
Genetic Programming Needs Better Benchmarks

James McDermott∗ David R. White† Sean Luke‡

Luca Manzoni§ Mauro Castelli§ Leonardo Vanneschi¶

Wojciech Jaśkowski‖ Krzysztof Krawiec‖ Robin Harper∗∗

Kenneth De Jong‡ Una-May O’Reilly∗

Note. This is Version 3 of the paper. It has corrections in Table 3 compared
to the original GECCO publication and an earlier unnumbered corrective version.

ABSTRACT
Genetic programming (GP) is not a field noted for the rigor
of its benchmarking. Some of its benchmark problems are
popular purely through historical contingency, and they can
be criticized as too easy or as providing misleading infor-
mation concerning real-world performance, but they persist
largely because of inertia and the lack of good alternatives.
Even where the problems themselves are impeccable, com-
parisons between studies are made more difficult by the lack
of standardization. We argue that the definition of standard
benchmarks is an essential step in the maturation of the
field. We make several contributions towards this goal. We
motivate the development of a benchmark suite and define
its goals; we survey existing practice; we enumerate many
candidate benchmarks; we report progress on reference im-
plementations; and we set out a concrete plan for gathering
feedback from the GP community that would, if adopted,
lead to a standard set of benchmarks.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic programming—
Program synthesis

General Terms
Algorithms, Experimentation, Measurement

Keywords
Genetic Programming, Benchmarks

1. INTRODUCTION

“I think GP has a toy problem problem.”

This was the opening salvo of a debate on the Genetic Pro-
gramming mailing list in March 2011 [19]. In this position
paper we distill the ideas that emerged from this debate into
an argument regarding the serious deficiencies in the GP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

community’s benchmark and measurement approach, and
suggest a way forward.

While much of the GP application literature focuses on
nontrivial, domain-specific problems, the fundamental com-
parison and analysis literature typically uses benchmark
problems that are often very simple. We argue that such
benchmarks do little to move the field forward, and in fact
may hold it back as they reward techniques that are effective
at rapidly solving trivial problems rather than performing as
well as possible on hard ones. As argued in [43], these two
goals may be at odds. The problem is accentuated by the
use of metrics that reinforce such rewards.

Devising a good benchmark suite has been recognized
as an important issue for the next ten years of GP [49].
We believe that agreement on a set of benchmarks can be
reached through selection based on community feedback, low
barriers to participation, and deployment using a reference
implementation. Establishing a benchmark suite with a
community consensus has obvious advantages for individual
authors and the field as a whole. A good, well-studied
suite fosters well-grounded comparisons of techniques and
makes it easier for researchers to understand the dynamics of
algorithms as they are applied to known problems. Scalable
benchmarks can also serve as goals to challenge the field.

In this paper, we review related work and discuss what
constitutes a useful benchmark, the status quo of benchmarks
in GP, and the statistical issues in evaluating performance
on benchmarks. We will then list some benchmarks that
may be suitable candidates to form a suite, with the goal
of soliciting community feedback. Finally, we map out the
necessary steps of gathering suitable benchmarks we may
have omitted, and producing a benchmark suite.

∗Computer Science and Artificial Intelligence Laboratory
(CSAIL), Massachusetts Institute of Technology, USA,
[jmmcd, unamay]@csail.mit.edu
†School of Computing Science, University of Glasgow, UK.
david.r.white@glasgow.ac.uk
‡Department of Computer Science, George Mason University,
USA, [sean, kdejong]@cs.gmu.edu
§Dipartimento di Informatica, Sistemistica e Co-
municazione, University of Milano-Bicocca, Italy,
[luca.manzoni, mauro.castelli]@disco.unimib.it
¶Instituto Superior de Estat́ıstica e Gestão de Infor-
mação (ISEGI), Universidade Nova de Lisboa, Portugal,
lvanneschi@isegi.unl.pt
‖Institute of Computing Science, Poznan University of Tech-
nology, Poland, [wjaskowski, kkrawiec]@cs.put.poznan.pl
∗∗Faculty of Science, University of Sydney, Australia,
rharper2@bigpond.net.au

Though this paper is intended to be a significant step
towards the goal of agreeing GP benchmarks, it is not a list
of benchmark recommendations. It is intended as the start
of a discussion, not the end of one. We do not attempt to
dictate a set of benchmarks to researchers: rather the exam-
ples we provide are a vehicle for provoking further discussion
and selection by the community. We invite discussion from
practitioners in both academia and industry. We take the
approach of suggesting many more candidate benchmarks
than are necessary, in order that they be reduced to a more
manageable size based on community feedback. We provide
some reference implementations. Most importantly we sug-
gest a plan for gathering community feedback through a
web application, which we hope will lead to a community
consensus and a standardized set of benchmarks.

2. PREVIOUS WORK
In the broader field of machine learning, benchmark suites

are commonly used to measure progress on well-defined tasks.
The UCI machine learning database1 is a well-known example
with many real-world datasets for tasks like classification,
regression, and clustering.

Evolutionary computation (EC) has long seen the value
of benchmark suites. The first widely used suite was the
De Jong Test Suite [12]. It was designed for two purposes:
to explore the effects that various design decisions and pa-
rameter settings had on the performance of early GA-based
optimizers, and to facilitate comparisons between GA-based
optimizers and more traditional mathematical optimization
techniques. The goal was to have a small number of func-
tions that served as representatives of different classes of
landscapes, the features of which were believed to have a
differential impact on optimization algorithms. In that same
timeframe the Evolution Strategy (ES) community was de-
veloping their own set of real-valued test functions, initially
chosen to be sufficiently mathematically tractable to allow
convergence-related proofs [54].

