Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for
Combinatorial and Programs Spaces

A. Moraglio A Moraglio@cs.bham.ac.uk
School of Computer Science, University of Birmingham, UK

J. Togelius julian@togelius.com
Center for Computer Games Research, IT University of Copenhagen,

Denmark

S. Silva sara@kdbio.inesc-id.pt, sara@dei.uc.pt

INESC-ID, IST Technical University of Lisbon, and CISUC,
University of Coimbra, Portugal

doi:10.1162/EVCO_a_00099

Abstract

Geometric differential evolution (GDE) is a recently introduced formal generalization
of traditional differential evolution (DE) that can be used to derive specific differential
evolution algorithms for both continuous and combinatorial spaces retaining the same
geometric interpretation of the dynamics of the DE search across representations. In
this article, we first review the theory behind the GDE algorithm, then, we use this
framework to formally derive specific GDE for search spaces associated with binary
strings, permutations, vectors of permutations and genetic programs. The resulting
algorithms are representation-specific differential evolution algorithms searching the
target spaces by acting directly on their underlying representations. We present exper-
imental results for each of the new algorithms on a number of well-known problems
comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and
vectors of permutations. We also present results for the regression, artificial ant, parity,
and multiplexer problems within the genetic programming domain. Experiments show
that overall the new DE algorithms are competitive with well-tuned standard search
algorithms.

Keywords

Differential evolution, representations, principled design of search operators, combi-
natorial spaces, genetic programming, theory.

1 Introduction

Two relatively recent additions to the evolutionary algorithms (EAs) family are particle
swarm optimization (PSO) (Kennedy and Eberhart, 2001), inspired by the flocking
behavior of swarms of birds, and differential evolution (DE) (Storn and Price, 1997),
which is similar to PSO, but it uses different equations governing the motion of the
particles. In PSO, the velocity and position of each particle (individual)! are updated
using a linear combination involving the position of the best solution the particle has
visited so far and the position of the best particle in the current swarm (population).

IThe position of a particle represents the location of a solution in the search space. Its velocity
determines the current search direction from that location and the step size.

Manuscript received: June 29, 2010; revised: July 7, 2011; accepted: December 11, 2012.
© by the Massachusetts Institute of Technology Evolutionary Computation xx(x): 1-34



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

In DE, the position of each individual is updated using a linear combination of the
positions of three individuals picked at random in the current population. Despite their
relatedness, DE is known to produce consistently better performance than PSO on many
problems. In fact, DE is one of the most competitive EAs for continuous optimization
(Price et al., 2005; Storn and Price, 1997).

In their initial inception, both PSO and DE were defined only for continuous prob-
lems. In both algorithms, the motion of particles is produced by linear combinations
of points in space and has a natural geometric interpretation (Moraglio et al., 2007;
Moraglio and Togelius, 2009). There are a number of extensions of DE to binary spaces
(Pampara et al., 2006; Price et al., 2005), spaces of permutations (Gong and Tuson,
2007; Onwubolu and Davendra, 2009), and to the space of genetic programs (O’Neill
and Brabazon, 2006). There are also extensions of PSO to binary spaces (Kennedy and
Eberhart, 1997). Some of these works recast combinatorial optimization problems as con-
tinuous optimization problems and then apply the traditional DE algorithm to solve
these continuous problems. Other works present DE algorithms defined directly on
combinatorial spaces that, however, are only loosely related to the traditional DE in that
the original geometric interpretation is lost in the transition from continuous to combi-
natorial spaces. Furthermore, every time a new solution representation is considered,
the DE algorithm needs to be rethought and adapted to the new representation.

GDE (Moraglio and Togelius, 2009) is a recently devised formal generalization of
DE that, in principle, can be specified to any solution representation while retaining
the original geometric interpretation of the dynamics of the points in space of DE
across representations. In particular, GDE can be applied to any search space endowed
with a distance and associated with any solution representation to derive formally a
specific GDE for the target space and for the target representation. GDE is related to
geometric particle swarm optimization (GPSO; Moraglio et al., 2007), which is a formal
generalization of the particle swarm optimization algorithm (Kennedy and Eberhart,
2001). Specific GPSOs were derived for different types of continuous spaces and for
the Hamming space associated with binary strings (Moraglio et al., 2008), for spaces
associated with permutations (Moraglio and Togelius, 2007) and for spaces associated
with genetic programs (Togelius et al., 2008).

The present article reviews the theory behind the GDE algorithm, illustrates how
this framework can be used in practice as a tool for the principled design of DE search
operators for standard and more complex solution representations associated with
combinatorial spaces, and finally presents experimental tests and analysis of the new
GDE algorithms endowed with such operators on well-known problems. In particular,
as target spaces for the GDE, we consider combinatorial spaces associated with binary
strings, permutations, and vectors of permutations and computer programs represented
as expression trees.

The contribution of this article is to show that an existing and very popular al-
gorithm for continuous optimization—differential evolution—can be generalized in a
mathematically principled way and systematically instantiated to any combinatorial
space/representation, endowed with a notion of distance, without introducing any
arbitrary element of choice in the transition. So, the derived representation-specific
algorithms are in a strong mathematical sense equivalent to the original DE for the
continuous space. Whereas the geometric framework makes the instantiation of the DE
to new spaces and representations always formally possible, it is important to show
that the search operators specified by the theory can be actually constructed in prac-
tice. This article shows that it is indeed possible for a number of important, nontrivial

2 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

representations. From an experimental point of view, the article shows that the new DE
algorithms are competitive with standard algorithms on a few well-studied problems.
This is a rather interesting achievement, as it is one of the very rare examples in which
evolutionary computation theory has been able to inform the practice of search operator
design successfully.

The practitioner interested in applying the new framework to a specific problem
domain on one of the representations presented in this work can skip the theorems
and proofs. The article reports pseudocode of the general GDE algorithm and of all
representation-specific operators. Also, the parameter space of important parameters is
investigated to suggest reasonable parameter settings for each representation.

As for deriving specific GDE for new representations and new distances, it is
necessary to have an understanding of the underlying theory. This task suits better the
theoretician than the practitioner. However, the long term vision of this line of research
is to automate the design of DE and other search algorithms for new representations and
new problems, so making this theory very practically relevant and useful.

The remaining part of the article is organized as follows. Section 2 contains an
introduction to a formal theory of search operators that applies across representations
that forms the context for the generalization of the DE algorithm. Section 3 briefly
introduces the classic DE algorithm, and Section 4 describes the derivation of the general
GDE algorithm. Section 5 presents specific GDE search operators for binary strings, and
reports experimental results on NK-landscapes. Section 6 presents specific GDE search
operators for permutations, and reports experiments on the traveling salesman problem
(TSP). Section 7 presents specific GDE search operators for Sudoku for which candidate
solution grids are represented as vectors of permutations, and reports experimental
results for this problem. Section 8 presents specific GDE search operators for expression
trees, and reports the experimental analysis on standard GP benchmark problems.
Section 9 presents conclusions and future work.

2 The Geometry of Representations

In this section, we introduce the ideas behind a recent formal theory of representations
(Moraglio, 2007) which forms the context for the generalization of DE presented in the
following sections. A complete treatment of this matter can be found in Moraglio.

Search algorithms can be viewed from a geometric perspective (Moraglio, 2007). The
search space is seen as a geometric space with a notion of distance between points, and
candidate solutions are points in the space. For example, search spaces associated with
combinatorial optimization problems are commonly represented as graphs in which
nodes correspond to candidate solutions and edges between solutions correspond to
neighbor candidate solutions. We can endow these spaces with a notion of distance
between solutions equal to the length of the shortest path between their corresponding
nodes in the graph. Formally, a search space is seen as a metric space.

DEFINITION 1: A metric space is a set X together with a real valued functiond : X — X (called
a metric or distance function) such that, for every x, y,z € X:

1. d(x,y) =0ifandonlyifx =y
2. d(x,y)=d(y,x)
3. d(x,2)+d(z,y) = d(x,y)

Evolutionary Computation =~ Volume xx, Number x 3



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

Geometric search operators are defined using geometric shapes, defined in terms of
distance between points in space, to delimit the region of search space where to sample
offspring solutions relative to the positions of parent solutions. For example, geometric
crossover is a search operator that takes two parent solutions in input corresponding to
the end points of a segment, and returns points sampled at random on the segment as
offspring solutions. In order to define formally geometric crossover, we need the notion
of metric segment which is a generalization of traditional segment in the Euclidean
space to metric spaces.

DEFINITION 2:  Let X be a metric space endowed with a metric d. For any x, y € X, the d-metric
segment [x, yly between x and y is the set {z € X : d(x,z) + d(z, y) = d(x, y)}

Geometric crossover is defined formally as follows.

DEFINITION 3:  (Geometric crossover (Moraglio and Poli, 2004)) A recombination operator is
a geometric crossover under the metric d if for any pair of parents all their offspring are in the
d-metric segment between them.

The specific distance associated with the search space at hand is used in the
definition of metric segment to determine the specific geometric crossover for that
space. Therefore, each search space is associated with a different space-specific geo-
metric crossover. However, all geometric crossovers have the same abstract geometric
definition.

Candidate solutions can be seen as points in space, geometric view, or equivalently,
as syntactic configurations of a certain type, representation view. For example, a candi-
date solution in the Hamming space can be considered as a point in space or as a binary
string corresponding to that point. This allows us to think of a search operator equiva-
lently as (i) an algorithmic procedure which manipulates the syntactic configurations of
the parent solutions to obtain the syntactic configurations of the offspring solutions us-
ing well-defined representation-specific operations (representation/operational view),
or (ii) a geometric description which specifies what points in the space can be returned
as offspring for the given parent points and with what probability (geometric/abstract
view). For example, uniform crossover for binary strings (Syswerda, 1989) is a recom-
bination operator that produces offspring binary strings by inheriting at each position
in the binary string the bit of one parent string or of the other parent string with the
same probability. This is an operational view of the uniform crossover that tells how to
manipulate the parent strings to obtain the offspring string. Equivalently, the same op-
erator can be defined geometrically as the geometric crossover based on the Hamming
distance that takes offspring uniformly at random on the segment between parents
(Moraglio and Poli, 2004).

This dual perspective on the geometric search operators has surprising and im-
portant consequences (Moraglio, 2007). One of them is the possibility of principled
generalization of search algorithms from continuous spaces to combinatorial spaces, as
sketched in the following.

1. Given a search algorithm defined on continuous spaces, one has to recast the
definition of the search operators expressing them explicitly in terms of Euclidean
distance between parents and offspring.

2. Then one has to substitute the Euclidean distance with a metric, obtaining a
formal search algorithm generalizing the original algorithm based on the con-
tinuous space. The formal search algorithm obtained is defined axiomatically as

4 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 1 DE with differential mutation and discrete recombination

1: initialize population of IV, real vectors at random
2: while stop criterion not met do
3:  for all vector X () in the population do
4 pick at random three distinct vectors from the current population X1, X2, X3
5: create mutant vector U = X3 + F - (X1 — X 2) where F is the scale factor parameter
6: set V' as the result of the discrete recombination of U and X (7) with probability C'r
7: if f(V) > f(X(i)) then
8: set the ith vector in the next population Y (i) =V
9: else
10: set Y (i) = X (i)
11: end if
12:  end for
13:  for all vector X () in the population do
14: set X (i) =Y (2)

15:  end for
16: end while

itis based on the axiomatic notion of metric. In particular, it does not refer to any
specific instantiation of metric space.

3. Next, one can consider a (discrete) representation and a distance associated
with it (a combinatorial space) and use it in the definition of the formal search
algorithm to obtain a specific instance of the algorithm for this space.

4. Finally, one can use the geometric description of the search operator to derive
its operational definition in terms of manipulation of the specific underlying
representation.

This methodology was used to generalize PSO and DE to general metric spaces ob-
taining the abstract algorithms GPSO (Moraglio et al., 2006b) and GDE (Moraglio and
Togelius, 2009) which can then be used as formal specifications to derive specific ver-
sions of GPSO and GDE for specific representations and distances. In the following
sections, we illustrate how the methodology can be used in practice to generalize DE
and to specialize it to specific metric spaces associated with a number of representa-
tions. The same methodology can be used to generalize to combinatorial spaces other
algorithms naturally based on a notion of distance. This includes search algorithms
such as response surface methods, estimation of distribution algorithms, and Lipschitz
optimization algorithms, and also machine learning algorithms.

3 Classic Differential Evolution

In this section, we describe the traditional DE? (Price et al., 2005) (see Algorithm 1).
Note that we consider the objective function f to be maximized.

The characteristic that sets DE apart from other evolutionary algorithms is the
presence of the differential mutation operator (see line 5 of Algorithm 1). This operator
creates a mutant vector U by perturbing a vector X3 picked at random from the current

2The DE version considered here is known as DE/rand/1/bin, which is perhaps the most well-
known. However, many other versions exist (Price et al., 2005).

Evolutionary Computation =~ Volume xx, Number x 5



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

F* (X1 -X2)

X2

U=X3 + F * (X1 -X2)

Figure 1: Construction of U using vectors.

population with the scaled difference of the other two randomly selected population
vectors F - (X1 — X2). The operation is understood to be important because it adapts the
mutation direction and its step size to the level of convergence and spatial distribution
of the current population. The mutant vector is then recombined with the currently
considered vector X (i) using discrete recombination® and the resulting vector V replaces
the current vector in the next population if it has better or equal fitness.

The differential mutation parameter F, known as scale factor or amplification factor,
is a positive real normally between 0 and 1, but it can take also values greater than 1.
The recombination probability parameter Cr of the discrete recombination (Algorithm 1,
line 6) takes values in [0, 1]. It is the probability, for each position in the vector X (i), of
the offspring V inheriting the value of the mutant vector U. When Cr = 1, Algorithm 1
degenerates to a DE algorithm with differential mutation only (because V = U). When
F =0, Algorithm 1 degenerates to a DE algorithm with discrete crossover only, as
U = X3. The population size N, normally varies from 10 to 100.

4 Geometric Differential Evolution

Following the methodology outlined in Section 2, in this section we generalize the
classic DE algorithm to general metric spaces. To do it, we recast differential muta-
tion and discrete recombination as functions of the distance of the underlying search
space, thereby obtaining their abstract geometric definitions. Then, in the following
sections, we derive the specific DE algorithms for binary strings, permutations, vectors
of permutations and genetic programs by plugging distances associated with these
representations in the abstract geometric definition of the search operators.

4.1 Generalization of Differential Mutation

Let X1, X2, X3 be real vectors and F > 0 a scalar. The differential mutation operator
produces a new vector U as follows:
U=X3+F- (X1-X2) 1)
The algebraic operations on real vectors in Equation (1) can be represented graphically
(Price et al., 2005) as in Figure 1 by means of operations on (graphical) vectors, in which
the real vectors X1, X2, X3, and U are represented as points.
Unfortunately, the graphical interpretation of Equation (1) in terms of operations
on vectors does not help us to generalize Equation (1) to general metric spaces because

3In order to enforce a modification of X (i), at least one locus of the mutant vector is normally kept
during recombination.

6 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

the notions of vector and operations on vectors are not well-defined at this level of
generality. More formally, a vector space V is a set that is closed under vector addition
and scalar multiplication. The basic example is the n-dimensional Euclidean space,
where scalars are real numbers. For a general vector space, the scalars are members
of a field F. A field is any set of elements endowed with two operations, addition,
and multiplication, that satisfy a number of axioms, called field axioms. Whereas the
n-dimensional Euclidean space can be naturally associated with a notion of distance,
via the notion of norm, the underlying set X of a metric space cannot in general be
associated with a vector space V over a scalar field F, derived from the metric d of the
metric space.

In the following, we propose a generalization based on interpreting Equation (1)
in terms of segments and extension rays, which are geometric elements well-defined
in both vector spaces and metric spaces. To do that, we need the notions of convex
combination and extension ray, as follows.

DEFINITION 4: Given vectors u, v € V a vector space over R", and scalars r, s € R, a convex
combination is defined as
CX(u,v)=r-u+s-v

withr >0, s > 0, and r + s = 1. The extension ray originating in u and extending beyond v
is defined as
ER(u,v)=r-u+s-v

withs > 0,andr +s = 1.

Note that convex combination and extension ray differ only in the range of the
parameter r.
Equation (1) can be rewritten in terms of convex combination as follows:

U+F-X2=X3+F- X1 @)

By dividing both sides by 1 + F and letting W = HLF we have:

W-U+(1-W)-X2=W-X3+(1-W)-X1 3)

Both sides of Equation (3) are convex combinations of two vectors. On the left-hand side,
the vectors U and X2 have coefficients W and 1 — W, respectively. These coefficients
sum up to one and are both positive because W € [0, 1] for F > 0.* Analogously, the
right-hand side is a convex combination of the vectors X3 and X1 with the same
coefficients.

There is an interesting relation between the algebraic notion of convex combination
of two vectors and the geometric notion of segment in the Euclidean space. Vectors
represent points in space. Any point Pc corresponding to a vector C obtained by a convex
combination of two vectors A and B lay in the line segment between their corresponding
points P4 and Pg. The converse also holds true: any vector C corresponding to a point
Pc of the segment [ P4, Pg] can be obtained as a convex combination of the vectors A and
B. For each point on the segment, the weights W4 and W5 in the convex combination
localize the point Pc on the segment [P,, Pg]: distances to Pc from P4 and Pp are
inversely proportional to the corresponding weights, W4 and Wj, that is, d(Pa, Pc) -
Wi = d(Pg, Pc) - Wp.

4As F is generally in the range [0, 1], the corresponding range for W is in fact only [0.5, 1]. The value
of F should be chosen larger than one, in case different spaces require larger W.

Evolutionary Computation =~ Volume xx, Number x 7



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

U=ER(X2,E
(X2.E) X1

E =CX(X1, X3)

X3
X2

Figure 2: Construction of U using convex combination and extension ray.

The above relation allows for a geometric interpretation of Equation (3) in terms
of convex combinations (see Figure 2). Let us call E the vector obtained by the con-
vex combinations on both sides of Equation (3). Geometrically the point E must be
the intersection point of the segments [U, X2] and [X1, X3]. The distances from E to
the end points of these segments can be determined from Equation (3) as they are in-
versely proportional to their respective weights (i.e., d(U, E) - W = d(X2,E) - (1 — W)
and d(X1, E)- (1 — W) = d(X3, E) - W). Since the point U is unknown (but its weight is
known), it can be determined geometrically by first determining E = CX(X1, X3), the
convex combination of X1 and X3; then, by projecting X2 beyond E obtaining a point
U = ER(X2, E), thatis, the extension ray originating in X2 and passing through E, such
that the proportions of the distances of X2 and U to the point E is inversely proportional
to their weights. In the Euclidean space, the constructions of U using vectors (Figure 1)
and convex combinations (Figure 2) are equivalent (algebraically, hence geometrically).

Segments and extension rays in the Euclidean space and their weighted extensions
can be expressed in terms of distances, hence, these geometric objects can be naturally
generalized to metric spaces by replacing the Euclidean distance with a metric. We will
present their abstract definitions in Section 4.3.

The differential mutation operator U = DM (X1, X2, X3) with scale factor F can now
be defined for any metric space following the construction of U presented in Figure 2
as follows:

1. Compute W = H_LF

2. Get E as the convex combination C X (X1, X3) with weights (1 — W, W) (general-
izing E=(1-W)- X1+ W . X3)

3. Get U as the extension ray ER(X2, E) with weights (W,1 — W) (generalizing
U=(E—(1-W)-X2)/W)

4.2 Generalization of Discrete Recombination

After applying differential mutation, the DE algorithm applies discrete recombination
to U and X (i) generating V. Discrete recombination is a geometric crossover under the
Hamming distance for real vectors (Moraglio, 2006b).> The Hamming distance for real
vectors is defined analogously to the Hamming distance between binary strings: it is

5The name Hamming distance for real vectors derives from the observation that when the domain
of real vectors is restricted to the set of binary strings, the distance on the restricted domain coincides
with the traditional notion of Hamming distance for binary strings.

8 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 2 Formal geometric differential evolution

: initialize population of IV,, configurations at random

1

2: while stop criterion not met do

3. for all configuration X (¢) in the population do

4: pick at random three distinct configurations from the current population X1, X2, X3

5: set W = ﬁ where F' is the scale factor parameter

6: create intermediate configuration E as the convex combination CX (X1, X3) with
weights (1 — W, W)

7: create mutant configuration U as the extension ray FR(X 2, E) with weights (W, 1 —W)

8: create candidate configuration V' as the convex combination C'X (U, X (i)) with

weights (Cr, 1 — Cr) where Cr is the recombination parameter
9: if f(V) > f(X (7)) then

10: set the ith configuration in the next population Y (i) = V
11: else

12: set Y (i) = X (7)

13: end if

14:  end for
15:  for all configuration X (¢) in the population do

16: set X (i) =Y (7)
17:  end for
18: end while

the number of sites with mismatching values across the two vectors. This distance is
provably a metric as it is a product metric of the discrete metric on R (Moraglio, 2006b).
From its definition, we can derive that the Cr parameter of the discrete recombination
is proportional to the expected number of values that V inherits from U. Therefore,
E[HD(U, V)] =Cr-HD(U, X(i)) and E[HD(X(i), V)l =(1—Cr)- HD(U, X(i)). Con-
sequently, Cr and 1 — Cr can be interpreted as the weights of U and X (i), respectively,
of the convex combination that returns V in the space of real vectors endowed with
Hamming distance. In order to generalize the discrete recombination, by replacing
Hamming distance with a metric, we obtain the abstract convex combination operator
CX introduced in the previous section. So, we have that the generalized discrete re-
combination of U and X (i) with probability parameter Cr generating V is as follows:
V = CX(U, X(i)) with weights (Cr, 1 — Cr).

In the classic DE (Algorithm 1), replacing the original differential mutation and
discrete recombination operators with their generalizations, we obtain the formal geo-
metric differential evolution (see Algorithm 2). When the formal algorithm is specified
on the Euclidean space, the resulting Euclidean GDE does not coincide with the classic
DE. This is because, whereas the original differential mutation operator can be ex-
pressed as a function of the Euclidean distance, the original discrete recombination
operator can be expressed as a function of the Hamming distance for real vectors, not
of the Euclidean distance. The Euclidean GDE coincides with an existing variant of
traditional DE (Price et al., 2005), which has the same differential mutation operator
but in which the discrete recombination is replaced with blend crossover. Interestingly,
blend crossover lives in the same space as differential mutation and their joint behavior
has a geometric interpretation in space.

4.3 Definition of Convex Combination and Extension Ray

A notion of convex combination in metric spaces was introduced in the GPSO frame-
work (Moraglio et al., 2006b). The notion of extension ray in metric spaces was intro-

Evolutionary Computation =~ Volume xx, Number x 9



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

duced in the GDE framework (Moraglio and Togelius, 2009). In the following, we review
their definitions and emphasize that the extended ray recombination can be naturally
interpreted as the inverse operation of the convex combination.

In Section 2, we introduced the notion of metric segment. Let us recall the definition
of extension ray in metric spaces. The extension ray ER(A,B) in the Euclidean plane is
a semi-line originating in A and passing through B (note that ER(A, B) # ER(B, A)).
The extension ray in a metric space can be defined indirectly using metric segments, as
follows.

DEFINITION 5:  Given points A and B, the metric extension ray ER(A,B) is the set of points
which comprises any point C that satisfies C € [A, B]or B € [A, C].

Only the part of the extension ray beyond B will be of interest because any point C
that we want to determine, which is the offspring of the differential mutation operator,
is never between A and B by construction.

We can now use these geometric objects as basis for defining the convex combination
operator and the extended ray recombination operator in metric spaces, as follows.

DEFINITION 6: Let X be a metric space endowed with distance function d. The convex combi-
nation in metric spaces CX((A, Wa), (B, Wg)) of two points A and B in X with weights W,
and Wp (positive and summing up to one) returns the set of points comprising any point C in
X such that C € [A, B]and d(A, C) - Wy =d(B, C) - Wp.

When specified to Euclidean spaces, this notion of convex combination coincides
with the traditional notion of convex combination of real vectors. Note that, unlike the
Euclidean case, in other spaces, for specific points A and B and specific choices of W4
and Wg, the convex combination in metric spaces may return a set that contains a single
point, the empty set, or a set containing more than a point.

The extension ray recombination in metric spaces E R is defined as the inverse operation
of the weighted convex combination CX, as follows.

DEFINITION 7:  Let X be a metric space endowed with distance function d. The weighted extension
ray ER((A, Wy), (B, W) of the points A (origin) and B (through) and weights Wy, and Wi,
returns a set of points comprising any point C such that the set of points returned by the convex
combination of C with A with weights Wi and Wy, that is, CX((A, Wap), (C, Wy.)), includes
point B.

Note that from the above definition it follows that the weights W,, and W in ER
are positive real numbers between 0 and 1 and sum up to 1 because they must respect
this condition in CX((A, W), (C, Wy.)). The set of points returned by the weighted
extension ray in metric spaces E R can be characterized explicitly in terms of distances
to the input points of ER, as follows Moraglio and Togelius (2009).

LEMMA 1: The points returned by the weighted extension ray ER((A, Wyp), (B, Wpe)) com-
prises any point C which is at a distance d(A, B) - Wa,/ Wy from B and at a distance
d(A, B)] Wy, from A.

PrROOF: From the definition of weighted extension ray we have that B € CX((A, W,p),
(C, Wpe))). Hence, d(A, C) = d(A, B) + d(B, C) and the distances d(A, B) and d(B, C) are
inversely proportional to the weights Wy, and Wy, that is, d(A, B) - W, =d(B,C) -
We. Consequently, d(A, C) = d(A, B)/ W, and substituting it into d(B, C) = d(A, C) —
d(A, Bywe getd(B, C) =d(A, B) - Wyp/ Wy, since Wy, + Wpe = 1. O

10 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 3 Binary convex combination operator

1: inputs: binary strings A and B and weights W4 and W (weights must be positive and sum
upto 1)
2: for all position ¢ in the strings do

3 if random(0,1) < W, then
4 set C'(4) to A(7)

5. else

6 set C'(4) to B(i)

7 end if

8: end for

9: return string C' as offspring

This characterization is useful to construct procedures to implement the weighted
extension ray for specific spaces. In fact, we used it, together with representation-specific
properties of the extension ray, in the derivation of the extension ray recombination
operators for all representations in this article.

Importantly, the above definitions of convex combination and extension ray in
metric spaces can be made stochastic and relaxed treating their output points as
the outcomes of a random variable which are required to meet the relation between
weights and distances only in expectation. More precisely, the convex combination
CX((A, Wy), (B, Wg)) is understood as a stochastic operator whose output is a random
variable C for which it must hold that (i) the support set of C is included in [A, B] and
(if) E[d(A, C)] - W4 = E[d(B, C)] - Wp. An analogous stochastic definition can be made
for the extension ray. These relaxed versions of the operators have the advantage of
being more naturally suited to combinatorial spaces and being easier to implement for
such spaces.

5 Binary GDE

In this section, we derive formally specific convex combination and extension ray
recombination for the Hamming space for binary strings. These specific operators can
then be plugged in the formal GDE (Algorithm 2) to obtain a specific GDE for the
Hamming space, the binary GDE.

5.1 Convex Combination

Let us consider the convex combination C = CX((A, W4), (B, Wp)) of two points A and
B with weights W4 and Wp (positive and summing up to one). In the Euclidean space, C
is uniquely determined; however, this is not the case for all metric spaces. In particular, it
does not hold for Hamming spaces. When CX is specified to Hamming spaces on binary
strings, it can be formally shown that we obtain the recombination operator outlined in
Algorithm 3 (Moraglio et al., 2006b). This algorithm returns an offspring binary string C
of parent binary strings A and B, where C is interpreted as a random variable on [A, B],
such that E[HD(A, C)]/E[HD(B, C)] = W/ W4 (i.e., the relation holds in expectation
as defined in the previous section), where H D denotes the Hamming distance between
binary strings. This differs from the Euclidean case where the ratio is guaranteed.

5.2 Extension Ray

In order to gain an intuitive understanding of how an extension ray looks like in the
Hamming space, let us consider an example of extension ray originating in A = 110011
and passing through B = 111001.

Evolutionary Computation =~ Volume xx, Number x 11



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

Algorithm 4 Binary extension ray recombination

I: inputs: binary strings A (origin) and B (through) of length n and weights W, 5 and Wg¢
(weights must be positive and sum up to 1)

2: set HD(A, B) as Hamming distance between A and B

3. set HD(B,C) as HD(A, B) - Wap /Wpgc rounded to the closest integer (estimate the
distance between B and C' using the weights)

4: setpas HD(B,C)/(n — HD(A, B)) (this is the probability of flipping bits away from A
and B beyond B)

5: for all position ¢ in the strings do

6. set C(i) = B(7)

7. if B(i) = A(4) and random(0,1) < p then
8: set C(7) to the complement of B(i)

9: end if

10: end for

11: return string C' as offspring

Therelation C € [A, B]is satisfied by those C that match the schema S1 =11 %0 x 1.
This is the set of the possible offspring of A and B that can be obtained by recombining
them using the uniform crossover.

The relation B € [A, C] is satisfied by all those C that match S2 = s % 1 % Ox. This
is the set of all those C that when recombined with A using the uniform crossover can
produce B as offspring.

The following theorem characterizes the extension ray in the Hamming space in
terms of schemata.

THEOREM 2: Let A and B be fixed binary strings in the Hamming space:

1. The relation C € [A, B] is satisfied by those strings C that match the schema obtained
by keeping the common bits in A and B and inserting * where the bits of A and B do not
match.

2. Therelation B € [A, C]is satisfied by all those strings C that match the schema obtained
by inserting x where the bits are common in A and B and inserting the bits coming from
B where the bits of A and B do not match.

PROOF PROOF OF STATEMENT 1: the schema so defined corresponds to the set of the
possible offspring of A and B that can be obtained by recombining them using the uni-
form crossover. This crossover operator corresponds to the uniform geometric crossover
under Hamming distance which returns offspring on the segment between parents.

PROOF OF STATEMENT 2: all C matching the schema S defined in the second statement
recombined with A can produce B as offspring. This is because, at positions where
the schema S presents =, the bit in B can be inherited from A. At positions where the
schema S has 0 or 1, the bit in B can be inherited from C. Furthermore, only the strings
C matching S can produce B when C is recombined with A. O

Using the characterization of the weighted extension ray in terms of distances
(Lemma 1) and the characterization of the extension ray in the Hamming space in
terms of schemata (Theorem 2), we were able to derive the weighted extension ray
recombination for this space (see Algorithm 4). Theorem 3 proves that recombination
operator conforms to the definition of weighted extension ray for the Hamming space
(in expectation).

12 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

THEOREM 3:  Given parents A and B, the stochastic recombination in Algorithm 4 returns ran-
dom offspring C such that Pr(B € [A,C]) =1 and E[HD(B, C)I/HD(A, B) = Wap/Wsc,
where E[HD(B, C)] is the expected Hamming distance between B and the offspring C (with
respect to the probability distribution of C).

PrOOF: This can be shown as follows. The number of bits in which A and B differ are
HD(A,B). The number of bits in which A and B do not differisn — H D(A, B). For the bits
in which A and B differ, the string C equals B. For each bit in which A and B do not differ,
C does not equal B with probability p. So, the expected distance between B and C is
E[HD(B,C)] = (n — HD(A, B)) - p. By substituting p = HD(B, C)/(n — HD(A, B)), we
have E[HD(B, C)] = HD(B, C) = HD(A, B)-Way/Wpgc.So, ELHD(B, C)]/HD(A, B) =
Wag/Wac. O

Theorem 3 holds under the assumption that the diameter of the space is at least as
large as the wanted Hamming distance between A and C. That is, that the requested
point on the extension ray does not go beyond the boundary of the space. When such
a condition does not hold, the value of p becomes larger than 1, and the offspring C
returned by Algorithm 4 is the point on the extension ray at maximum distance from
A, that is, the same offspring which is returned when p = 1. In this case, the required
relation between distance and weights does not hold.

Now we have operational definitions of convex combination and extension ray for
the space of binary strings under HD. These space-specific operators can be plugged in
the formal GDE (Algorithm 2) to obtain a specific GDE for the space of binary strings.

5.3 Experiments for Binary GDE

We implemented the GDE algorithm for binary spaces within a Java framework.® In
order to systematically test the behavior of GDE on landscapes with varying amounts
of epistasis, we performed experiments using NK fitness landscapes, as proposed by
Kauffman (1993). NK landscapes have two parameters: N, the number of dimensions,
was fixed to 100 in our experiments; K, the number of dependencies on other loci per
locus, was varied between 0 and 5.

The proposed algorithm was compared with three other algorithms:

e cGA: A canonical GA, with roulette wheel fitness-proportionate selection, uni-
form crossover and bitflip mutation.

e tGA: A GA with truncation selection, with a selection threshold of popsize/2.

e ES: A u+ A ES, with u = A = popsize/2 and bitflip mutation.

These are basic standard evolutionary algorithms and were chosen to have simple and
well-known methods to compare against. Two types of GAs differing in the selection
scheme used are considered because we found that the selection scheme may affect the
performance significantly.

For the ES and GAs, the bitflip mutation works as follows: each bit in the chro-
mosome is considered, and with probability p this bit is flipped. In the experiments
involving these algorithms, the parameter p was systematically varied between 0.0 and
0.5 in increments of 0.01. For the experiments involving GDE, the key parameters F and
Cr were systematically varied between 0.0 and 1.0 in increments of 0.1.

Source code is available upon request from the second author.

Evolutionary Computation =~ Volume xx, Number x 13



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

Table 1: Results on the NK landscape benchmark. Average maximum fitness at the
last generation (standard deviations in parentheses) for each algorithm using K values
between 0 and 5, using population sizes of both 10 and 100. Fifty runs were performed
for each configuration.

K=0 K=1 K=2 K=3 K =4 K=5

Population size 10
GDE 0.675 (0.0) 0.685(0.019)  0.741 (0.02)  0.768 (0.063) 0.752(0.102) 0.733 (0.136)
cGA 0.579(0.098) 0.620 (0.146)  0.598 (0.117) 0.613 (0.130) 0.603 (0.127) 0.607 (0.116)
tGA  0.651(0.011) 0.709 (0.0419) 0.736 (0.045) 0.731(0.079) 0.747 (0.092) 0.725 (0.11)
ES 0.679 (0.02)  0.698 (0.036)  0.72 (0.063)  0.717 (0.071) 0.720 (0.099) 0.722 (0.104)
Population size 100
GDE 0.649 (0.01)  0.722(0.049) 0.695 (0.081) 0.715(0.09) 0.689 (0.113) 0.683 (0.14)
cGA 0.495(0.138) 0.511(0.183) 0.528 (0.191) 0.526 (0.217) 0.528 (0.189) 0.517 (0.198)
tGA  0.587(0.113) 0.605(0.119)  0.620 (0.133) 0.624 (0.119) 0.629 (0.156) 0.628 (0.121)
ES 0.657 (0.035) 0.693 (0.069)  0.681 (0.097) 0.673 (0.089) 0.692 (0.096) 0.685 (0.109)

Table 2: Best parameter settings found for GDE on the NK landscape benchmark.

