Skip to main content
Log in

Evolving robot sub-behaviour modules using Gene Expression Programming

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Many approaches to AI in robotics use a multi-layered approach to determine levels of behaviour from basic operations to goal-directed behaviour, the most well-known of which is the subsumption architecture. In this paper, the performances of the unigenic Gene Expression Programming (ugGEP) and multigenic GEP (mgGEP) in evolving robot controllers for a wall following robot are analysed. Additionally, the paper introduces Regulatory Multigenic Gene Expression Programming, a new evolutionary technique that can be utilised to automatically evolve modularity in robot behaviour. The proposed technique extends the mgGEP algorithm, by incorporating a regulatory gene as part of the GEP chromosome. The regulatory gene, just as in systems biology, determines which of the genes in the chromosome to express and therefore how the controller solves the problem. In the initial experiments, the proposed algorithm is implemented for a robot wall following problem and the results compared to that of ugGEP and mgGEP. In addition to the wall following behaviour, a robot foraging behaviour is implemented with the aim of investigating whether the position of a specific module (sub-expression tree) in the overall expression tree is of importance when coding for a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.ias.uwe.ac.uk/.

  2. Free download of simbad simulator can be found on http://simbad.sourceforge.net/.

References

  1. D. Bajaj, H.A. Marcelo, An Incremental Approach in Evolving Robot Behaviour. In Proceedings of the Sixth International Conference on control, Automation, Robotics and Vision. IEEE, (2000)

  2. M. Botros. Evolving complex robotic behaviors using genetic programming. In Genetic Systems Programming, Volume 13 of Studies in Computational Intelligence, eds. by A. Abraham, N. Nedjah, L. de Macedo Mourelle, (Springer, Berlin, 2006), pp. 173–191

  3. R.A. Brooks, A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  4. A. Cangelosi, J.L. Elman, Gene Regulation and Biological Development in Neural Networks: an Exploratory Model. Technical report, Institute of Psychology, CNR, Viale Marx 15, Rome (1995)

  5. A. Cherubini, F. Giannone, L. Iocchi, Layered learning for a Soccer legged robot helped with a 3d simulator, in RoboCup 2007: Robot Soccer World Cup XI, ed. by U. Visser, F. Ribeiro, T. Ohashi, F. Dellaert, et al. (Springer, Berlin, 2008), pp. 385–392

    Chapter  Google Scholar 

  6. S. Clancy, W. Brown, Translation: DNA to mRNA to protein. Nat. Educ. 1(1), 101 (2008)

  7. P.J. Darwen, Yao Xin, Speciation as automatic categorical modularization. Trans. Evol. Comput. 1(2), 101–108 (1997)

    Article  Google Scholar 

  8. H. De Jong, Modelling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  9. S. Doncieux, J.-B. Mouret, N. Bredeche. Exploring new horizons in evolutionary design of robots. In Workshop on Exploring new horizons in evolutionary design of robots at IROS 2009, (Saint Louis, United States 2009), pp. 5–12

  10. P. Dürr, C. Mattiussi, D. Floreano, Neuroevolution with analog genetic encoding. In Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, vol. 6856 of Lecture Notes in Computer Science, (Springer, Berlin 2006), pp. 671–680.

  11. P. Dürr, F. Mattiussi, D. Floreano, Genetic representation and evolvability of modular neural controllers. IEEE Comput. Int. Mag. 5(3), 10–19 (2010)

    Article  Google Scholar 

  12. C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems. J. Complex Syst. 13(2), 87–129 (2001)

    MATH  Google Scholar 

  13. C. Ferreira, Gene Expression Programming: mathematical Modelling by an Artificial Intelligence, vol. 2 (Springer, Berlin, 2006)

    Google Scholar 

  14. D. Floreano, L. Keller, Evolution of adaptive behaviour in robots by means of Darwinian selection. J. PLoS Biol. 8(1), e1000292 (2010)

  15. D. Floreano, F. Mondada, Automatic Creation of an Autonomous Agent: genetic Evolution of a Neural-Network Driven Robot. In Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior (MIT Press-Bradford Books, Cambridge, 1994)

  16. D. Floreano, F. Mondada, Evolution of Plastic Neurocontrollers for Situated Agents. In From Animals to Animats 4, eds. by P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, S. Wilson, in Proceedings of the 4th International Conference on Simulation of Adaptive Behavior (SAB’1996), (MIT Press, MA, 1996), pp. 402–410

  17. F. Gomez, R. Miikulainen, Incremental evolution of complex general behaviour. Technical report, Technical report AI96-248, (Austin, TX: University of Texas at Austin, 1996)

  18. A.J.F. Griffiths, J.H. Miller, D.T. Suzuki, R.C. Lewontin, W.M. Gelbart, An Introduction to Genetic Analysis, 7th edn. (W. H. Freeman, New York, 2000)

    Google Scholar 

  19. D. Gu, H. Hu, Evolving fuzzy logic controllers for Sony legged robots. In A. Birk, S. Coradeschi, S. Tadokoro, editors, RoboCup 2001, LNAI 2377, (Springer Berlin Heidelberg, 2002), pp. 356–361.

  20. D. Gu, H. Hu, J. Reynolds, E. Tsang. GA-based learning in behaviour based robotics. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 16–20, (2003)

  21. I. Harvey, P. Husbands, D. Cliff, Issues in Evolutionary Robotics. In Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior, vol 2, eds. by J.-A. Meyer, H. Roitblat, S. Wilson, pp. 73–110, (1993)

  22. I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi, Evolutionary robotics: the Sussex approach. J. Robot. Auton. Syst. 20, 205–224 (1997)

    Article  Google Scholar 

  23. L. Hugues, N. Bredeche, A quick programming guide for Simbad simulator. URL http://simbad.sourceforge.net/guide.php. August (2005)

  24. R.A. Jacobs, M.I. Jordan, Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6, 181–214 (1994)

    Article  Google Scholar 

  25. R.A. Jacobs, M.I. Jordan, A.G. Barto, Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks. Cogn. Sci. 15, 219–250 (1991)

  26. S. Kent, Evolutionary approaches to robot path planning. PhD thesis, Brunel University, (1999)

  27. J.R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  28. J.R. Koza, Evolution of aubsumption using genetic programming. In P. Bourgine F.J. Varela, ed. Proceedings of the 1st European Conference on Artificial Life: Towards a Practice of Autonomous Systems, pp. 110–119, (1993)

  29. C. Lazarus, H. Hu, Using genetic programming to evolve robot behaviours. In Proceedings of the 3rd British Conference on Autonomous Mobile Robotics and Autonomous Systems, (2001)

  30. C. Lazarus, H. Hu, Evolving goalkeeper behaviours for simulated Soccer competition. In Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and Applications, (2003)

  31. W.-P. Lee, Evolving complex robot behaviors. J. Inf. Sci. 121, 1–25 (1999)

    Article  Google Scholar 

  32. Y. Liu, X. Yao, T. Higuchi, Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 4(4), 380–387 (2000)

  33. L.T. MacNeil, A.J.M. Walhout, Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21, 645–657 (2011)

    Article  Google Scholar 

  34. M.J. Mataric, A Distributed Model for Mobile Robot Environment-Learning and Navigation. Technical report, Massachusetts Institute of Technology, (Cambridge, MA, USA, 1990)

  35. M.J. Mataric, Learning in behaviour-based multi-robot systems: policies, models, and other agents. J. Cogn. Syst. Res. 2, 81–93 (2001)

  36. C. Mattiussi, D. Floreano, Evolution of analog networks using local string alignment on highly reorganizable genomes. In Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware, (IEEE Computer Society, 2004), pp. 30–37

  37. C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and networks. IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

    Article  Google Scholar 

  38. C. Mautner, R.K. Belew, Evolving robot morphology and control. In Proceedings of the Artificial Life and Robotics (AROB), (1999)

  39. J.-B. Mouret, S. Doncieux, Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In Proceedings of the IEEE Congress on Evolutionary Computation’09, pp. 1161–1168, (2009)

  40. R.R. Murphy, Introduction to AI Robotics, 1st edn. (MIT Press, Cambridge, 2000)

    Google Scholar 

  41. J. Mwaura, Evolution of robotic behaviours using gene expression programming. PhD thesis, University of Exeter, Exeter, UK, (2011)

  42. J. Mwaura, E. Keedwell, Adaptive Gene Expression Programming Using a Simple Feedback Heuristic. In Proceedings of the AISB (Edinburgh, UK, 2009)

  43. J. Mwaura, E. Keedwell, Evolution of robotic behaviours using gene expression programming. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC2010), (Barcelona, Spain, 2010), pp. 1–8

  44. J. Mwaura, E. Keedwell, Evolving modularity in robot behaviour using gene expression programming, in Towards Autonomous Robotic Systems—12th Annual Conference, (TAROS 2011), August 31–September 2, vol. 6856 of Lecture Notes in Computer Science, ed. by R. Gross, L. Alboul, C. Melhuish, M. Witkowski, T.J. Prescott, J. Penders (Springer, Sheffield, UK, 2011), pp. 392–393

  45. A.L. Nelson, E. Grant, J.M. Galeotti, S. Rhody, Maze exploration behaviours using an integrated evolutionary robotics environment. J. Robot. Auton. Syst. 46(3), 159–173 (2004)

    Article  Google Scholar 

  46. A.L. Nelson, E. Grant, Developmental analysis in evolutionary robotics. In Proceedings of the 2006 IEEE SMC Mountain Workshop on Adaptive and Learning Systems (SMCals06), pp. 201–206, (2006)

  47. S. Nolfi, Evolutionary robotics: exploiting the full power of self organization. J. Connect. Sci. 10(3–4), 167–183 (1998)

    Article  Google Scholar 

  48. S. Nolfi, Behaviour as a complex adaptive system: on the role of self-organization in the development of individual and collective behaviour. J. ComplexUs 2(3–4), 195–203 (2006)

    Google Scholar 

  49. S. Nolfi, D. Floreano, Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-organizing Machines (MIT Press, Cambridge, 2000)

    Google Scholar 

  50. P. Nordin, W. Banzhaf, Real time control of a Khepera robot using genetic programming. J. Cybern. Control 26, 533–561 (1997)

    MathSciNet  Google Scholar 

  51. T.J. Prescott, P. Redgrave, K. Gurney, Layered control architectures in robots and vertebrates. J. Adapt. Behav. 7(1), 99–127 (1999)

    Article  Google Scholar 

  52. T. Reil, Dynamics of Gene Expression in an Artificial Genome—implications for Biological and Artificial Ontogeny. In Proceedings of the 5th European Conference on Advances in Artificial Life, ECAL ’99, (Springer, 1999), pp. 457–466

  53. T. Reil, Artificial genomes as models of gene regulation, in On Growth, Form and Computers, ed. by S. Kumar, P.J. Bentley (Elsevier, Amsterdam, 2003)

    Google Scholar 

  54. T. Thompson, J. Levine, Scaling-up behaviours in evotanks: applying subsumption principles to artificial neural networks. In Proceedings of the IEEE Symposium on Computational Intelligence and Games, (2008)

  55. J. Togelius, Evolution of a subsumption architecture neurocontroller. J. Intell. Fuzzy Syst. 15, 15–20 (2004)

    Google Scholar 

  56. J. Urzelai, D. Floreano, Incremental evolution with minimal resources. In Proceedings of the International KHEPERA Workshop, (1999)

  57. J. Urzelai, D. Floreano, Evolution of adaptive synapses: robots with fast adaptive behaviour in new environments. J. Evol. Comput. 9, 495–524 (2001)

    Article  Google Scholar 

  58. M. Wahde, Evolution robotics: the use of artificial evolution in robotics, a tutorial. In Proceedings of the IEEE/ESJ International Conference on Intelligent Robots and Systems, (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mwaura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwaura, J., Keedwell, E. Evolving robot sub-behaviour modules using Gene Expression Programming. Genet Program Evolvable Mach 16, 95–131 (2015). https://doi.org/10.1007/s10710-014-9229-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-014-9229-x

Keywords

Navigation