Both the GA and ES communities continued to add func-
tions to their test suites without any clearly articulated set
of guidelines or principles. Cross-fertilization began to occur
in the early 1990s as the various communities began to coa-
lesce into the field of Evolutionary Computation. However,
optimization benchmark suites consisted of functions cho-
sen primarily to allow comparisons with earlier work. Some
analysis and critiques of these benchmark suites began to
appear [53], but there were no formal attempts to rationalize
and organize them in a moderated repository for another 10
years. The first significant effort was the Evolutionary Com-
putation Benchmarking Repository, (EvoCoBM) [55]2. This
project included descriptions of problems, rather than imple-
mentations. Unfortunately EvoCoBM is now unmaintained.
More recently, the Black-Box Optimization Benchmarking
project3, which deals with real-valued optimization meth-
ods, is well-maintained and achieves community consensus
through regular GECCO workshops and updates.

However, GP benchmarks face certain difficulties specific
to them. GP fitness evaluation involves direct program execu-
tion, and this often demands a much higher degree of coding
overhead and many more details, which in turn make stan-

1http://archive.ics.uci.edu/ml/
2http://www.cs.bham.ac.uk/research/projects/ecb/
3http://coco.gforge.inria.fr/doku.php?id=bbob-2012

dardization, repetition, and fair and significant comparisons
between methods and implementations challenging.

One other previous effort is important to discuss. GP-
Beagle [16] was an online benchmark database open to con-
tributions, and which proposed links between the benchmark
repository and the GP Bibliography. GP-Beagle was ambi-
tious, and required significant extra work from those authors
who chose to submit benchmarks to the repository. Notably,
it defined a fixed template for the problems to be added,
and it sought to specify every detail of the benchmarks.
The repository, being machine-readable, was intended to
open up the possibility of automated testing. Unfortunately,
GP-Beagle was perhaps overly ambitious, and the original
website4 is now gone.

In the wake of GP-Beagle, other efforts have sprung up.
For example, Widera et al. [70] have curated a collection
of bioinformatics problems. There are also several ongoing
competitions in the area of game-playing, such as car-racing
and Mario AI controllers. The qualities and required of
competition problems are largely the same as those required
of benchmarks.

Our project differs from GP-Beagle in important ways. We
recognize that it may be impractical to specify benchmark
problems precisely, or that precise specifications may result
in some problems being incompatible with some methods,
languages, or existing software. Our initial aim is to describe
current practice in the field, leading to recommendations,
community discussion, and eventually consensus. This ap-
proach to community participation is rather different from
that of GP-Beagle, and we hope it will prove more practical.

3. WHAT MAKES A GOOD
BENCHMARK?

As with the remainder of this paper, our suggestions for
benchmark criteria are intended to be open to improvements
and additions. Several of the following criteria obviously
conflict with each other.

Tunably Difficult. Any worthwhile benchmark is non-
trivial. However an ideal benchmark is tunable: more and
more difficult instances can be generated as required.

Varied. A benchmark suite should not be drawn from a
single class of problem. Ideally, the benchmarks should be
sufficiently orthogonal that they can uncover the strengths
and weaknesses of different GP algorithms.

Relevant. A benchmark should be relevant to real appli-
cations and research in the GP field, and ideally to the
wider machine learning, optimization, or search communities.
Results should correlate well with results on real-world appli-
cations. A benchmark should not be vulnerable to paradigm
shifts in the underlying application area that may render it
irrelevant to the domain from which it was taken.

Fast. Because GP individuals are programs to be executed,
often many times per individual, fitness evaluation can be
slow. Bloat [56] exacerbates this problem. An ideal GP
benchmark is fast enough to allow the large number of runs
required for meaningful comparisons between approaches.

4http://www.gp-beagle.org

Accommodating to Implementors. Ideally an effective
benchmark is widely implemented in a variety of toolkits.
A benchmark must be easy to implement and reproduce; it
must be self-contained; it must be open source and patent-
unencumbered; and it must be accessible to and understand-
able by implementers without specialized domain expertise.

Easy to Interpret and Compare. The results produced by
a benchmark should be easily comprehensible and statisti-
cally useful. Success rates in finding an ideal solution — the
hallmark of toy problems — are discouraged in favor of mea-
sures such as average best fitness. Other features, such as
optional multiple objectives, are welcome.

Representation-Independent. Nowadays GP is a commu-
nity and a set of related algorithms, not a single technique.
Common GP methods include Koza-style s-expressions,
strongly-typed GP, Linear GP, Grammatical Evolution,
Cartesian GP, Push GP, and others. In order to facilitate
comparison across methods, a benchmark should not unnec-
essarily require a specific feature of a given representation.
More weakly, though we cannot weed out a representation’s
particular optimization bias, a benchmark should not unduly
favor a given representation’s characteristics.

Precisely-Defined. The benchmark should be well docu-
mented and precisely defined. If appropriate, a benchmark
should be accompanied by a set of recommendations on the
resources typically made available, such as an upper limit on
the number of fitness evaluations. However such recommen-
dations should not be interpreted as permanent constraints.

Current. Over time, the field may move to new application
areas, and abandon old ones. Researchers may find flaws in
old benchmarks, or may discover that they are easily solved
with state of the art methods or machines, making them
less interesting in the future, or may discover that good
performance on a particular synthetic problem fails to corre-
late with real-world applications. Even a good benchmark
suite may need to be replaced after some years if it seems to
be too strongly influencing the direction of research, i.e. if
researchers seem to “teach to the test” [14].

Among the most common benchmark problems have histori-
cally been Even-N Parity, N -Multiplexer, Quartic Polyno-
mial Symbolic Regression, and Artificial Ant. These prob-
lems were first used by Koza [32, 33], became common, and
are still used more than 20 years later. They have constituted
a useful de facto standard benchmark suite for many years.
They represent several classes of problems. The Boolean
problems are scalable in difficulty. They are self-contained,
requiring no external data-set or domain knowledge.

However they are vulnerable to several criticisms. They are
seen as trivial or “toy” problems, which are too easily solved
and do not reflect performance in real-world applications.
They have been in use for so long that they may have had
a tendency to distort the field. The choice of the quartic
polynomial function for symbolic regression seems to require
an assumption that in the space of arithmetic functions, any
target function is equally interesting. In fact, some targets
are far easier to achieve than others. The N -Multiplexer’s
fitness values tend to chunk in powers of 2, so statistical

treatment of mean best fitness is problematic. The extensive
use of this limited set of benchmarks has resulted in some
overfitting. Furthermore, we are expending research effort
in solving problems that are already solved. For all these
reasons, it seems desirable to revise and update the de facto
suite with an improved set of problems.

Constructed problems have also been used in the GP lit-
erature (see Table 1). These are hand-written, defined by a
language and an artificial procedure for assigning fitness to
individuals. Constructed problems are an important feature
of benchmarking in other fields of optimization. Some are
designed to test performance, and others to test other algo-
rithmic issues [61]: for example, Royal Tree problems are
useful in testing building-block behaviour, while Order and
Majority are useful in testing intron behaviour. They are gen-
erally easy to define (exceptions include the K-Landscapes
and Multimodal Trap Functions), and self-contained. They
are often tunable: their difficulty can be changed by mod-
ifying some parameters’ values. This point is particularly
important, since algorithmic properties should be tested
over a complete range of different difficulties and landscape
complexities in order to ensure that they are general and scal-
able. Constructed problems also have some disadvantages.
Very small terminal and non-terminal alphabets are unreal-
istic. Some constructed problems have overly-simple fitness
landscapes, e.g. Royal Tree and Unimodal Trap Functions
have only a single global optimum. Also, the most common
constructed problems are applicable only to tree-based GP.

4. CURRENT PRACTICE
To assess current practice, we surveyed the 183 articles

presented in EuroGP and the GP track of GECCO from
2009 to 2011, of which 172 used benchmarks.

Symbolic Regression. The most widely used class of bench-
marks (about one third of the papers) is symbolic regression.
The implementation of these benchmarks is usually not dif-
ficult. The mean number of symbolic regression problems
used in a paper was 2.4. There is a proliferation of different
benchmarks, which makes a comparison between different
approaches extremely difficult. The most-used function was
the quartic polynomial, with 26.2% of the papers using it.
However, papers used a wide variety of sampling, training,
and testing approaches.

Classification. Classification problems were used in 20.2%
of the surveyed papers. The use of a single classification
problem is rare: the mean number of problems per paper is
3.5. In this area, the use of the UCI repository is prominent:
two thirds of the problems are sourced from this repository.
This is most likely a consequence of the difficulty and time
required to obtain and curate new real-world data sets. Data
is usually in a non-standard format or incomplete. Fur-
thermore, for medical data there are governance issues, for
example protecting patients’ privacy.

Binary Functions. Binary functions were used in about
15% of the articles. The even-N parity (used in 67.9% of pa-
pers) and N -Bit Boolean Multiplexer (53.6%) problems were
the most-used. Other problems, like the Digital Multiplier
and the N -Majority were less used. Compared to symbolic
regression, binary functions problems seem less diverse.

Predictive Modeling. Predictive modeling was included
in about 12.6% of the papers. The number of problems
used on average in an article is 1.48, a number lower than
classification problems. There is no uniformity in the choice
of benchmarks. Nonetheless, the Drug Bioavailability dataset
is used by a little more than 30% of the papers, while the
Median Oral Lethal Dose dataset and the Mackey-Glass time
series are used in about 17.4% of the papers.

Path Finding and Planning. This class of problems has
been used by 19.1% of the articles, with an average of 1.3
problems used in every paper. The Artificial Ant problem is
the most-used example, with 54.3% of the papers.

Other Problems. The remaining problem classes were used
in less than 10% of the papers. Among them, the traditional
programming and constructed problems were the most com-
mon. In the latter class, the Max problem was most-used,
by just over two fifths of the papers.

5. APPROPRIATE STATISTICS
Suggesting or adopting standard benchmarks in itself is

not enough to produce meaningful results: the statistical
procedure for comparing methods is crucial, and effective
comparison benefits from consistency in the literature in this
regard. How should we perform such comparisons?

A large portion of early (and indeed current) GP results
were measured using ideal solution counts: whether or how
often the optimum, or some threshold near the optimum,
was reached. The most common approach [32] defined the
computational effort measure as an estimate of the minimum
number of individuals to be processed in a generational
algorithm in order to achieve a z = 99% probability of
discovering a solution. More formally, this was defined as

min
i
m× (i+ 1) ×

⌈
ln(1−z)

ln(1−P (m,i))

⌉
, where i was a generation

number, m was the population size, and P (m, i) was the
cumulative probability of success, that is, the probability that
an ideal solution would be found on or prior to generation i,
as gathered through samples.

This measure has received significant criticism [51, 7, 43, 47,
4]. Critics have noted that ideal solution counts are really a
measure of how well a method solves trivial problems, rather
than the nontrivial ones found in real world applications.
Attempts have since been made to address another central
criticism: poor accuracy and statistical invalidity [8, 68].

We think that benchmark comparison measures should
instead assume that techniques will be applied, ultimately,
to problems where the optimum is not expected to be discov-
ered, much less repeatedly and easily. For single objective
problems, two obvious candidates are best fitness of run (ap-
propriate for problems where the goal is optimization) and
generalizability measures such as final testing against a with-
held generalization set, or K-fold validation (appropriate for
problems where the goal is to perform model-fitting).

6. TOWARDS A GP BENCHMARK SUITE
The goal of this position paper is not to propose a bench-

mark suite: that is a task that needs to be done via a wider
community discussion and consensus. Our aim is to initiate
that process and to facilitate it. Among the many issues
to be decided through this process, we here emphasise two.

Problem/Category V
a
r
ia
b
le
s

E
p
is
o
d
ic

K
n
o
w
n

S
o
lu

ti
o
n

D
e
te

r
m

in
is
ti
c

D
is
c
r
e
te

F
it
n
e
ss

Boolean Functions
N-Multiplexer, Majority, Parity [32] n Y Y Y Y
Generalized Boolean Circuits [23, 71] n N Y Y Y
Digital Adder [67] 2n+ 1 Y Y Y Y
Digital Multiplier [67] 2n Y Y Y Y

Classification
mRNA Motif Classification [37] - Y N Y Y
DNA Motif Discovery [38] - Y N Y Y
Protein Structure Classification [70] 8 Y N Y Y
Intrusion Detection [22] 41 Y N Y Y
Protein Classification [34] 20 Y N Y Y
Intertwined Spirals [32] 2 Y N Y Y

Predictive Modelling
Mackey-Glass Chaotic Time Series [35] 8 Y N Y N
Sunspot Prediction [27] 12 Y N Y N
Financial Trading [6, 13] 75–273 Y N Y Y
Prime Number Prediction [66] 1 Y N Y N
Drug Bioavailability [57] 241 Y N Y N
Median Oral Lethal Dose [2] 626 Y N Y N
Time Series Forecasting [65] 12–240 Y N Y N

Path-finding and Planning
Physical Travelling Salesman [41] 21–101 N N Y Y
Artificial Ant [32] 0 N Y Y Y
Lawnmower [33] 0 N Y Y Y
Tartarus Problem [9] 7 N N Y N
Circuit Design [44] 1 Y N N N

Control Systems
Chaotic Dynamic Systems Control [39] 3–4 N N Y N
Pole Balancing [46] 4 N N Y N
Truck Control [31] 4 N N Y N

Game Playing
TORCS Car Racing [15] 16 N N N N
Ms. PacMan [17] - N N N Y
Othello [40] 64 Y N Y Y
Chessboard Evaluation [24] 32 N N N Y
Backgammon [3] - N N N Y
Mario [59] 21–101 N N N Y
Robocode [58] 14 N N N Y
Lose-Checkers [5] 267 N N N Y

Dynamic Optimization
Stochastic Dynamic Sym. Reg. [48] 5 Y N N N
Periodic Dynamic Sym. Reg. [63] 4 Y N Y N
Dynamic Scheduling [26] 10 N N Y N

Traditional Programming
Sorting [29] 2 N Y Y Y
Recursive Sorting [1] 3 Y Y Y Y
Bug-Fixing [69] - Y N Y Y

Constructed Problems
Royal Trees [52] 0 Y Y Y Y
Max [18, 36] 0 Y Y Y N
Lid [11] 0 Y Y Y N
Order and Majority [20] 0 Y Y Y Y
Trap functions [60] 0 Y Y Y Y
K-landscapes [62] 0 Y Y N Y
OrderTree problem [25] 0 Y Y Y Y
TreeString problem [21] 0 Y Y Y Y

Table 1: Some Candidate Benchmarks with Certain
Features. For Symbolic Regression, see Table 3.

Name Functions Constants (ERC)

Koza +−×% sin cos en ln(|n|) None
Korns +−×% sin cos en ln(|n|)

n2 n3√n tan tanh
Random finite 64-
bit IEEE double

Keijzer +× 1
n
−n
√
n Random value from

N(µ=0, σ=5)

Vladislavleva-A +−×% n2 nε n+ε nε

Vladislavleva-B +−×% n2 en e−n nε n+ε nε

Vladislavleva-C +−×%n2 en e−n sin cos nε n+ε nε

Table 2: Function Sets for Table 3. Terminals for
variables (x, y, z, v, w) not shown. Vladislavleva’s
“constants” are functions with arguments, not ter-
minals: ε is a uniform random value from [−5, 5].
Koza’s function set traditionally has optional [−1, 1)
constants: but we assume no constants by default.

First is the choice of a benchmark suite. Which classes of
problems, how many, and which ones?

Second, to what degree should the problems be specified?
It is natural to answer that the specification should be as
tight and complete as possible, with every detail specified a
priori, even including limits on the number of fitness function
calls allowed. Feldt et al. [16] supported such a policy by
requiring a centralized repository of benchmark implemen-
tations. Further support is provided by Daida et al. [10],
who show how innocuous changes in experimental details
can produce wildly varying results. The advantage of such a
policy would be to allow performance results to be compared
directly across papers, without in-paper controls.

This policy also has disadvantages. Many packages differ
in their treatment of various GP details in such a way that
compatibility with a benchmark specification may be non-
trivial. Most GP authors will not find it convenient to
switch their development effort to a new software package
or language. Some important GP advances would not be
amenable to benchmarking if the benchmark suite is too
restrictive: for example, the results of the linear-scaling
approach to fitness advocated by Keijzer [28] were not directly
comparable to previously-published results with the same
functions. One can imagine similar hypothetical examples:
a novel technique to improve performance in the context of
GP random numerical constants might be “outlawed” by a
benchmark that specified the workings of ERCs.

A possible alternative is to specify benchmarks less tightly,
and ensure that they can be used universally. Authors should
still aim for complete reporting of all implementation details.
However, the possibility of differing representations and im-
plementation details would mean that results on a particular
benchmark cannot always be compared directly across papers.
That is, authors would continue to use in-paper controls.

The community is therefore faced with a choice between a
more ambitious (more tightly specified) or a more practical
(less tightly specified) course of action. This is a difference
of degree only: either course would still imply a real shift in
community standards in the direction of increased rigor.

GP Benchmarks Wiki. We have developed a Wiki5 collect-
ing applications and problems in a wide variety of subjects
and classifications, plus benchmark criteria. The intention

5http://groups.csail.mit.edu/EVO-DesignOpt/GPBenchmarks

is to provide a nexus for GP community discussion on this
topic. Each candidate benchmark will be assigned a stable
Wiki URL to allow automated tracking of future usage.

