Skip to main content

On the Schedule for Morphological Development of Evolved Modular Soft Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13223))

Abstract

Development is fundamental for living beings. As robots are often designed to mimic biological organisms, development is believed to be crucial for achieving successful results in robotic agents, as well. What is not clear, though, is the most appropriate scheduling for development. While in real life systems development happens mostly during the initial growth phase of organisms, it has not yet been investigated whether such assumption holds also for artificial creatures. In this paper, we employ a evolutionary approach to optimize the development—according to different representations—of Voxel-based Soft Robots (VSRs), a kind of modular robots. In our study, development consists in the addition of new voxels to the VSR, at fixed time instants, depending on the development schedule. We experiment with different schedules and show that, similarly to living organisms, artificial agents benefit from development occurring at early stages of life more than from development lasting for their entire life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liknes, E.T., Swanson, D.L.: Phenotypic flexibility of body composition associated with seasonal acclimatization in passerine birds. J. Thermal Biol. 36(6), 363–370 (2011)

    Article  Google Scholar 

  2. Fusco, G., Minelli, A.: Phenotypic plasticity in development and evolution: facts and concepts (2010)

    Google Scholar 

  3. Kelly, S.A., Panhuis, T.M., Stoehr, A.M.: Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr. Physiol. 2(2), 1417–1439 (2011)

    Google Scholar 

  4. Sapolsky, R.M.: Behave: The Biology of Humans At Our Best and Worst. Penguin, London (2017)

    Google Scholar 

  5. Thomis, M.A., Towne, B.: Genetic determinants of prepubertal and pubertal growth and development. Food Nutr. Bull. 27(4_suppl5), S257–S278 (2006)

    Google Scholar 

  6. Butte, N.F., Garza, C., de Onis, M.: Evaluation of the feasibility of international growth standards for school-aged children and adolescents. J. Nutr. 137(1), 153–157 (2007)

    Article  Google Scholar 

  7. Lui, J.C., Baron, J.: Mechanisms limiting body growth in mammals. Endocr. Rev. 32(3), 422–440 (2011)

    Article  Google Scholar 

  8. Batsis, J.A., Buscemi, S.: Sarcopenia, sarcopenic obesity and insulin resistance. In: Medical Complications of Type 2 Diabetes. IntechOpen (2011)

    Google Scholar 

  9. Jones, J.H.: Primates and the evolution of long, slow life histories. Current Biol. 21(18), R708–R717 (2011)

    Article  Google Scholar 

  10. Thompson, R.A., Nelson, C.A.: Developmental science and the media: early brain development. Am. Psychol. 56(1), 5 (2001)

    Article  Google Scholar 

  11. Nadizar, G., Medvet, E., Pellegrino, F.A., Zullich, M., Nichele, S.: On the effects of pruning on evolved neural controllers for soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1744–1752 (2021)

    Google Scholar 

  12. Nadizar, G., Medvet, E., Huse Ramstad, H., Nichele, S., Pellegrino, F.A., Zullich, M.: Merging pruning and neuroevolution: towards robust and efficient controllers for modular soft robots. Knowl. Eng. Rev. 37, 1–13 (2022)

    Article  Google Scholar 

  13. Prabhu, S.G.R., Seals, R.C., Kyberd, P.J., Wetherall, J.C.: A survey on evolutionary-aided design in robotics. Robotica 36(12), 1804–1821 (2018)

    Article  Google Scholar 

  14. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–299 (1968)

    Article  Google Scholar 

  15. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genetic Program. Evol. Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  16. Miras, K., Cuijpers, J., Gülhan, B., Eiben, A.: The impact of early-death on phenotypically plastic robots that evolve in changing environments. In: ALIFE 2021, The 2021 Conference on Artificial Life, MIT Press (2021)

    Google Scholar 

  17. Miras, K., Ferrante, E., Eiben, A.: Environmental regulation using Plasticoding for the evolution of robots. Front. Robot. AI 7, 107 (2020)

    Article  Google Scholar 

  18. Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., Campbell, M.: An integrated system for perception-driven autonomy with modular robots. Sci. Robot. 3(23), eaat4983 (2018)

    Article  Google Scholar 

  19. Doursat, R., Sayama, H., Michel, O.: Morphogenetic Engineering: Toward Programmable Complex Systems. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-33902-8

    Book  Google Scholar 

  20. Kriegman, S., Cheney, N., Corucci, F., Bongard, J.C.: Interoceptive robustness through environment-mediated morphological development. arXiv preprint arXiv:1804.02257 (2018)

  21. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide evolution. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  22. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108(4), 1234–1239 (2011)

    Article  Google Scholar 

  23. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE Trans. Robot. 28(2), 457–466 (2012)

    Article  Google Scholar 

  24. Walker, K., Hauser, H., Risi, S.: Growing simulated robots with environmental feedback: an eco-evo-devo approach. In: GECCO 2021, New York, NY, USA, pp. 113–114. Association for Computing Machinery (2021)

    Google Scholar 

  25. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: 2D-VSR-Sim: a simulation tool for the optimization of 2-D voxel-based soft robots. SoftwareX 12, 100573 (2020)

    Article  Google Scholar 

  26. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: Design, Validation, and Case Studies of 2D-VSR-Sim, an Optimization-friendly Simulator of 2-D Voxel-based Soft Robots. arXiv-2001 (2020)

    Google Scholar 

  27. Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., Laschi, C.: Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Robot. 5(4), 475–495 (2018)

    Article  Google Scholar 

  28. Talamini, J., Medvet, E., Bartoli, A., De Lorenzo, A.: Evolutionary synthesis of sensing controllers for voxel-based soft robots. In: Artificial Life Conference Proceedings, pp. 574–581. MIT Press (2019)

    Google Scholar 

  29. Medvet, E., Bartoli, A., De Lorenzo, A., Fidel, G.: Evolution of distributed neural controllers for voxel-based soft robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 112–120 (2020)

    Google Scholar 

  30. Medvet, E., Bartoli, A., Pigozzi, F., Rochelli, M.: Biodiversity in evolved voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 129–137 (2021)

    Google Scholar 

  31. Ferigo, A., Iacca, G., Medvet, E.: Beyond body shape and brain: evolving the sensory apparatus of voxel-based soft robots. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 210–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_14

    Chapter  Google Scholar 

  32. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)

    Article  Google Scholar 

  33. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult benchmark for genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1467–1474 (2011)

    Google Scholar 

  34. Pagliuca, P., Nolfi, S.: The dynamic of body and brain co-evolution. Adapt. Behav. 1059712321994685 (2020)

    Google Scholar 

Download references

Acknowledgements

The experimental evaluation of this work has been partially supported by a Google Faculty Research Award granted to E.M.. K.M. was supported by the Hybrid Intelligence Center, a 10-year program funded by the Dutch Ministry of Education, Culture and Science through the Netherlands Organization for Scientific Research (https://www.hybrid-intelligence-centre.nl), grant number 024.004.022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Medvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadizar, G., Medvet, E., Miras, K. (2022). On the Schedule for Morphological Development of Evolved Modular Soft Robots. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02056-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02055-1

  • Online ISBN: 978-3-031-02056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics