.56 0.55 0.35 0.62 0.63 0.42
10 0.28 0.32 0.18 0.43 0.42 0.29 0.56 0.55 0.38 0.62 0.63 0.42
12 0.28 0.32 0.18 0.43 0.42 0.34 0.56 0.55 0.33 0.62 0.63 0.38



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F1 
SM 

SAM 
SSM 

0

0.5

1

1.5

2

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F2 
SM 

SAM 
SSM 

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F3 
SM 

SAM 
SSM 

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F4 
SM 

SAM 
SSM 

Figure 1: The average of best fitness withα=0.02,β=12

first generations, the values of those statistics are usually big (which is expected as the fitness of individuals at the early
stage of evolution is usually very bad). Therefore, it is difficult to scale the graphs to highlight the difference. Moreover,
at these early generations, the statistics on fitness valueswere almost similar in all of GP system runs regardless of which
mutation operator is used.

The results in Table 4 are consistent with those in Table 3 in that SSM is also superior than both SAM and SM finding
solutions with better quality and also there is a very small difference between SAM and SM. To measure the statistical
significance of the results in Table 4, we also conducted somestatistical tests. Here the t-test was used to see if the
improvement over the average best fitness of SSM over SM is significant. The t-test of SAM in comparison with SM is
also calculated for the ease of comparison. The result of t-test is then used to decide if the improvement of SSM over Sm
and the difference between SAM and SM are remarkable. if theyare remarkable, the corresponding values in Table 4 are
bold faced.

It can be seen from Table 4 that while the difference in terms of the average best fitness of runs of SAM and SM is
not significant, the improvement of SSM over SM is considerably significant in most situations. The exceptions only lie
in the quite easy-to-learn function F2. On the contrary, in the most two complicated and hard to learn functions, F3, F4,
there is no exception. The results support the confirmation that the SSM is better than SM in terms of the average of best
solutions. Figure 1 shows that SSM not only outperforms thanSAM and SM in terms of best fitness of runs but also better
in terms of the average of best fitness and the average of average fitness in each generations.

The next set of experimental results are for the investigation of the locality property of SSM. It is well known that
using a high-locality representation (small change in genotype corresponds to small change in phenotype) is importantfor
efficient evolutionary search [5]. It is also widely admitted that designing a search operator for GP that could correspond
a small change in syntax (genotype) to a small change in semantics (phenotype) is very difficult. Therefore, nearly all
current GP representations and operators are low-locality, meaning that a small (syntactic) change in a parent can cause a
big or even uncontrollable (semantical) change in their children. Our new mutation operator (SSM) is different with other
mutation operators in the literature in that aspect, tryingto achieve high-locality by controlling the small change interms
of semantics.

To compare the locality property of SSM with SAM and SM, an experiment was conducted where the fitness change
of individuals before and after mutation is measured. For example, if an individual having fitness of 15 is selected to for
being mutated, and that after mutation operation, its offspring has fitness of 9. Then, the change of fitness of this individual



Table 5: The average individual fitness change before and after crossover operation
sen F1 F2 F3 F4

low high SM SAM SSM SM SAM SSM SM SAM SSM SM SAM SSM

0.02
8 11.0 11.5 9.6 12.0 12.4 10.0 13.9 12.7 10.5 13.9 12.8 11.1
10 11.0 11.5 9.4 12.0 12.4 9.2 13.9 12.7 10.0 13.9 12.8 10.3
12 11.0 11.5 7.4 12.0 12.4 8.5 13.9 12.7 8.9 13.9 12.8 8.8

0.04
8 11.0 11.6 9.2 12.0 12.6 9.5 13.9 12.7 10.5 13.9 13.0 11.0
10 11.0 11.6 8.9 12.0 12.6 9.0 13.9 12.7 9.5 13.9 13.0 9.9
12 11.0 11.6 7.6 12.0 12.6 8.6 13.9 12.7 9.3 13.9 13.0 8.9

0.06
8 11.0 11.1 9.2 12.0 12.8 10.0 13.9 12.4 10.6 13.9 13.1 11.0
10 11.0 11.1 9.0 12.0 12.8 9.6 13.9 12.4 9.8 13.9 13.1 9.9
12 11.0 11.1 7.5 12.0 12.8 8.3 13.9 12.4 9.2 13.9 13.1 8.7

is Abs(15− 9) = 6. HereAbs is again the absolute function. This value is then averaged over whole population and over
100 runs as well as for 50 generations. The results about the average of the fitness change of individuals before and after
mutation is shown in Table 5. Again, in this table, the best results (the smallest values) are bold faced.

In the Figure 2 we show the change of the average of fitness movement of 100 runs for each of 50 generations with
lower boundandupper bound semantic sensitivitiesas 0.02 and 12. Table 5 and Figure 2 show that the step of the fitness
change of SSM is smaller than both SAM and SM. This means that the change of fitness over generations of SSM is
smoother than SAM and SM. The table and figure also show that the fitness change of SM is only slightly smoother than
SAM in two easy functions, F1, F2 and this value of SAM is slightly smoother than SM in two more difficult functions,
F3, F4. These results explain why SSM is much better than SAM and SM on the problems tried, while SAM is not better
than SM.