Candidate Benchmarks. In addition to the survey of re-
cent GECCO and EuroGP papers, we have collected from
the broader literature an initial set of candidate benchmarks
to provide a starting point for discussion. It is set out in
Table 1, with the symbolic regression examples separated out
in Table 3. This collection casts a very wide net: it includes
candidates we have previously criticized in this paper, as well
as candidates that clearly violate one or more of the criteria
set forth earlier: notably efficiency. However the candidates
together satisfy all the criteria in Section 3.

In order to aid navigation in the tables and character-
ize problems in a systematic way, we use a set of common
problem features. The features are: the number of true,
data-fetching variables; whether or not the problem uses
episodic, i.e. independent evaluations, in contrast to sequen-
tial evaluation as in the Artificial Ant; whether or not fitness
is discrete; whether or not there is a known, ideal solution;
and whether or not the problem is deterministic.

The 53 symbolic regression target functions in Table 3
(with function sets in Table 2) are drawn from several well-
known sources in the literature [28, 30, 32, 45, 50, 64]. There
is significant variance among them. The variance in difficulty
is high: for example, Koza-1 (“Quartic”) is well understood
and relatively easy, while Pagie-1 has a reputation for being
challenging [50]. The number of variables ranges from 1 to 5;
the sample sizes vary from as few as 20 to as many as 10,000.
Some benchmarks were meant for pure optimization, while
others were intended for regression and so have separate
training and testing sets. They also vary in their function
sets and in how their sample points are generated.

Implementation. We have contributed all 53 symbolic re-
gression benchmarks, including function sets and initializa-
tion procedures, to the ECJ toolkit [42]. Implementation
of several constructed problems in the ECJ format is un-
derway. ECJ is a popular GP library and one of the oldest
and most stable in the field. Being written in Java makes
it possible to guarantee a consistent interpretation of the
benchmark code regardless of platform. A primary objective
of this reference implementation is to provide clear, well
commented, and clean code in order to make reuse as easy as
possible. Authors wishing to use the benchmarks will have
the option of using this code directly, using it as a guide
to their own implementation, or continuing to use existing
implementations if they believe them to be consistent with
the reference implementation. Reference implementations in
other languages and packages would be greatly welcomed.

7. NEXT STEPS
This paper is the beginning of a process that we hope will

lead to a consensus and a standard set of benchmarks. The
initial step will be an open discussion at GECCO 2012. Next,
if GECCO delegates agree, the following plan will be carried
out. A community poll and feedback mechanism will be run
via the Wiki page and driven by community mailing lists.
Key issues to be decided will be the choice of benchmarks
and how tightly-specified they should be, as discussed above.
Based on the results, a short publication will be submitted

to a community venue such as the SigEVO newsletter or
the Genetic Programming and Evolvable Machines journal,
proposing a suite which we will term GPBenchmarks2012-α.
It will encourage authors to begin to mention this term and
the problems’ stable Wiki URLs, if they wish to lend their
weight to the effort. Based on a final round of feedback
in response to the above publication, GPBenchmarks2012-
final will be published as soon as possible. The issue of
GP benchmarks will be revisited regularly, possibly via a
conference workshop.

8. ACKNOWLEDGEMENTS
This work was supported in part by: NSF grant 0916870;

IRCSET/Marie Curie; and NCN 2011/01/B/ST6/07318.

9. REFERENCES
[1] A. Agapitos and S. M. Lucas. Evolving Modular

Recursive Sorting Algorithms. In Proc. EuroGP. 2007.

[2] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi.
Genetic Programming and Other Machine Learning
Approaches to Predict Median Oral Lethal Dose
(LD50) and Plasma Protein Binding Levels (%PPB) of
Drugs. In Proc. EvoBIO. 2007.

[3] Y. Azaria and M. Sipper. GP-Gammon: Genetically
Programming Backgammon Players. GPEM, 6:283–300,
2005.

[4] D. F. Barrero, M. R-Moreno, B. Castano, and
D. Camacho. An Empirical Study on the Accuracy of
Computational Effort in Genetic Programming. In
Proc. CEC. 2011.

[5] A. Benbassat and M. Sipper. Evolving Lose-Checkers
Players using Genetic Programming. In Proc. IEEE
Computational Intelligence and Games. 2010.

[6] R. Bradley, A. Brabazon, and M. O’Neill. Dynamic
High Frequency Trading: A Neuro-Evolutionary
Approach. In Proc. EvoWorkshops. 2009.

[7] S. Christensen and F. Oppacher. An Analysis of Koza’s
Computational Effort Statistic for Genetic
Programming. In Proc. EuroGP. Springer-Verlag, 2002.

[8] S. Christensen and F. Oppacher. The Y-Test: Fairly
Comparing Experimental Setups with Unequal Effort.
In Proc. CEC. IEEE, 2006.

[9] G. Cuccu and F. Gomez. When novelty is not enough.
In Proc. EvoApplications. 2011.

[10] J. M. Daida, et al. Challenges with Verification,
Repeatability, and Meaningful Comparison in Genetic
Programming: Gibson’s Magic. In Proc. GECCO. 1999.

[11] J. M. Daida, et al. What Makes a Problem GP-Hard?
Analysis of a Tunably Difficult Problem in Genetic
Programming. GPEM, 2:165–191, 2001.

[12] K. A. De Jong. An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. Ph.D. thesis, Department
of Computer and Communication Sciences, University
of Michigan, Ann Arbor, Michigan, 1975.

[13] I. Dempsey, M. O’Neill, and A. Brabazon. Adaptive
Trading With Grammatical Evolution. In Proc. CEC.
2006.

[14] C. Drummond and N. Japkowicz. Warning: statistical
benchmarking is addictive. Kicking the habit in
machine learning. Journal of Experimental &
Theoretical Artificial Intelligence, 22(1):67–80, 2010.

[15] M. Ebner and T. Tiede. Evolving Driving Controllers
using Genetic Programming. In Proc. IEEE
Computational Intelligence and Games. 2009.

[16] R. Feldt, et al. GP-Beagle: A benchmarking problem
repository for the genetic programming community. In
Late Breaking Papers at GECCO. 2000.

[17] E. Galván-López, J. Swafford, M. O’Neill, and
A. Brabazon. Evolving a Ms. PacMan Controller Using
Grammatical Evolution. In Applications of
Evolutionary Computation. Springer, 2010.

[18] C. Gathercole and P. Ross. An Adverse Interaction
between Crossover and Restricted Tree Depth in
Genetic Programming. In Proc. GECCO. 1996.

[19] Genetic Programming Mailing List Discussion.
http://tech.groups.yahoo.com/group/genetic programming/

message/5410, 2012. [Online: accessed 27–Jan-2012].

[20] D. E. Goldberg and U.-M. O’Reilly. Where does the
Good Stuff Go, and Why? How Contextual Semantics
Influence Program Structure in Simple Genetic
Programming. In Proc. EuroGP. 1998.

[21] S. Gustafson, E. K. Burke, and N. Krasnogor. The
Tree-String Problem: An Artificial Domain for
Structure and Content Search. In Proc. EuroGP. 2005.

[22] J. V. Hansen, P. B. Lowry, R. D. Meservy, and D. M.
McDonald. Genetic Programming for Prevention of
Cyberterrorism through Dynamic and Evolving
Intrusion Detection. Decision Support Systems,
43:1362–1374, 2007.

[23] S. Harding, J. F. Miller, and W. Banzhaf.
Developments in Cartesian Genetic Programming:
self-modifying CGP. GPEM, 11:397–439, 2010.

[24] A. Hauptman and M. Sipper. GP-EndChess: Using
Genetic Programming to Evolve Chess Endgame
Players. In Proc. EuroGP. Springer, 2005.

[25] T.-H. Hoang, et al. ORDERTREE: a New Test Problem
for Genetic Programming. In Proc. GECCO. 2006.

[26] D. Jakobović and L. Budin. Dynamic Scheduling with
Genetic Programming. In Proc. EuroGP. 2006.

[27] H. Jäske. Prediction of Sunspots by GP. In Proc.
Second Nordic Workshop on Genetic Algorithms. Vaasa,
Finland, 1996.

[28] M. Keijzer. Improving Symbolic Regression with
Interval Arithmetic and Linear Scaling. In Proc.
EuroGP. 2003.

[29] K. E. Kinnear, Jr. Evolving a Sort: Lessons in Genetic
Programming. In Proc. of the International Conference
on Neural Networks. 1993.

[30] M. F. Korns. Accuracy in Symbolic Regression. In Proc.
GPTP. 2011.

[31] J. Koza. A Genetic Approach to the Truck Backer
Upper Problem and the Inter-twined Spiral Problem.
In Proc. International Joint Conference on Neural
Networks. 1992.

[32] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[33] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, 1994.

[34] W. Langdon and W. Banzhaf. Repeated Patterns in
Genetic Programming. Natural Computing, 7:589–613,
2008.

[35] W. B. Langdon and W. Banzhaf. Repeated Sequences
in Linear Genetic Programming Genomes. Complex
Systems, 15(4):285–306, 2005.

[36] W. B. Langdon and R. Poli. An Analysis of the MAX
problem in Genetic Programming. In Proc. GECCO.
1997.

[37] W. B. Langdon, J. Rowsell, and A. P. Harrison.
Creating Regular Expressions as mRNA Motifs with
GP to Predict Human Exon Splitting. In Proc. GECCO.
2009.

[38] W. B. Langdon, O. Sanchez Graillet, and A. P.
Harrison. Automated DNA Motif Discovery. arXiv.org,
2010.

[39] M. Lones, A. Tyrrell, S. Stepney, and L. Caves.
Controlling Complex Dynamics with Artificial
Biochemical Networks. In Proc. EuroGP, pp. 159–170.
2010.

[40] S. Lucas. Othello Competition.
http://algoval.essex.ac.uk:8080/othello/html/Othello.html,
2012. [Online; accessed 27-Jan-2012].

[41] S. Lucas. The Physical Travelling Salesperson Problem.
http://algoval.essex.ac.uk/ptsp/ptsp.html, 2012. [Online:
accessed 27–Jan-2012].

[42] S. Luke. ECJ 20: An Evolutionary Computation
Library in Java. http://cs.gmu.edu/∼eclab/projects/ecj/,
2012. [Online; accessed 27-Jan-2012].

[43] S. Luke and L. Panait. Is The Perfect The Enemy Of
The Good? In Proc. GECCO. 2002.

[44] T. McConaghy. FFX: Fast, Scalable, Deterministic
Symbolic Regression Technology. In Proc. GPTP. 2011.

[45] Q. U. Nguyen, et al. Semantically-Based Crossover in
Genetic Programming: Application to Real-valued
Symbolic Regression. GPEM, 12:91–119, 2011.

[46] M. Nicolau, M. Schoenauer, and W. Banzhaf. Evolving
Genes to Balance a Pole. In Proc. EuroGP. 2010.

[47] J. Niehaus and W. Banzhaf. More on Computational
Effort Statistics for Genetic Programming. In Proc.
EuroGP. 2003.

[48] M. O’Neill, A. Brabazon, and E. Hemberg. Subtree
Deactivation Control with Grammatical Genetic
Programming in Dynamic Environments. In Proc. CEC.
2008.

[49] M. O’Neill, L. Vanneschi, S. Gustafson, and
W. Banzhaf. Open Issues in Genetic Programming.
GPEM, 11(3/4):339–363, 2010.

[50] L. Pagie and P. Hogeweg. Evolutionary Consequences
of Coevolving Targets. Evolutionary Computation,
5:401–418, 1997.

[51] N. Paterson and M. Livesey. Performance Comparison
in Genetic Programming. In Late Breaking Papers at
GECCO. 2000.

[52] B. Punch, D. Zongker, and E. Goodman. The Royal
Tree Problem, a Benchmark for Single and Multiple
Population Genetic Programming. In Advances in
Genetic Programming 2, pp. 299–316. MIT Press, 1996.

[53] R. Salomon. Performance degradation of genetic
algorithms under coordinate rotation. In Proc. EP, pp.
153–161. 1996.

[54] H.-P. Schwefel. Evolutionsstrategie und numerische
Optimierung. Ph.D. thesis, Technische Universität
Berlin, Germany, 1975.

[55] B. Sendhoff, M. Roberts, and X. Yao. Evolutionary
Computation Benchmarking Repository. IEEE
Computational Intelligence Magazine, 1(4):50–60, 2006.

[56] S. Silva and E. Costa. Dynamic Limits for Bloat
Control in Genetic Programming and a Review of Past
and Current Bloat Theories. GPEM, 10:141–179, 2009.

[57] S. Silva and L. Vanneschi. State-of-the-Art Genetic
Programming for Predicting Human Oral
Bioavailability of Drugs. In Proc. 4th International
Workshop on Practical Applications of Computational
Biology and Bioinformatics. 2010.

[58] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel.
Designing an Evolutionary Strategizing Machine for
Game Playing and Beyond. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 37(4):583 –593, 2007.

[59] J. Togelius, S. Karakovskiy, J. Koutnik, and
J. Schmidhuber. Super Mario Evolution. In Proc. IEEE
Computational Intelligence and Games. 2009.

[60] M. Tomassini, L. Vanneschi, P. Collard, and
M. Clergue. A Study of Fitness Distance Correlation as
a Difficulty Measure in Genetic Programming. Evol.
Comput., 13:213–239, June 2005.

[61] L. Vanneschi. Theory and Practice for Efficient Genetic
Programming. Ph.D. thesis, Faculty of Sciences,
University of Lausanne, Switzerland, 2004.

[62] L. Vanneschi, M. Castelli, and L. Manzoni. The K
Landscapes: a Tunably Difficult Benchmark for
Genetic Programming. In Proc. GECCO. 2011.

[63] L. Vanneschi and G. Cuccu. Variable Size Population
for Dynamic Optimization with Genetic Programming.
In Proc. GECCO. 2009.

[64] E. Vladislavleva, G. Smits, and D. Den Hertog. Order
of Nonlinearity as a Complexity Measure for Models
Generated by Symbolic Regression via Pareto Genetic
Programming. IEEE Trans EC, 13(2):333–349, 2009.

[65] N. Wagner, Z. Michalewicz, M. Khouja, and
R. McGregor. Time Series Forecasting for Dynamic
Environments: The DyFor Genetic Program Model.
IEEE Trans EC, 2007.

[66] J. Walker and J. Miller. Predicting Prime Numbers
Using Cartesian Genetic Programming. In Proc.
EuroGP. 2007.

[67] J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller.
Parallel Evolution using Multi-chromosome Cartesian
Genetic Programming. GPEM, 10:417–445, 2009.

[68] M. Walker, H. Edwards, and C. Messom. The
Reliability of Confidence Intervals for Computational
Effort Comparisons. In Proc. GECCO. 2007.

[69] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically Finding Patches using Genetic
Programming. In Proc. 31st International Conference
on Software Engineering. 2009.

[70] P. Widera, J. Garibaldi, and N. Krasnogor. GP
challenge: Evolving energy function for protein
structure prediction. GPEM, 11:61–88, 2010.

[71] T. Yu. Hierarchical Processing for Evolving Recursive
and Modular Programs Using Higher-Order Functions
and Lambda Abstraction. GPEM, 2:345–380, 2001.

Name Vars Objective Function Training Set Testing Set Function Set

Koza-1 [32] 1 x4 + x3 + x2 + x U[-1, 1, 20] None Koza
Koza-2 [33] 1 x5 − 2x3 + x U[-1, 1, 20] None Koza
Koza-3 [33] 1 x6 − 2x4 + x2 U[-1, 1, 20] None Koza
Nguyen-1 [45] 1 x3 + x2 + x U[-1, 1, 20] None Koza
Nguyen-3 [45] 1 x5 + x4 + x3 + x2 + x U[-1, 1, 20] None Koza
Nguyen-4 [45] 1 x6 + x5 + x4 + x3 + x2 + x U[-1, 1, 20] None Koza
Nguyen-5 [45] 1 sin(x2) cos(x)− 1 U[-1, 1, 20] None Koza
Nguyen-6 [45] 1 sin(x) + sin(x+ x2) U[-1, 1, 20] None Koza
Nguyen-7 [45] 1 ln(x+ 1) + ln(x2 + 1) U[0, 2, 20] None Koza
Nguyen-8 [45] 1

√
x U[0, 4, 20] None Koza

Nguyen-9 [45] 2 sin(x) + sin(y2) U[-1, 1, 100] None Koza

Nguyen-10 [45] 2 2 sin(x) cos(y) U[-1, 1, 100] None Koza

Pagie-1 [50] 2 1
1+x−4 + 1

1+y−4 E[-5, 5, 0.4] None Koza

Korns-1 [30] 5 1.57 + (24.3 v) U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-2 [30] 5 0.23 + 14.2 v+y
3w

U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-3 [30] 5 −5.41 + 4.9
v−x+ y

w
3w

U[-50, 50, 10000] U[-50, 50, 10000] Korns
Korns-4 [30] 5 −2.3 + 0.13 sin(z) U[-50, 50, 10000] U[-50, 50, 10000] Korns
Korns-5 [30] 5 3 + 2.13 ln(w) U[-50, 50, 10000] U[-50, 50, 10000] Korns
Korns-6 [30] 5 1.3 + 0.13

√
x U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-7 [30] 5 213.80940889(1− e−0.54723748542 x) U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-8 [30] 5 6.87 + 11
√

7.23x v w U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-9 [30] 5
√
x

ln y
ez

v2
U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-10 [30] 5 0.81 + 24.3 2 y+3 z2

4 (v)3+5 (w)4
U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-11 [30] 5 6.87 + 11 cos(7.23x3) U[-50, 50, 10000] U[-50, 50, 10000] Korns
Korns-12 [30] 5 2− 2.1 cos(9.8x) sin(1.3w) U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-13 [30] 5 32− 3
tan(x)
tan(y)

tan(z)
tan(v)

U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-14 [30] 5 22− 4.2 (cos(x)− tan(y))
tanh(z)
sin(v)

U[-50, 50, 10000] U[-50, 50, 10000] Korns

Korns-15 [30] 5 12− 6
tan(x)
ey

(ln(z)− tan(v)) U[-50, 50, 10000] U[-50, 50, 10000] Korns
Keijzer-1 [28] 1 0.3 x sin(2πx) E[-1, 1, 0.1] E[-1, 1, 0.001] Keijzer
Keijzer-2 [28] 1 0.3 x sin(2πx) E[-2, 2, 0.1] E[-2, 2, 0.001] Keijzer

Keijzer-3 [28] 1 0.3 x sin(2πx) E[-3, 3, 0.1] E[-3, 3, 0.001] Keijzer
Keijzer-4 [28] 1 x3e−x cos(x) sin(x)(sin2(x) cos(x)− 1) E[0, 10, 0.05] E[0.05, 10.05, 0.05] Keijzer

Keijzer-5 [28] 3 30xz
(x−10)y2

x, z : U[-1, 1, 1000] x, z : U[-1, 1, 10000] Keijzer
y : U[1, 2, 1000] y : U[1, 2, 10000]

Keijzer-6 [28] 1
∑x
i

1
i

E[1, 50, 1] E[1, 120, 1] Keijzer
Keijzer-7 [28] 1 lnx E[1, 100, 1] E[1, 100, 0.1] Keijzer
Keijzer-8 [28] 1

√
x E[0, 100, 1] E[0, 100, 0.1] Keijzer

Keijzer-9 [28] 1 arcsinh(x) i.e., ln(x+
√
x2 + 1) E[0, 100, 1] E[0, 100, 0.1] Keijzer

Keijzer-10 [28] 2 xy U[0, 1, 100] E[0, 1, 0.01] Keijzer
Keijzer-11 [28] 2 xy + sin((x− 1)(y − 1)) U[-3, 3, 20] E[-3, 3, 0.01] Keijzer

Keijzer-12 [28] 2 x4 − x3 + y2

2
− y U[-3, 3, 20] E[-3, 3, 0.01] Keijzer

Keijzer-13 [28] 2 6 sin(x) cos(y) U[-3, 3, 20] E[-3, 3, 0.01] Keijzer

Keijzer-14 [28] 2 8
2+x2+y2

U[-3, 3, 20] E[-3, 3, 0.01] Keijzer

Keijzer-15 [28] 2 x3

5
+ y3

2
− y − x U[-3, 3, 20] E[-3, 3, 0.01] Keijzer

Vladislavleva-1 [64] 2 e−(x−1)2

1.2+(y−2.5)2
U[0.3, 4, 100] E[-0.2, 4.2, 0.1] Vladislavleva-B

Vladislavleva-2 [64] 1 e−xx3(cosx sinx)(cosx sin2 x− 1) E[0.05, 10, 0.1] E[-0.5, 10.5, 0.05] Vladislavleva-C

Vladislavleva-3 [64] 2 e−xx3(cosx sinx)(cosx sin2 x− 1)(y − 5) x: E[0.05, 10, 0.1] x: E[-0.5, 10.5, 0.05] Vladislavleva-C
y: E[0.05, 10.05, 2] y: E[-0.5, 10.5, 0.5]

Vladislavleva-4 [64] 5 10
5+(x−3)2+(y−3)2+(z−3)2+(v−3)2+(w−3)2

U[0.05, 6.05, 1024] U[-0.25, 6.35, 5000] Vladislavleva-A

Vladislavleva-5 [64] 3 30
(x−1)(z−1)

y2(x−10)
x: U[0.05, 2, 300] x: E[-0.05, 2.1, 0.15] Vladislavleva-A

y: U[1, 2, 300] y: E[0.95, 2.05, 0.1]
z: U[0.05, 2, 300] z: E[-0.05, 2.1, 0.15]

Vladislavleva-6 [64] 2 6 sin(x) cos(y) U[0.1, 5.9, 30] E[-0.05, 6.05, 0.02] Vladislavleva-B
Vladislavleva-7 [64] 2 (x− 3)(y − 3) + 2 sin((x− 4)(y − 4)) U[0.05, 6.05, 300] U[-0.25, 6.35, 1000] Vladislavleva-C

Vladislavleva-8 [64] 2
(x−3)4+(y−3)3−(y−3)

(y−2)4+10
U[0.05, 6.05, 50] E[-0.25, 6.35, 0.2] Vladislavleva-A

Table 3: Symbolic Regression Benchmark Candidates. Variable names are, in order, x, y, z, v, w. Some
benchmarks intentionally omit variables from the function. U[a,b,c] is c uniform random samples drawn from
a to b, inclusive, for the variable. E[a,b,c] is a grid of points evenly spaced (for this variable) with an interval
of c, from a to b inclusive. Testing and training sets are independent. See Table 2 for function sets.
Note. This table has corrected values compared to the GECCO version. Nguyen-2, Nguyen-11, and Nguyen-12 have been omitted, and other corrections have been outlined in rectangular boxes.

