
Better Automatic Program Repair
by Using Bug Reports and Tests Together

Manish Motwani and Yuriy Brun
University of Massachusetts

Amherst, Massachusetts 01003-9264, USA

{mmotwani, brun}@cs.umass.edu

Abstract—Automated program repair is already deployed in
industry, but concerns remain about repair quality. Recent
research has shown that one of the main reasons repair tools
produce incorrect (but seemingly correct) patches is imperfect
fault localization (FL). This paper demonstrates that combining
information from natural-language bug reports and test executions
when localizing faults can have a significant positive impact on
repair quality. For example, existing repair tools with such FL
are able to correctly repair 7 defects in the Defects4J benchmark
that no prior tools have repaired correctly.

We develop, Blues, the first information-retrieval-based,
statement-level FL technique that requires no training data.
We further develop RAFL, the first unsupervised method
for combining multiple FL techniques, which outperforms a
supervised method. Using RAFL, we create SBIR by combining
Blues with a spectrum-based (SBFL) technique. Evaluated on
815 real-world defects, SBIR consistently ranks buggy statements
higher than its underlying techniques.

We then modify three state-of-the-art repair tools, Arja,
SequenceR, and SimFix, to use SBIR, SBFL, and Blues as their
internal FL. We evaluate the quality of the produced patches on
689 real-world defects. Arja and SequenceR significantly benefit
from SBIR: Arja using SBIR correctly repairs 28 defects, but
only 21 using SBFL, and only 15 using Blues; SequenceR using
SBIR correctly repairs 12 defects, but only 10 using SBFL, and
only 4 using Blues. SimFix, (which has internal mechanisms
to overcome poor FL), correctly repairs 30 defects using SBIR
and SBFL, but only 13 using Blues. Our work is the first
investigation of simultaneously using multiple software artifacts
for automated program repair, and our promising findings suggest
future research in this directions is likely to be fruitful.

I. INTRODUCTION

Automated program repair (APR) aims to reduce the cost of

fixing bugs by automatically producing patches [27], [51]. APR

tools have been successful enough to be used in industry [7],

[66], [72], [41]. Unfortunately, repair tools patch only a small

fraction of defects correctly [72], [71], [86] and industrial

deployments require significant manual oversight. Recent

studies show that accuracy of the fault localization (FL) used by

APR has a significant effect on APR’s success [2], [60], [35],

[96], [6], [107], and manually improving FL can correctly

patch more defects [2], [62]. Some APR tools, such as

SimFix [36] use tool-specific methods to address inaccurate

FL; however, these methods are tightly coupled to the specific

repair technique and not reusable by other tools.

Existing APR techniques use either developer-written test

suites or natural-language bug reports. For the former,

spectrum-based fault localization (SBFL) executes the tests

and collects coverage information to identify suspicious

statements. For the latter, information-retrieval-based fault

localization (IRFL) computes suspiciousness from the similarity

between bug reports and program source. The defects these

two types of APR tools repair tend to be complementary: For

example, IRFL-based iFixR patches defects that 16 SBFL-based

repair tools cannot, and vice versa [44]. Further, combining

multiple FL techniques can improve localization [117], [53],

[48]. We, therefore, hypothesize that combining SBFL and

IRFL can improve APR. To test this hypothesis, we develop a

novel IRFL technique and a novel method for combining FL

techniques in an unsupervised fashion, and evaluate an SBFL,

our IRFL, and the combined techniques in three state-of-the-art

APR tools that have varied sensitivity to FL accuracy.

Our main contribution is SBIR, a novel, reusable

FL technique that combines bug reports and tests.

The use of SBIR in APR is the first instance of

APR simultaneously using multiple software artifacts,

suggesting a promising new research direction. Our

main finding is that the answer to the question “Does

FL that combines bug reports and tests improve APR

performance?” is a resounding yes, for many APR

techniques. For example, on the latest Defects4J

benchmark, we correctly repair 7 defects that none

of 14 prior APR tools could repair correctly [60].

Contributions on using bug-reports. We create Blues,

(Section II-A), the first reusable, APR-agnostic, unsupervised,

statement-level IRFL technique that localizes defects using

bug reports. Prior IRFL techniques are either file- or method-

level [115], [82], [99], [111], [98], [43], or is the technique

used internally by iFixR [44]. iFixR’s FL requires hard-to-get

training data and is tightly coupled to its APR implementa-

tion [44]. Unlike iFixR’s FL, Blues can localize defects to all

57 kinds of Java AST expressions, (iFixR only handles 5 [44]).

We empirically demonstrate that Blues outperforms iFixR’s FL

(Section III-B).

Using tests. Our SBFL technique is not novel. We implement

SBFL using the latest version (v1.7.2) of GZoltar, and the

Ochiai ranking strategy, which is one of the most effective

ranking strategies in object-oriented programs [104], [117], and

is used by most test-suite-based repair tools [60] (Section II-B).
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Contributions on using bug reports and tests together. To

combine FL techniques, we develop RAFL, (Section II-C), a

novel approach inspired by search-based software engineer-

ing [31] that uses rank aggregation algorithms [57] to combine

multiple ranked lists of top-k suspicious statements obtained

by different FL techniques. While RAFL can combine any

FL techniques, we focus on combining SBFL and IRFL, which

are used separately by existing repair tools. We use RAFL

to develop SBIR that uses the cross-entropy Monte Carlo

algorithm [81] and the Spearman Footrule distance [9] to

combine our SBFL and Blues. We evaluate our SBFL, Blues,

and SBIR on 815 real-world defects in the Defects4J (v2.0) [26]

benchmark (out of the benchmark’s 835 defects, 18 have no

bug reports, and 2 have irrelevant test execution information)

and find that SBIR consistently outperforms the underlying

techniques (Section III-C1). While one could use existing

supervised combining FL techniques (e.g., CombineFL [117],

DeepFL [53], Fluccs [87], Savant [48], Multric [104], and

TraPT [54]), our study elects to use a new, unsupervised method

because the prior techniques were trained on Defects4J and thus

cannot be applied to an evaluation on Defects4J. Retraining

the supervised techniques poses complex technical challenges,

requires a large, independent, annotated dataset that simply

doesn’t exist today, and does not guarantee previously observed

performance. We demonstrate that our unsupervised technique

outperforms existing supervised ones (Section III-C2).

Importantly, existing supervised methods for both IRFL

and for combining multiple FL techniques require

extensive training data, which is expensive (sometimes

prohibitively so) to obtain. Our evaluation shows

that our unsupervised methods (Blues and RAFL)

consistently perform as well as or better than the

supervised methods, without needing the expensive

training data.

Contributions on effect on APR. To study the effect of

combining FL on repair quality (Section III-D), we select

Arja [113], SequenceR [14], and SimFix [36], three state-of-

the-art APR tools that have varied FL sensitivity [62], are

applicable to general defects, use varied repair approaches, and

have public implementations. We evaluate these tools using

our SBFL, Blues, and SBIR FL techniques on the 689 single-

file-edit defects in the Defects4J (v2.0) benchmark, and find

that SBIR enables APR to repair more defects correctly. For

tools that have been shown to be more sensitive to FL [62],

SBIR significantly improves patch quality (Section III-E).

Our evaluation answers four research questions:

RQ1. Does Blues localize defects better than
existing approaches? Yes. Blues consistently ranks

buggy statements higher than state-of-the-art iFixR’s

supervised IRFL technique (Section III-B).

RQ2. Does SBIR improve FL over the techniques it
is composed of? Yes. SBIR consistently ranks buggy

statements higher than its underlying SBFL and Blues

(Section III-C1).

RQ3. Does SBIR outperform state-of-the-art FL?
Yes. SBIR consistently ranks buggy statements higher

than 9 standalone FL techniques and an existing

supervised FL-combining method (Section III-C2).

RQ4. Does SBIR improve repair quality? Yes.

SBIR enables repairing more defects correctly for Arja

and SequenceR (the more FL-sensitive tools). For

example, Arja using SBIR correctly repairs 28 defects,

but only 21 using SBFL, and only 15 using Blues.

In fact, using SBIR, Arja repairs 7 defects it cannot

repair with either SBFL or Blues, suggesting that the

combination of bug reports and tests is even more

useful, at times, than using both types of information

separately. SimFix already has internal mechanisms for

dealing with poor FL, and correctly repairs 30 defects

using both SBIR and SBFL, but only 13 using Blues.

We empirically show that SBIR significantly reduces

repair failures due to localization errors. Finally, using

SBIR, these tools correctly repair 7 defects that none

of prior 14 APR tools repaired correctly, representing

a 7.5% improvement in the number of defects ever

repaired correctly by APR (Section III-E).

APR has already shown effectiveness in real-world scenarios,

but producing correct repairs is one of the remaining hurdles

preventing wide deployment in industry [27]. This paper makes

progress addressing this challenge by (1) developing a new FL

technique suitable for APR that uses both bug reports and tests,

demonstrating that it localizes defects better than techniques

that use only bug reports or only tests, and (2) demonstrating

that with this new FL, APR tools can repair more defects

correctly.

We make all of our data, source code, and documentation

to reproduce our results publicly available [70]. The rest of

this paper is organized as follows. Section II describes our

FL techniques and Section III evaluates the FL techniques,

and their effect on APR. Section IV places our work in the

context of related research, and Section V summarizes our

contributions.

II. COMBINING FL FOR PROGRAM REPAIR

This section describes our Blues and SBFL techniques, our

method for combining FL techniques called RAFL, and using

RAFL to combine Blues and SBFL into SBIR.

A. Blues: Localizing Bugs Using Bug Reports

We design Blues, an IRFL technique that uses bug reports

to localize defects at the statement level. We create our own

technique because existing techniques [115], [82], [99], [111],

[98], [43] localize defects at the file or method level, while

APR tools require statement-level localization. We do not use
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iFixR’s [44] IRFL (the only existing statement-level IRFL)

because its pre-trained model uses projects [52] that overlap

with the Defects4J and retraining on independent projects

poses complex technical challenges and requires another large

annotated dataset of real-world defects. Further, iFixR ignores

for and while loops, which Blues handles. Blues builds on

BLUiR [82], an unsupervised file-level IRFL technique that

uses structured information retrieval to compute the similarity

between bug reports and source code files. We select BLUiR

because it is efficient, does not require training data, and

performs comparably to other state-of-the-art file-level IRFL

techniques [52]. Algorithm 1 describes our Blues approach.

Ranking Suspicious Files. For each defect, Blues’ inputs

are the bug report URL, the source files, the number of top

ranked files to consider, the number of top ranked statements

per file to consider, and a function to combine statement

and file suspiciousness scores. Blues crawls the bug report

from the input URL and parses the bug report to extract

identifiers from the summary and description fields, and stores

the information in a separate structured XML document (line 2

in Algorithm 1). Next, Blues processes the abstract syntax

tree (AST) of source files to extract identifiers associated

with comments and with class, method, and variable names,

and stores them in separate XML documents (line 3). Blues

preprocesses the terms stored in all the XML documents using

CamelCase splitting, which improves matching recall, text

normalization (removes punctuation, performs case-folding,

tokenizes terms), stopword removal (removes extraneous terms),

and stemming (conflates variants of the same underlying term)

(lines 4–5). Blues then feeds the bug report and source file XML

documents to BLUiR to compute ranked lists of suspicious

files (line 6). BLUiR uses an IR model (TF-IDF formulation

based on the BM25 (Okapi) model [80]) to search and rank the

files based on their similarity with the bug report. Blues uses

the same tuning parameters as BLUiR, which prior work [82]

Algorithm 1 Blues: Statement-level IR-based FL.
Input: br: a bug report URL
Input: srcFiles: collection of source files
Input: irTool: file-level IRFL tool
Input: f : number of suspicious files to consider
Input: m: number of suspicious statements per file to consider
Input: ScoreFn: function to combine file and statement scores
Output: rankedStmtList: ranked list of suspicious statements

1: function MAIN (br, srcFiles, irTool, f , m, ScoreFn)
2: br xml← ParseBugReportAndConvertToXML(br)
3: src files xml← ParseSrcFilesAndConvertToXML(srcFiles)
4: PreProcess(br xml)
5: PreProcess(src files xml)
6: ranked files← Okapi(br xml, src files xml, irTool)
7: ranked stmts← LocalizeStatements(br xml, ranked files, irTool)
8: rankedStmtList← Ranker(ranked files, ranked stmts, f , m, ScoreFn)
9: return rankedStmtList

10:
11: function LOCALIZESTATEMENTS (br xml, ranked files, irTool)
12: src stmts xml← [ ] � stores XMLs of parsed source statements
13: for f ∈ ranked files do
14: S ← extractASTStatements(f ) � extract 57 kinds of Java AST statements
15: for ast stmt ∈ S do
16: stmt xml← ParseStmtAndConvertToXML(ast stmt, f )
17: src stmts xml.append(stmt xml)
18: PreProcess(src stmts xml)
19: ranked stmts← Okapi(br xml, src stmts xml, irTool)
20: return ranked stmts

tuned using AspectsJ that does not overlap with Defects4J.

Ranking suspicious statements. To rank suspicious state-

ments from the top-ranked suspicious files, Blues parses the

ASTs of the top-ranked suspicious files to extract 57 types of

Java AST statements (lines 13–14). Prior work [59] shows that

localizing bugs at the expression-level can improve repair tools.

Therefore, unlike iFixR [44], which only extracts five kinds of

AST statements (If, Return, Expression, FieldDeclaration, and

VariableDeclaration), Blues extracts 32 AST expressions [79],

3 AST nodes (SingleVariableDeclaration, AnonymousClass-

Declaration, Annotation), and 22 AST statements [19], 17 of

which iFixR ignores, including for loops, while loops, do
statements, etc. For readability, we refer to the AST expression,

AST node, and AST statement as statement.
For each statement, Blues identifies its line number in

the associated source file along with the file name, extracts

identifier terms, and stores this information in an XML

document (lines 15–16). Blues creates these XML documents

for all the statements extracted from the ranked source files

(line 17), and preprocesses these XMLs (line 18) in the same

way it pre-processes source file XMLs. Next, Blues feeds

these statement and the bug report XMLs to BLUiR that

outputs a ranked list of the statements. Blues extracts the

line number, source file name, and suspiciousness scores from

the output to create a ranked list of suspicious statements

(line 19). Note that these ranked statements do not consider

the ranks of their associated source files. Real-world projects

contain many source files, and our experiments show that

treating all statements in a higher-ranked file to be more

suspicious than the ones in lower-ranked files is sometimes

suboptimal, so we also explore other strategies. To combine

the ranked suspicious files and statements, Blues provides a

ranker module that uses the three parameters: f , the number

of suspicious files to consider; m, the number of suspicious

statements per file to consider; and ScoreFn , a function for

combining the file and statement suspiciousness scores (line 8).

We define two such functions: Scorehigh ranks the m most

suspicious statements in the most suspicious file, followed by m
statements in the next file, and so forth. Scorewt uses the files’

scores as weights for the associated suspicious statements and

recomputes the weighted suspiciousness scores by multiplying

the scores of the statements with the score of the associated

file. We set f = 50 based on the recommendation of a

prior study [44]. We run Blues’ ranker module using six

different configurations: five (m ∈ {1, 25, 50, 100, all}) with

Scorehigh , and one (m = all ) with Scorewt . For each of the

six configurations, Blues produces a ranked list of statements.

We found that the six configurations localize complementary

defects, so we use Algorithm 2 to combine the six ranked lists

into a single list, which we call Blues ensemble. The algorithm

to combine lists sorts the statements using each statement’s

highest rank in the six lists, breaking ties using the number of

lists in which the statement occurs (line 15 in Algorithm 2). To

fairly compare suspiciousness scores across lists, the algorithm

normalizes the scores first (line 5). Note that computing the

individual configurations and the ensemble is a relatively low-
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Algorithm 2 Combining ranked suspicious statement lists using

suspiciousness scores and consensus.

Input: rankedStmtLists← [l1, l2, . . .]
Output: combinedStmtList

1: function COMBINELISTS(rankedStmtLists)
2: stmt maxscore← {} � max susp. score of stmt from all the lists
3: stmt listcount← {} � number of lists in which a stmt occurs
4: for lk ∈ rankedStmtLists do
5: listn ← NormalizeScoresInList(lk)
6: for (stmt, score) ∈ listn do
7: if score > 0.0 then
8: if stmt /∈ stmt listcount then
9: stmt listcount[stmt] = 1

10: stmt maxscore[stmt] = score
11: else � stmt seen before, update maxscore if needed
12: stmt listcount[stmt] += 1
13: if score > stmt maxscore[stmt] then
14: stmt maxscore[stmt] = score
15: combinedStmtList← SORT(stmt maxscore, stmt count)
16: return combinedStmtList

cost process. One only needs to rerun Blues’s ranker module

(line 8 in Algorithm 1) and Algorithm 2, not the entire Blues

pipeline. From here on, we use only the ensemble and refer

to it as just Blues.

B. Spectrum-Based Fault Localization

We do not create a new SBFL technique, but combine

existing tools to produce a state-of-the-art implementation.

SBFL compares program spectra — measurements of the

runtime behavior of a program, such as code covered by

tests [32] — of passing and failing developer-written tests to

rank program elements, such as statements. SBFL calculates

suspiciousness scores using a ranking strategy that considers

four values collected from the spectrum: the number of failing

tests that do (ef ) and do not (nf ) execute the element, and the

number of passing tests that do (ep) and do not (np) execute

the element. While there are multiple ranking strategies,

including Ochiai [1], DStar [100], and Tarantula [38],

empirical studies [104], [117] have found that Ochiai is more

effective for object-oriented programs. Most SBFL-based APR

tools use Ochiai, and so does our study.

There exist multiple frameworks that APR tools use to

compute code coverage, including JaCoCo [33], GZoltar [13],

and Cobertura [15]. Our study uses GZoltar because most

APR tools use it, and a recent study comparing 14 APR tools

used multiple GZoltar versions, showing that the latest-at-the-

time version (v1.6.0) significantly improved FL results and

repair performance [60]. We use the latest version (v1.7.2)

of GZoltar available at the time of running our experiments.

GZoltar’s inputs are the source code and test suite and its

outputs are each statement’s ef , nf , ep, and np. We use

the Ochiai ranking formula to compute suspiciousness scores:

score =
ef√

(ef+nf )(ef+ep)
.

To validate our SBFL implementation, we compare it to

previously reported results [60] on Defects4J (v1.2.0) for

SBFL implemented using Ochiai and older versions of Gzoltar.

Figure 1 shows our SBFL implementation localizes 13 more

defects than the best prior version.

project Chart Closure Lang Math Mockito Time Total
#defects 26 133 65 106 38 27 395

GZ v0.1.1 22 78 29 91 21 22 263
GZ v1.6.0 24 95 57 100 23 22 321
GZ v1.7.2 25 101 53 96 36 23 334

Fig. 1. Our SBFL (implemented using GZoltar (v1.7.2) and Ochiai), in bold,
localizes more defects than prior SBFLs using older versions of Gzoltar [60].

In the remainder of this paper, when we refer to our SBFL,

we are referring to this particular implementation.

C. Combining FL Techniques

Existing approaches to combining multiple FL tech-

niques [53], [117], [87], [48], [104] typically use learning
to rank [12] supervised machine learning. These techniques

use multiple FL techniques’ suspiciousness scores as features to

train a model to rank buggy statements higher than non-buggy

ones. Such approaches require a training dataset of program

statements annotated with suspiciousness scores from multiple

FL techniques, and the manually labeled ground truth “buggy”

or “not-buggy”. Such training data is hard to create because

of the required manual effort, and the performance of trained

models depends heavily on its data and features [65].

Instead, we propose RAFL, a novel unsupervised approach

that requires no training. We formulate the problem of com-

bining different FL techniques as a rank aggregation (RA) [57]

problem. RA involves combining multiple ranked lists (base

rankers) into one ranked list (aggregated ranker) [17]. The

RA problem has been studied extensively in information

retrieval [18], marketing and advertisement research [57], social

choice (elections) [18], and genomics [42]. We propose to

use RA algorithms to combine multiple FL techniques’ ranked

lists. We next describe our RAFL approach to combine FL

techniques (Section II-C1) and using it to combine Blues and

SBFL (Section II-C2). Section III-C2 will empirically show

that our approach outperforms the supervised ones.

1) RAFL: Rank Aggregation-based FL: FL techniques

typically assign suspiciousness scores to hundreds of program

statements. Combining multiple ranked lists, which are often

inconsistent, such that the result is as close as possible to the

individual lists according to some distance metric, can become

combinatorially intractable. We propose rank aggregation-

based FL (RAFL), a novel approach that uses RA algorithms

to combine FL. Our technique takes inspiration from the

research in search-based software engineering [31], which

involves applying metaheuristic search techniques to solve

problems of balancing competing (and sometimes inconsistent)

constraints. RAFL works as follows. Let L1, L2, . . . , Lm be

m ordered lists of suspicious statements (e.g., obtained using

m FL techniques). RAFL aims to create an ordered list δ of

length k ≥ 1 that combines the statements in the individual lists

by minimizing the weighted sum of the distances between δ and

the individual lists. Formally, RAFL minimizes the objective

function f(δ) =
∑m

i=1 wid(δ, Li), where wi is the importance

weight associated with list Li, and d is a distance metric.

1232



parameter definition SBIR value

k size of the combined list 100
seed seed specified for reproducibility 1
distance Spearman or Kendall Spearman
method algorithm (CE or GA) CE
maxIter max #iterations allowed (default 1000) 1000
convIn #consecutive iterations to decide if al-

gorithm has converged (default: 7 for
CE, 30 for GA)

7

importance vector of weights (wi) indicating the
importance of each list (default: a
vector of 1’s (equal weights to all lists))

default

N #samples generated in each iteration.
Used only by the CE (default: 10kn,
where n is the #unique statements con-
sidering all ranked lists and n >> k,
otherwise at least k2)

10,000

ρ (ρ · N ) is quantile of candidate lists
sorted by the objective function scores.
Used only by the CE. (default: 0.01
when N ≥ 100 and 0.1 otherwise)

0.01

popSize population size in each generation for
the GA (default 100)

NA

CP Cross-over probability for the GA (de-
fault 0.4)

NA

MP Mutation probability for the GA NA

Fig. 2. RAFL configuration parameters.

To minimize the objective function, RAFL samples multiple

lists of k statements from the unique statements in the

individual lists, using an algorithm-specific sampling strategy.

RAFL computes the objective function for each sampled

list. Iteratively, RAFL updates the sampled lists using the

objective function computations, e.g., by adjusting the sampling

probabilities or using genetic algorithms to select the next

generation of sampled lists. This iteration continues until

RAFL observes no change in the objective function scores for

a fixed number of iterations, returning the lowest-scoring list.

Our RAFL implementation uses the RankAggreg [76] pack-

age, which implements several RA algorithms (cross-entropy

Monte Carlo (CE), genetic algorithm (GA), and brute force)

and provides distance metrics (Spearman Footrule [9], and

Kendall’s tau [8]). The left two columns in Figure 2 list RAFL

configuration parameters, which can be used to select combi-

nations of RA algorithms and distance metrics to combine FL.

2) SBIR: Combining Blues and SBFL: To combine the

suspicious statement lists from Blues (Section II-A) and our

SBFL (Section II-B), we use RAFL to develop SBIR using the

cross-entropy Monte Carlo (CE) rank aggregation algorithm

with the Spearman Footrule distance. We make these choices

because prior work found CE to be typically more efficient than

genetic algorithms [77] and than Borda count [16], [76], and

because computing the Spearman Footrule distance is faster

than Kendall’s tau.

The CE algorithm represents an ordered list of k statements

using a 0–1 matrix of size n×k, where n is the total number of

unique statements in the ranked lists and k is the length of the

desired combined list. The algorithm imposes two constraints:

each column sums up to exactly 1, and each row sums up

to at most 1. Under this representation, an ordered list of

size k is uniquely determined by reordering the matrix’ rows

(statements) such that the top k rows form the identity matrix.

For example, if the full list was [A, B, C], a 3 × 2 matrix,⎡
⎣
0 0
0 1
1 0

⎤
⎦ would translate into the candidate top 2 list of (C, B).

CE algorithm’s goal is to identify a matrix that results

in the minimum objective function score out of all possible

matrices. The CE algorithm uses the following four steps:

(1) Initialization creates an n × k matrix and assigns each

cell a probability of 1
n . This matrix represents the multinomial

sampling probabilities of the statements: each statement (row)

is equally likely to be in each of the k positions (column).

Next, CE runs steps 2 and 3 iteratively. (2) Sampling
generates N 0–1 matrices using the restricted (truncated)

multinomial sampling [84] using the current probabilities.

The output of this step are N (new) randomly generated 0–1

matrices of size n× k. (3) Updating computes the objective

function scores for each of the N sampled matrices, sorts

the sampled matrices in the ascending order of the scores,

and identifies ρ-quantiles yt of the sorted matrices. The

algorithm uses the objective function scores of the matrices

in iteration t to update the multinomial cell probabilities of

unique statements that tend to minimize the objective function

scores of the matrices sampled in the next iteration, as follows:

pt+1
jr = (1− w)ptjr + w

∑N
i=1 I (f (δi) ≤ y t)xijr
∑N

i=1 I (f (δi) ≤ y t)

where 1 ≤ j ≤ n, 1 ≤ r ≤ k, ptjr is the probability of the

unique statement at the jrth position in the matrix at iteration

t and pt+1
jr is its updated value at iteration t + 1; f(δi) is

the objective function score of the ith sampled matrix and

xijr is the value of the jrth cell of the ith sampled matrix; w
is a weight parameter with a default value of 0.25 (tuned

by prior work [77] on independent dataset) and I is the

indicator function. (4) Convergence stops the iteration when

the minimum value of the objective function does not change

in a preset number of iterations. The matrix with a minimum

objective function score in the final iteration represents the

final combined list of statements.

SBIR combines SBFL’s and Blues’ ranked suspicious state-

ment lists to produce a single list of top-100 statements. The

right column in Figure 2 shows the values of configuration pa-

rameters we used to develop SBIR. We select k = 100 because

most APR tools consider at most 100 statements during repair.

We set wi = 1.0 to assign equal importance to SBFL and Blues

and use default values of other parameters including w (used in

updating sampling probabilities), and ρ that are tuned by prior

work [77] on a dataset that does not overlap with Defects4J.

III. EVALUATION

We next evaluate our FL techniques and their effect on APR.

A. FL Evaluation Dataset and Metrics

We use the Defects4J (v2.0) [26] benchmark to evaluate our

FL techniques. Defects4J (v2.0) targets Java 8 and consists

of 835 reproducible defects from 17 large open-source Java
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identifier project description all sfd sld

Chart jfreechart framework to create charts 8 8 4

Cli commons-cli API for parsing command

line options

39 32 3

Closure closure-compiler JavaScript compiler 174 137 23

Codec commons-codec implementations of

encoders & decoders

18 14 8

Collections commons-collections Java Collections Framework

extensions

4 4 1

Compress commons-compress API for file compression

utilities

47 43 4

Csv commons-csv API to read and write CSV

files

16 15 5

Gson gson API to convert Java Objects

into JSON

18 16 2

JacksonCore jackson-core core part of the Java JSON

API (Jackson)

26 19 3

JacksonDatabind jackson-databind data-binding package for

Jackson

111 91 13

JacksonXml jackson-dataformat-xml data format extension for

Jackson

6 6 1

Jsoup jsoup HTML parser 93 75 18

JxPath commons-jxpath XPath (an expression

language) interpreter

22 13 1

Lang commons-lang extensions to Java Lang 64 64 10

Math commons-math library of math utilities 106 98 23

Mockito mockito a unit-test mocking

framework

38 33 7

Time joda-time date and time library 25 21 3

total 815 689 129

Fig. 3. The “all” column shows the 815 defects from the 17 real-world
Java projects in the Defects4J (v2.0) benchmark we use to evaluate our FL
techniques. The “sfd” column shows the 689 single-file-edit defects and the
“sld” column shows the 129 single-line-edit defects we use for APR evaluations.

projects. Each defect comes with (1) one buggy and one

developer-repaired version of the project code with the changes

minimized to those relevant to the defect; (2) a set of developer-

written tests, all of which pass on the developer-repaired version

and at least one of which evidences the defect by failing on

the buggy version; and (3) defect information, including the

bug report URL. Out of the 835 defects, 817 have the bug

report URL available, making IRFL possible. For 815 of the

817 defects, the test execution information was relevant to

make SBFL possible. Figure 3 describes these 815 defects,

which we use to evaluate our FL techniques.

We use two metrics, common to FL evaluations [117]:

(1) hit@k is the number of defects localized in the top-k ranked

statements, and (2) EXAM is the fraction of ranked statements

one has to inspect before finding a buggy statement. hit@k tells

us how useful an FL technique is for APR that uses the top k
statements, while EXAM tells us how highly the buggy state-

ments are ranked, easing APR’s job to produce correct patches.

Similar to prior studies [60], [117], [44], we consider a

defect successfully localized when at least one of the buggy

statements is in the top-k. Unlike studies that break ties by

reassigning average rank [74] or expected rank [117], we rank

same-suspiciousness statements in the order they appear in the

FL results, as this is how APR tools process them.

B. Blues’ Evaluation (RQ1)

We next compare Blues’ performance to the state-of-the-art

(Section III-B1) and baseline (Section III-B2) IRFL techniques.

1) Blues vs. State of the Art: Figure 4 compares Blues with

iFixR’s internal statement-level IRFL technique [44] on the

(171 defects) hit@k EXAM

k = 1 25 50 100 all k = all

iFixR 26 74 95 106 135 0.048
Blues 11 79 97 108 151 0.034

Fig. 4. For ranked lists of size ≥ 25, Blues localizes more defects (hit@k)
and places buggy statements higher in the list (lower EXAM) than the state-
of-the-art IRFL technique used in iFixR when evaluated on 171 Lang and
Math defects in the Defects4J on which original iFixR was evaluated.

(815 defects) hit@k EXAM

k = 1 25 50 100 all k = all

vanilla BLUiR 26 143 192 245 611 0.159
Blues 27 184 241 306 611 0.111

Fig. 5. For all ranked list sizes, Blues consistently localizes more defects
(higher hit@k) and ranks buggy statements higher (lower EXAM) than
statement-level BLUiR that does not consider suspicious file scores when
evaluated on the 815 defects available in the Defects4J v2.0.

171 Lang and Math defects in Defects4J on which iFixR was

evaluated1. As shown in Figure 4, considering ranked lists

of size ≥ 25 (relevant for APR), Blues consistently localizes

more defects (higher hit@k) than iFixR’s IRFL. Comparing

the ranks of buggy statements in localized defects, Blues places

buggy statements higher (lowering EXAM) in the lists than

iFixR. Blues’ advantage of using a lightweight unsupervised

approach outweighs iFixR’s supervised technique that requires

6 file-level IRFL techniques.

2) Blues vs. Baseline: We implement a version of statement-

level BLUiR (vanilla BLUiR) that does not consider the

suspiciousness scores of the ranked suspicious files and instead

ranks the suspicious statements only based on their similarity

to the bug reports. Figure 5 compares Blues’ and vanilla

BLUiR performance on the 815 defects. For all list sizes,

Blues consistently outperforms vanilla BLUiR with higher

hit@k and lower EXAM.

For APR-relevant scenarios (k ≥ 25), Blues con-

sistently localizes more defects and ranks buggy

statements higher than the state-of-the-art, supervised,

statement-level IRFL technique used in iFixR. Blues

also consistently outperforms a statement-level baseline

that ignores suspicious files’ ranks. (RQ1)

C. SBIR’s Evaluation

We next compare SBIR with its underlying SBFL and

Blues (Section III-C1) and with state-of-the-art FL techniques

(Section III-C2). As SBIR’s ranked lists are at most 100 state-

ments, our comparisons use that maximum. To account for the

randomness in SBIR’s Monte Carlo algorithm, we compute

SBIR using 10 random seeds, reporting the mean, standard

1The iFixR FL results available at https://github.com/TruX-DTF/iFixR/
tree/master/data/stmtLoc contain multiple statements with the same rank and
multiple ranks for the same statement. We break ties by assigning the highest
possible rank to each statement.
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(815 defects) hit@k EXAM

k = 1 25 50 100 k = 25 50 100

SBFL 88 408 475 549 0.287 0.240 0.220
Blues 27 184 241 306 0.332 0.300 0.270

SBIR mean 101 419 489 557 0.256 0.215 0.187
(10 seeds) stdev 7.60 5.01 5.40 4.22 0.006 0.006 0.005

cv 0.08 0.01 0.01 0.01 0.023 0.026 0.028

Fig. 6. Comparing SBIR, SBFL, and Blues FL performance on the 815 defects
in Defects4J (v2.0). For all list sizes, SBIR consistently localizes more defects
(higher hit@k) and places buggy statements higher in the list (lower EXAM)
than underlying SBFL and Blues.

deviation (stdev), and coefficient of variation (cv = stdev
mean

, which

measures variability in relation to the mean of the population).

A coefficient of variation less than 0.1 means the 10 seeds’

results are tightly coupled [5].

1) SBIR’s FL Performance (RQ2): Figure 6 shows the FL

performance of SBIR, SBFL, and Blues for different list sizes.

SBIR consistently localizes more defects (higher hit@k) and

ranks buggy statements higher (lower EXAM) than SBFL and

Blues. For example, considering top-100 statements, SBIR, on

average, localizes 8 more defects than SBFL and 251 more

defects than Blues. Comparing the ranks of buggy statements

in the top-100 ranked lists, SBIR, on average, ranks buggy

statements 19 (EXAM 0.187) while SBFL 22 (EXAM 0.220)

and Blues 27 (EXAM 0.270). These results confirm prior

findings suggesting that combining FL techniques can lead to

better FL [53], [117], [34], [87], [48], [104]. Thus, an APR

tool using SBIR gets earlier opportunities to patch the buggy

statements and a more diverse set of localized defects than

using SBFL or Blues.

For all list sizes we consider, SBIR consistently

localizes more defects and ranks buggy statements

higher than underlying SBFL and Blues. (RQ2)

2) SBIR vs. State of the Art (RQ3): We compare SBIR to

9 standalone FL techniques and a supervised learning-to-rank

approach [46] used by existing combining FL techniques.

SBIR vs. Standalone FL. Our evaluation considers tech-

niques that were previously evaluated on Defects4J, make no

assumptions about a priori knowing the buggy file, and localize

buggy statements (as opposed to methods or files). We compare

SBIR with 9 such standalone FL techniques used in a recent FL

evaluation [117]: two SBFL — Ochiai and DStar; two mutation-

based FL (MBFL) — Metallaxis and MUSE; three slicing —

union, intersection, and frequency; one stack trace FL; and one

predicate switching FL. The existing evaluation [118] provides

a dataset of the 357 defects of Defects4J (v1.0) annotated with

suspiciousness scores of the 9 techniques, but does not release

the implementations of the individual techniques. We recreate

ranked lists of the 9 techniques from the dataset. 334 of the

357 defects have bug reports available, making SBIR possible.

We use these 334 defects for our analysis. Figure 7 compares

the 9 techniques with SBIR. For all list sizes, SBIR consistently

localizes more defects (higher hit@k) and ranks buggy state-

(334 defects) hit@k EXAM

family technique k = 1 25 50 100 k = 100

SBFL

Ochiai 30 168 196 221 0.254

DStar 32 169 199 222 0.254

MBFL
Metallaxis 40 154 175 195 0.238

MUSE 26 96 104 118 0.193

slicing

slicing-union 21 87 100 111 0.462

slicing-intersection 18 71 81 91 0.481

slicing-frequency 21 86 100 112 0.458

stack trace stack trace 16 28 28 28 0.663

predicate switching predicate switching 9 24 24 24 0.662

SBIR (10 seeds) mean 48 177 207 231 0.175
stdev 4.31 4.16 2.92 2.32 0.006

cv 0.09 0.02 0.01 0.01 0.034

Fig. 7. Comparing SBIR to 9 standalone FL techniques on 334 defects from
Defects4J (v1.0). For all list sizes, SBIR consistently localizes more defects
(higher hit@k) and places buggy statements higher in the ranked lists (lower
EXAM) than each of the 9 techniques.

ments higher (lower EXAM) than all of the 9 prior techniques.

SBIR vs. Supervised Combining FL Techniques. Su-

pervised learning-to-rank approaches (e.g., RankSVM [46],

RankBoost [23], RankNet [12], FRank [92], LambdaRank [11])

can combine FL techniques. Most such state-of-the-art

techniques (e.g., CombineFL [117], Fluccs [87], TraPT [54],

Savant [48]) use RankSVM [46]. Thus, we compare our

unsupervised RAFL with supervised RankSVM in combining

SBFL and Blues.2 We first create a dataset of the 815 defects by

annotating program statements of each defect with normalized

suspiciousness scores obtained using our SBFL and Blues,

along with the ground truth information. We then use this

annotated dataset to train the RankSVM model using SBFL’s

and Blues’ scores as features. To evaluate the trained model,

we use the CombineFL framework [118] that uses 10–fold

cross validation and computes Einspect@k and EXAM metrics.

The Einspect@k metric break ties by computing the expected

rank of buggy statement in the ranked lists and then counts

the number of defects whose buggy statements have expected

rank ≤ k. (As there are no ties in SBIR lists, Einspect@k
is the same as the hit@k for SBIR.) The EXAM scores are

computed using the expected ranks of buggy statements in

the lists therefore, we denote it as EXAMinspect . Figure 8

compares SBIR (implemented using RAFL as described

in Section II-C2) and SBIR (RankSVM) (the combination

of SBFL and Blues, combined using RankSVM). For all

lists of sizes, SBIR consistently localizes significantly more

defects (higher Einspect@k) and ranks buggy statements higher

(lower EXAMinspect ) than RankSVM. The fact that SBIR is

unsupervised and requires no training data is a further advantage

over the supervised RankSVM approach.

SBIR outperforms 9 standalone FL techniques and a su-

pervised technique used by existing combiners. (RQ3)

2We could not compare RAFL to the deep learning-based DeepFL [53]
because DeepFL’s data is not public (https://github.com/DeepFL/
DeepFaultLocalization/issues/4).
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(815 defects) Einspect@k EXAMinspect

technique k = 1 25 50 100 k = 100

SBIR (RankSVM) 50 270 328 396 0.236

SBIR (RAFL) mean 101 419 489 556 0.187
(10 seeds) stdev 7.60 5.01 5.41 4.22 0.005

cv 0.08 0.01 0.01 0.01 0.027

Fig. 8. Comparing SBIR to a supervised-RankSVM combination of SBFL
and Blues on 815 defects from Defects4J (v2.0). For all list sizes, SBIR
consistently localizes more defects (higher Einspect@k) and places buggy
statements higher in the ranked lists (lower EXAM) than the RankSVM
combination.

D. APR Evaluation Tools, Dataset, and Metrics
We ran our experiments evaluating FL’s effect on APR using

a cluster of 50 compute nodes, each with a Xeon E5-2680 v4

CPU with 28 cores (2 processors, 14 cores each) running at

2.40GHz. Each node had 128GB of RAM and 200GB of local

SSD. We launched multiple repair attempts in parallel, each

requesting 4 cores on one compute node. We next describe

the APR tools we evaluate, our dataset, and the metrics used.
1) APR Tools Evaluated: Instead of developing a new APR

tool or arbitrarily selecting tools from state-of-the-art, we select

Arja [113] and SimFix [36] that are the most (Sen = 66.9%)

and least (Sen = 29.5%) FL-sensitive general purpose repair

tools out of the 11 APR tools evaluated in a recent study [62]

for their FL sensitivity. We select a third tool, SequenceR [14],

which uses fundamentally different repair approach than Arja

and SimFix, and whose FL-sensitivity (Sen = 39.5%) lies

between Arja and SimFix. Our tool selection criteria require

that tools apply to general defects, rather than specialized,

and have public implementations available so that they can be

customized to take precomputed FL results. Arja, SequenceR,

and SimFix use genetic-programming-[45], neural-machine-

translation-[93], and fix-pattern-mining-based [61] repair ap-

proaches, respectively. Although there are more effective

learning-based APR tools (e.g., CURE [37]) than SequenceR,

which is only applicable to single-line-edit defects, we use

SequenceR because its implementation is public and can be

customized.
Using the dataset described next (Section III-D2), we use

Arja and SimFix to repair 689 single-file-edit defects and

SequenceR to repair 129 single-line-edit defects using SBFL,

Blues, and SBIR for FL. We use the developer-written tests to

validate the produced patches. As SBIR’s ranked lists contain

at most 100 suspicious statements, to fairly evaluate repair tools

with respect to all three FL techniques, we limit repair tools

to use top-100 suspicious program statements obtained by the

three FL techniques. The original SequenceR evaluation [14]

used (manually created) perfect FL and top-10 statements to

repair a defect. We do the same for SequenceR. We do not

otherwise modify the implementations of the three repair tools

except customizing them to use our precomputed FL results.
2) Dataset: Manually assessing the correctness of patches

that modify multiple files is error-prone and suffers from

bias [49], [109]. To reduce errors and bias, we consider

the 689 single-file-edit defects from the 815 defects from

Section III-A. As SequenceR applies to single-line-edit defects,

we use the 129 single-line-edit defects that are a subset of the

689 defects. Figure 3 shows the distribution of the 689 single-

file-edit defects and 129 single-line-edit defects across the

17 projects in the Defects4J benchmark.

3) Metrics: Prior repair tools’ evaluations that measure patch

correctness use either manual inspection [67], [102], [49] or

automatically-generated evaluation test suites [101], [103], [49],

[71], [2]. While manual inspection is subjective and could be

biased, using evaluation test-suites could inaccurately measure

patch correctness [49]. Therefore, we propose a novel patch

evaluation methodology that uses a hybrid of these methods

to evaluate patch correctness.

For each patched defect, we use the developer-patched

program (available for all Defects4J defects) as an oracle and

use EvoSuite [22] to generate 10 held-out test suites using

10 seeds, a search budget of 12 minutes per seed, and a coverage

criterion of maximizing line coverage of the developer-modified

classes. We use EvoSuite because it is typically used to generate

tests for regression oracles, and because prior studies [56], [71]

preferred EvoSuite for this task. Most studies using EvoSuite

use a 3 minute budget per seed, but using longer time budgets

leads to better quality tests [71]. Therefore, we used 12 minutes

(4 times what most prior studies use) per seed, for 10 seeds.

To check the correctness of an automatically produced

patch, we first execute the held-out evaluation tests on the

patch. If any test fails, we annotate such patch as plausible
(the term used for a patch that passes developer-written tests

but is incorrect [78]). This methodology is the state-of-

the-art objective (but potentially incomplete [49]) automated

test-driven patch correctness methodology [71]. If all the

evaluation tests pass, we manually compare the patch against

the developer’s patch. If the patch is semantically equivalent

to the developer’s patch, we annotate it as correct. If it is

not, we annotate it as plausible. If a patch is partially correct

or we cannot determine its semantic equivalence because it

requires extensive domain knowledge, which happens when

the modifications are made to methods that are different

from developer-modified ones, we conservatively annotate

it as plausible. Thus, our patch evaluation methodology is

conservative as it only considers a patch to be correct if it

passes all held-out evaluation tests and is also semantically

equivalent to the developer’s patch. To study the effect of

improving FL on APR, we compare the number of defects a

repair tool correctly patches (repair quality), using different

FL techniques. Since we had run SBIR with 10 seeds, we

executed the APR tool experiments ten times, once for each

SBIR result. We verified that the defects patched in each run

is representative of all 10, but we only manually analyzed the

patches for correctness for one run because of the significant

manual effort involved.

E. Effect of SBIR on APR quality (RQ4)

The top of Figure 9 compares repair quality of the three

repair tools using the three FL techniques. Arja and SequenceR

correctly patch more defects when using SBIR than when using
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Arja SequenceR SimFix

(689 defects) (129 defects) (689 defects)

repair quality assessment

SBFL 21 10 30

Blues 15 4 13

SBFL ∪ Blues 25 12 30

SBIR 28 12 30

localization error assessment

perfect FL 21 24 21

upper bound 36 24 32

↓ # of defects not correctly patched due to localization error ↓
SBFL 15 14 2
Blues 21 20 19

SBIR 8 12 2

Fig. 9. SBIR improves repair quality and reduces localization errors for
more FL-sensitive APR tools. Arja and SequenceR, more FL-sensitive tools,
correctly patch complementary defects using SBFL and Blues, and benefit
more from using SBIR. SimFix, a less FL-sensitive repair tool, correctly
patches the same number of defects using SBIR as SBFL but more than Blues.

SBFL or Blues. Specifically, Arja using SBIR correctly repairs

7 (33%) more defects than using SBFL and 13 (87%) more

defects than using Blues. SequenceR using SBIR correctly

patches 2 (20%) (out of a smaller subset of single-line defects)

more defects than using SBFL and 8 (200%) more defects

than using Blues. SimFix unsurprisingly correctly patches the

same number of defects when using SBFL but 17 (131%) more

defects than using Blues. More FL-sensitive repair tools, Arja

and SequenceR, correctly patch complementary defects using

SBFL and Blues, as evident by the row showing the union

of defects they patch using SBFL and Blues. However, as

the less FL-sensitive SimFix uses test case purification [105]

and expands each suspicious statement by ±5 lines to address

inaccurate FL, it does not patch complementary defects.

Localization Error Analysis. Multiple factors can prevent

repair tools from producing correct patches. For example,

if inaccurate FL ranks irrelevant non-buggy statements as

more suspicious than buggy statements, the tool may produce

plausible patches before having a chance to explore the

buggy statement. This phenomenon is called APR localization

error [44]. We next measure SBFL’s, Blues’, and SBIR’s effect

on localization error. We execute each of the three repair tools

using perfect (manual) FL and measure the number of correctly

patched defects (“perfect FL” row in Figure 9). We compute

the “upper bound” [62] number of defects a repair tool can

correctly patch as the union of defects correctly patched using

the perfect FL and our three FL techniques. (Note that Arja

and SimFix consider multiple suspicious statements and can

709 c a s e Token .MOD:

710 i f ( r v a l == 0) {
711 e r r o r ( D i a g n o s t i c T y p e . e r r o r ( ”JSC DIVIDE BY 0 ERROR” , ” Di v i d e by 0 ” ) , r i g h t )

; / / B lues ( 3 8 ) SBIR ( 4 0 )

712 r e t u r n n u l l ;

713 }
714 r e s u l t = l v a l % r v a l ;

715 b r e a k ;

716 c a s e Token . DIV :

717 i f ( r v a l == 0) {
718 e r r o r ( D i a g n o s t i c T y p e . e r r o r ( ”JSC DIVIDE BY 0 ERROR” , ” Di v i d e by 0 ” ) , r i g h t )

; / / SBFL ( 1 ) Blues ( 3 6 ) SBIR ( 1 )

719 r e t u r n n u l l ;

720 }

Fig. 10. The two non-consecutive buggy statements (lines 711 and 718) that
cause the Closure-78 defect. The annotations show which of the three FL
techniques localize the buggy statements and their ranks in the respective lists.

patch more defects using SBIR than perfect FL. Their repair

algorithms fail to construct patches for some defects when

FL’s ranked lists do not contain certain non-buggy statements

adjacent to the buggy ones.) We then compute the localization

error for each FL technique: the difference between the upper

bound and the number of defects correctly patched using that

FL technique. The bottom three rows of Figure 9 show that

using SBIR significantly reduces the number of defects not

patched due to localization error for the more FL-sensitive

repair tools, compared to SBFL and Blues.

Overall, Arja and SequenceR significantly benefit from

SBIR. Arja using SBIR correctly patches 28 (78%) of the

36 upper bound defects, whereas using SBFL, it only patches

21 (58%) and using Blues only 15 (42%). SequenceR using

SBIR correctly patches 12 (50%) of the 24 upper bound

defects, whereas using SBFL, it patches 10 (42%) and using

Blues 4 (17%). SimFix, correctly patches 30 (94%) of the

32 upper bound defects using both SBIR and SBFL, and patches

13 (41%) using Blues.

Case Study Illustrating How SBIR Helps APR. The three

APR tools using SBIR correctly patched 7 defects (Chart-12,

Closure-68, Closure-78, Closure-86, Closure-92, Lang-10, and

Lang-20) in Defects4J that none of the existing 14 APR tools

patch. That is a 7.5% improvement over the 93 defects in

Defects4J (v1.0) that at least one of the 14 tools correctly

patches [60]. Closure-78 and Lang-20 require editing multiple

code locations in a single file, and most repair tools struggle

to patch these kind of defects. For example, Arja using SBIR

correctly patches Closure-78, whose repair involves deleting

two non-consecutive statements (lines 711 and 718 in Figure 10)

to fix a division-by-0 error. None of the existing 14 APR

tools [60], nor Arja with our SBFL or Blues, patch this defect.

For this defect, SBFL ranks only line 718 in the 1st position;

Blues ranks line 718 36th and line 711 38th; and SBIR ranks

line 718 1st and line 711 40th. Arja using SBFL produces a

plausible, but only partially correct patch that deletes line 718

while Arja using Blues does not produce a patch, timing out try-

ing to modify the 35 non-buggy statements ranked higher. Arja

using SBIR produces a correct patch (identical to the developer

patch) because it finds the buggy statement at the top of SBIR’s

list, and then fetches the second buggy statement because it is

also in SBIR’s list and because it uses the same variables and

methods as the top-ranked line (Arja’s ingredient screening

1237



step [113]). Arja constructs a correct patch by deleting both

the buggy statements. Thus, it is precisely the combination
of the information from bug reports and test executions that

enables Arja to localize and correctly repair this defect.

SBIR vs. Union of SBFL and Blues. Since APR using

SBFL and IRFL often repairs complementary defects [44], we

set out to measure how defects repaired with SBIR compare

to the union of the defects repaired with Blues and SBFL.

We find that while there is some complementarity, for Arja,

SBIR repairs more defects than the union, suggesting that

combining bug reports and tests not only captures most (though

not all) of the benefits of the two, it is also able to extract a

combined benefit where neither Blues nor SBFL alone leads

to a repair. Arja patches 25 defects (row 3 in Figure 9)

using SBFL and Blues, including 4 defects (Compress 27,

Jsoup 33, Jsoup 55, and Time 15) that Arja could not patch

using SBIR. However, Arja using SBIR patches 28 defects,

including 7 defects (Closure 78, Gson 7, Jsoup 39, Jsoup 68,

Jsoup 85, JxPath 5, and Lang 7) that Arja could not patch using

SBFL or Blues. Thus, for Arja, SBIR is even more beneficial

than using both SBFL and Blues. SequenceR patches 12 defects

using both SBFL and Blues that include one defect (Cli 40) that

SequenceR could not patch using SBIR. However, SequenceR

using SBIR also patches 12 defects that include one defect

(JacksonCore 25) that SequenceR could not patch using SBFL

or Blues. Thus, SBIR provides the same benefit to SequenceR

as using both SBFL and Blues. SimFix correctly patches the

same 30 defects using SBIR as it does using both SBFL and

Blues. Thus, for SimFix, using SBIR provides the same benefit

as using just SBFL or both SBFL and Blues.

SBIR vs. Original Published APR Versions. We find that

the three repair tools using SBIR correctly repair somewhat

complementary defects to those the original published versions

repaired. Arja using SBIR correctly patches 4 defects (Lang-7,

Lang-10, Lang-59, and Math-35) original Arja did not. Of

the defects in our dataset, the original Arja correctly patched

15 defects [113] (plus 3 others that either had no bug reports

(Chart-3) or were multi-file-edit defects (Math-22 and Math-

98)). Of these 15, Arja using SBIR correctly patches 12, but not

the other 3 (Lang-35, Math-39, and Math-86). We examined the

original evaluation’s patches3 and found that for these 3 defects,

Arja had produced only a single patch, which is highly

uncommon for Arja (it produced many patches for all other

defects it patched), suggesting that there is something special

about these defects or the process the Arja evaluation followed

in repairing them. Overall, Arja with SBIR correctly patches 1

more defect than the original Arja. SimFix using SBIR correctly

patches 3 defects (Closure-68, Closure 92, and Closure-126)

original SimFix did not. Of the defects in our dataset, original

SimFix correctly patched 21 defects [36] (plus 6 others that

either had no bug reports (Chart-3, Chart-7, Chart-20) or were

multi-file-edit defects (Closure-63, Math-71, and Math-98)).

Of these 21, SimFix with SBIR correctly patches 19. (Note that

the original evaluation [36] listed 7 more defects (Closure-115,

3https://github.com/yyxhdy/defects4j-patches/tree/master/Arja

Lang-16, Lang-27, Lang-39, Lang-41, Lang-50, and Lang-60)

as patched correctly. The authors subsequently identified one

of those (Lang-27) as incorrect,4 and our analysis revealed

that the six others are also incorrect. SimFix with SBIR could

not patch the remaining two defects (Math-35 and Math-63).

Overall, SimFix with SBIR correctly patches 1 more defect

than the original SimFix. SequenceR’s original evaluation used

perfect FL [14], so a direct comparison is not appropriate. With

perfect FL, original SequenceR patched 14 defects correctly,

and with SBIR, it patches 6 (Chart-11, Closure-73, Closure-86,

Lang-59, Math-58, and Math-75) of those 14.

SBIR significantly improves repair quality and reduces

localization errors for more FL-sensitive APR tools,

and enables correctly repairing some defects that they

cannot repair with other FL techniques. For less

FL-sensitive APR, SBIR provides the same repair

quality as SBFL. Using SBIR, we are able to correctly

repair 7 defects never previously automatically repaired

correctly by existing techniques. (RQ4)

F. Discussion and Threats to Validity

Our approach requires a bug report and a bug-exposing

test. This requirement is not always met: several defects in

Defects4J (v2.0) have no documented bug reports, and prior

studies [44], [39] show that for 92% of defects, bug-exposing

tests are added after the bug is reported. However, most repair

tools cannot function without either a failing test or a bug

report, and existing repair tools that use only bug reports are not

fully automatic (a human must validate the proposed patches).

Meanwhile, while test-driven APR can be fully automated,

most patches it produces are incorrect [72], [71], [86]. Our

work extends APR to use SBIR, which uses both bug reports

and test suites, enabling repair tools to be fully automated

and to produce higher-quality patches. This is a worthwhile

achievement even if not all defects in industrial settings

have the requisite artifacts, and may motivate developers to

create the artifacts in the future, which reinforces an already

recommended practice. Further, combining the available user

inputs to improve APR can foster trust in the generated

patches [73], thereby helping the adoption of repair techniques.

Blues’ effectiveness depends on the quality of bug reports.

For example, Blues could not localize the Chart 2 defect5

because its bug report only contains a URL and no description.

This caused SBIR to lower the rank of the buggy statement in

its ranked list of suspicious statements.

It is not a goal of our study to develop the best way to

combine FL techniques. Instead, because existing combining

techniques are trained on Defects4J, we could not use them

in our evaluation, so we created RAFL, an unsupervised com-

bining method. We show that RAFL outperforms RankSVM,

a state-of-the-art supervised combining method, and that it is

4https://github.com/xgdsmileboy/SimFix/tree/master/final/result
5https://sourceforge.net/p/jfreechart/bugs/959/
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sufficient to demonstrate improvement in APR performance.

However, comparing RAFL with all supervised methods is out

of scope of this study.

Our evaluation aims to measure the impact of combined

IRFL and SBFL on APR in a way that will generalize to a

wide range of APR techniques. That is why our evaluation

uses three diverse APR techniques. The design of our study

allows estimating the SBIR’s impact on a repair technique

based on its FL-sensitivity. For example, a recent technique

Recoder [116] has an FL-sensitivity of 34.5%, similar to

SequenceR’s 39.5%. Thus, we expect SBIR’s impact on

Recoder will be similar to that on SequenceR, but smaller

than that on Arja (sensitivity 66.9%).

Arja and SequenceR are stochastic and results may vary

across executions. We address this threat by using a large-

scale dataset. Executing our study is highly computationally

intensive and required eight weeks of wall-clock time on a

50-node cluster. To enable others to independently reproduce

our results, and reuse our FL techniques in improving APR,

we make all code and data available.

We address threats to internal validity by reusing publicly

available implementations of repair tools instead of reimple-

menting them. We address threats to external validity by

selecting diverse APR tools and using Defects4J (v2.0) that

has significantly more projects and defects than earlier versions.

IV. RELATED WORK

Improving APR Performance. Program repair tools

typically follow a three step process: identifying the location

of a defect, producing candidate patches, and validating those

patches. The method used for each of these steps can signifi-

cantly affect the tool’s success. To improve APR, researchers

have proposed to use different kinds of FL strategies [6],

[107], [88], [44], [35], [64], patch generation algorithms (e.g.,

heuristic-based [50], [63], [91], [97], [36], [75], constraint-

based [2], [94], [29], [68], [40], and learning-based [14], [30],

[83]), and patch validation methodologies [95], [108], [112],

[90], [109]. Assuming perfect FL, recent study [62] shows

that modern repair tools can patch significantly more defects.

However, assuming perfect FL is unrealistic and therefore we

propose to improve automated FL used in APR.

Recent APR research has used formal constraints derived

by program analyzers instead of test suites [28], [25]. These

techniques patch specific families of defects, such as security

vulnerabilities and exception-causing defects, and our approach

to improving general-purpose APR is complementary.

APR’s fundamental challenge is generating fewer incorrect

patches [86], [71], [78]. In some domains, e.g., formal

verification, an oracle exists to determine patch correctness [21],

[20], [85], [3], overcoming this problem, though better FL can

still lead to the production of more patches.

Improving FL. Techniques to improve FL can be classified

into two categories. The first category is the standalone

techniques. For example, PRoFL [64] improves SBFL us-

ing patch execution results from APR, PREDFL [34] uses

runtime statistics from statistical debugging to improve SBFL,

PRFL [114] uses the PageRank algorithm, XGB-FL [106] uses

a classifier to learn the importance of program statements

and features, such as execution sequence and semantics,

UniVal [47] uses execution profiles and the success and failure

information from program executions, in conjunction with

statistical inference, and DeepRL4FL [55] formulates FL as

pattern recognition and uses code coverage representation

learning to improve SBFL and MBFL techniques. The second

category (e.g., CombineFL [117], DeepFL [53], Fluccs [87],

Savant [48], Multric [104], and TraPT [54]) uses learning-to-

rank [12] machine learning approaches such as RankSVM [46]

to combine multiple FL techniques. RAFL outperforms

RankSVM, the state-of-the-art supervised method.

Property-based testing, e.g., for software fairness [24], [89],

[4], [10], and automated oracle generation [69] can synthesize

additional tests to improve FL in ways complementary to our

approach.

FL in Program Repair. Most repair tools use SBFL

implemented using off-the-shelf coverage tracking tools and the

Ochiai ranking strategy [50], [63], [91], [30], [83], [97], [36],

[94], [68], [29], [2], [14], [110]. R2Fix [58] and iFixR [44]

are the only two IRFL-based repair tools, and no prior repair

tool uses combined SBFL and IRFL. Although, using patch-

execution results from repair tools to refine FL results can

outperform state-of-the-art SBFL and MBFL techniques [64].

Recent studies have shown the effect of using different

technologies, assumptions, and adaptations of test-suite-based

FL techniques on the performance of repair tools [2], [60], [35],

[88], [107], [96], [6]. Often, APR researchers omit FL tuning

used by their repair tools while presenting repair performance,

which leads to bias in comparing performance of different

repair tools [62], [60]. Further, the tuned FL implementations

are often tightly coupled to the repair tool implementations,

which makes it hard to reuse them for other repair tools. Our

FL techniques can be used to mitigate this bias as they can

serve as a plugin by future repair tools to decouple their FL

implementations from their repair algorithm implementation,

as is done in some frameworks, including JaRFly [71].

V. CONTRIBUTIONS

We have developed SBIR, an FL technique that uses both

bug reports and tests to localize defects, and showed that it

helps improve APR quality for FL-sensitive tools, repairing

more defects correctly than by using other FL techniques.

Along the way, we also created Blues, the first statement-level,

information-retrieval-based FL that outperforms the state of

the art without needing ground truth data for training, and

RAFL, a novel unsupervised method for combining arbitrary

FL techniques. Our results demonstrate that combining bug

reports and tests leads to better FL, and enables higher-quality

APR. Our findings support further research into improving APR

by combining bug-report-based and test-based information.

DATA AVAILABILITY

All of our data, source code, and documentation to reproduce

our results are publicly available [70].
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[43] A. Koyuncu, T. F. Bissyandé, D. Kim, K. Liu, J. Klein, M. Monperrus,
and Y. L. Traon. D&C: A divide-and-conquer approach to IR-based
bug localization. CoRR, abs/1902.02703, 2019.

[44] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein,
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