K pop/gen F Cr
0 100/100 0.0 0.8
1 100/100 0.0 0.7
2 100/100 0.0 0.5
3 10/1000 0.1 0.9
4 10/1000 0.1 0.8
5 10/1000 0.1 0.8

All evolutionary runs lasted for 10,000 function evaluations, which were allocated
either as population size 100 and 100 generations or as population size 10 and 1,000
generations. The CPU time of the different algorithms was very similar in all cases.

The results in Table 1 show that GDE is a very competitive algorithm overall on
this problem. For population size 100, GDE is the best of the four algorithms for K > 1,
and for population size 10, GDE is the best-performing algorithm when 0 < K < 4.
The difference is statistically significant (p < .001 using a two-tailed student’s t-test) for
K = 3 (both population sizes) and K = 1 (population size 10). GDE is never much worse
than the best algorithm, even for those values of K where it is not the best algorithm.

Table 2 shows the best parameter settings for GDE for different K. Apparently, for
low K, larger population sizes are preferred; and for higher K, smaller populations
do better. Interestingly, for all K, the best configuration is very low F and medium to
high Cr. Table 3 presents the best mutation settings found for ES and GA. The GAs
always performed best with population size 100, and the ES with population size 10.
A clear trend is that ES works best with small populations and both GAs with larger
populations; ES also generally prefers lower mutation rates than the GAs.

5.3.1 Discussion

We have found GDE to be competitive with the best of the tested algorithms. For NK
landscapes, GDE performs overall best of the standard algorithms we tested it against
given roughly the same amount of automatic parameter tuning.

14 Evolutionary Computation =~ Volume xx, Number x



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
Geometric Differential Evolution for Combinatorial and Programs Spaces

Table 3: Best mutation settings for GAs and ES on the NK landscape benchmark.

K cGA tGA ES

0 0.01 0.35 0.01
1 0.01 0.43 0.03
2 0.28 0.47 0.03
3 0.16 0.19 0.04
4 0.39 0.36 0.02
5 0.20 0.30 0.02

Algorithm 5 Swap distance

. inputs: permutations p, and p,

: setdist =0

. for all position ¢ in the permutations do

if p. (i) # py (i) then
find p, (7) in p, and be j its position in p,
swap contents of py(7) and py(5)
dist = dist + 1

end if

: end for

. return dist

R A SR

—_
(=]

The best parameters found for GDE show that high Cr and low F values seem to be
the best choice in most cases. However, although we have not included a table showing
this, the algorithm is not very sensitive to parameters; in particular, F can be varied
within the low range on NK landscapes with very little performance difference. The
exception is that extreme values of Cr result in drastic performance drops.

6 Permutation-based GDE

In this section, we formally derive specific convex combination and extension ray re-
combination for the space of permutations. We use the swap distance between per-
mutations as a basis for the GDE. These specific operators can then be plugged into
the formal GDE (Algorithm 2) to obtain a specific GDE for the space of permutations,
the permutation-based GDE. Note, however, that in principle, we could choose any
other distance between permutations (e.g., adjacent swap distance, reversal distance,
insertion distance, etc.) as a basis of the GDE. In that case, for each distance, we would
obtain a different permutation-based GDE.

6.1 Swap Distance

The swap distance SD(A, B) between two permutations A and B is the minimum number
of swaps needed to order one permutation into the order of the other permutation. The
swap distance can be implemented by counting the number of swaps employed by the
selection sort algorithm as in Algorithm 5, which is provably minimal.

6.2 Convex Combination

Algorithm 6 presents a recombination operator for permutations that was introduced
in the GPSO framework (Moraglio et al., 2008). This operator produces an offspring by

Evolutionary Computation =~ Volume xx, Number x 15



Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a.00099

© by the Massachusetts Institute of Technology
A. Moraglio, ]. Togelius, and S. Silva

Algorithm 6 Convex combination

1: inputs: permutations p, and p;, and their weights W, and W,

2: generate a recombination mask m randomly with a and b with probabilities W, and W,
3: for all position 7 in the permutations do

4 if p, (i) # py (i) then

5 if m (i) = a then
6 find p, (i) in p, and be j its position in pj,
7: swap contents of py,(¢) and p (j)
8 else
9 find py (i) in p, and be j its position in p,
10: swap contents of p, (¢) and p, ()
11: end if
122 endif
13: end for

14: return p, as offspring

sorting by swaps the two parent permutations one toward the other until they converge
to the same permutation. A random recombination mask of the size of the parent
permutations is generated using the parent weights interpreted as probabil