6 Conclusion and future works

In this paper, we have proposed two new semantics based mutation operators for GP (SAM and SSM). The new operators
were tested and analysed on a class of real-valued symbolic regression problems and the results was compared with
the standard mutation of Koza. The experimental results show that SSM helps to improve the performance of GP in
comparison with SAM and SM while SAM is not better than SM. Theexperimental results also show that SSM makes
a smaller change of fitness during the evolutionary process in comparison with SAM and SM. We argue that this is the
main reason why SSM outperformed SAM and SM on the problems tried.

In the near future, we are planning to extend the work in a number of ways. Firstly, we are aiming to apply SSM on
more difficult symbolic regression problems (the problems that are multi-variable and more complex in the structure of
the solutions). For these problems, we predict that making asmall change in semantics is more difficult and also more
important. Another potential research direction is to apply SSM on other kind of problem domains such as on Boolean
problems that have been investigated in [16]. It could be even more difficult to generate the children that are different
with their parents in terms of semantics. Lastly, we are investigating the range oflower bound semantic sensitivityand
upper bound semantic sensitivitythat are good for a class of problems. In this paper, these values are manually and
experimentally specified. However, these value might change adaptively during the evolutionary process as the way to
self-adaptation the parameters of generic algorithm is done [4].

Acknowledgments

This paper was funded under a Postgraduate Scholarship fromIrish Research Council for Science Engineering and Tech-
nology (IRCSET).

References

[1] L. Beadle and C. Johnson. Semantically driven crossoverin genetic programming. InProceedings of the IEEE
World Congress on Computational Intelligence, pages 111–116. IEEE Press, 2008.

[2] R. Cleary and M. O’Neill. An attribute grammar decoder for the 01 multi-constrained knapsack problem. In
Proceedings of the Evolutionary Computation in Combinatorial Optimization, pages 34–45. Springer Verlag, April
2005.

[3] M. de la Cruz Echeanda, A. O. de la Puente, and M. Alfonseca. Attribute grammar evolution. InProceedings of the
IWINAC 2005, pages 182–191. Springer Verlag Berlin Heidelberg, 2005.



0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F1 
SM 

SAM 
SSM 

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F2 
SM 

SAM 
SSM 

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F3 
SM 

SAM 
SSM 

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F4 
SM 

SAM 
SSM 

Figure 2: The average fitness movement before and after crossover withα=0.04,β=10

[4] K. Deb and H. G. Beyer. Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 172–179. Morgan Kaufmann, July
1999.

[5] J. Gottlieb and G. Raidl. The effects of locality on the dynamics of decoder-based evolutionary search. InProceed-
ings of the Genetic and Evolutionary Computation Conference, page 283290. ACM, 2000.

[6] N. X. Hoai, R. McKay, and D. Essam. Solving the symbolic regression problem with tree-adjunct grammar guided
genetic programming: The comparative results. InProceedings of the 2002 Congress on Evolutionary Computation
(CEC2002), pages 1326–1331. IEEE Press.

[7] C. Johnson. Deriving genetic programming fitness properties by static analysis. InProceedings of the 4th European
Conference on Genetic Programming (EuroGP2002), pages 299–308. Springer, 2002.

[8] C. Johnson. What can automatic programming learn from theoretical computer science. InProceedings of the UK
Workshop on Computational Intelligence. University of Birmingham, 2002.

[9] C. Johnson. Genetic programming with fitness based on model checking. InProceedings of the 10th European
Conference on Genetic Programming (EuroGP2002), pages 114–124. Springer, 2007.

[10] G. Katz and D. Peled. Genetic programming and model checking: Synthesizing new mutual exclusion algorithms.
Automated Technology for Verification and Analysis, Lecture Notes in Computer Science, 5311:33–47, 2008.

[11] G. Katz and D. Peled. Model checking-based genetic programming with an application to mutual exclusion.Tools
and Algorithms for the Construction and Analysis of Systems, 4963:141–156, 2008.

[12] K. E. Kinnear. A rigorous evaluation of crossover and mutation in genetic programming. InProceedings of the 12th
European Conference on Genetic Programming, EuroGP, pages 881–888. IEEE Press, July 1998.

[13] J. Koza.Genetic Programming: On the Programming of Computers by Natural Selection. MITPress, MA, 1992.



[14] W. B. Langdon. The evolution of size in variable length representations. InProceedings IEEE International Con-
ference on Evolutionary Computation, page 633638. IEEE Press, May 1998.

[15] S. Luke and L. Spector. A comparison of crossover and mutation in genetic programming. InProceedings of the
Second Annual Conference on Genetic Programming, pages 240–248. San Francisco, CA, USA, April 1997.

[16] N. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic programming. InProceedings of 11th
European Conference on Genetic Programming, pages 134–145. Springer.

[17] F. Rothlauf.Representations for Genetic and Evolutionary Algorithms. Springer, 2nd edition edition, 2006.

[18] F. Rothlauf and M. Oetzel. On the locality of grammatical evolution. InProceedings of the 9th European Conference
on Genetic Programming, pages 320–330. Lecture Notes in Computer Science, Springer, April 2006.

[19] N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware crossover for genetic programming: the case for real-valued
function regression. InProceedings of EuroGP09. Springer.

[20] D. White and S. Poulding. Evolving a sort: Lessons in genetic programming. InProceedings of the 1993 Interna-
tional Conference on Neural Networks, pages 57–69. LNCS, 5481, April 2009.

[21] M. L. Wong and K. S. Leung. An induction system that learns programs in different programming languages using
genetic programming and logic grammars. InProceedings of the 7th IEEE International Conference on Tools with
Artificial Intelligence, 1995.


