
Double-Strength CAFFEINE: Fast Template-Free Symbolic Modeling of
Analog Circuits via Implicit Canonical Form Functions and Explicit Introns

Trent McConaghy, Georges Gielen

K.U. Leuven, ESAT-MICAS

Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

Abstract

CAFFEINE, introduced previously, automatically
generates nonlinear, template-free symbolic performance
models of analog circuits from SPICE data. Its key was a
directly-interpretable functional form, found via
evolutionary search. In application to automated sizing
of analog circuits, CAFFEINE was shown to have the best
predictive ability from among 10 regression techniques,
but was too slow to be used practically in the optimization
loop. In this paper, we describe Double-Strength
CAFFEINE, which is designed to be fast enough for
automated sizing, yet retain good predictive abilities. We
design “smooth, uniform” search operators which have
been shown to greatly improve efficiency in other
domains. Such operators are not straightforward to
design; we achieve them in functions by simultaneously
making the grammar-constrained functional form
implicit, and embedding explicit ‘introns’ (subfunctions
appearing in the candidate that are not expressed).
Experimental results on six test problems show that
Double-Strength CAFFEINE achieves an average
speedup of 5x on the most challenging problems and 3x
overall; thus making the technique fast enough for
automated sizing.

1 Introduction
Symbolic models of analog circuits increase a

designer’s understanding of a circuit, leading to better
decision-making in sizing, layout, verification, and
topology design. Since manually creating such models
can be time-consuming and difficult, automated model
creation is of interest.

 Symbolic analysis approaches [1] directly analyze an
input topology, but are limited to linear and weakly
nonlinear circuits. Symbolic modeling approaches [2,3]
use SPICE-like simulation data to generate interpretable
mathematical expressions that relate the circuit
performances to the design variables, i.e. “performance
models”. By leveraging SPICE, such approaches can
handle nonlinear circuits, environmental effects,
manufacturing effects, and different technologies.

Unlike other approaches, CAFFEINE [3] generates
symbolic models with open-ended functional forms, i.e.
without a priori supplied templates. CAFFEINE’s
strategy is to build Canonical Functional Form
Expressions in Evolution so that functions are
interpretable. Figure 1illustrates the flow.

Figure 1: CAFFEINE symbolic modeling flow

CAFFEINE’s weakness was speed. In [4], ten
modeling techniques were compared on six problems, in
the context of circuit optimization. While CAFFEINE
had the best prediction ability, it needed to be at least 3x
faster to have model building time below 5 minutes;
Figure 2 illustrates. Speed would also help behavioral
modeling [5].

Figure 2: Error vs. modeling time for 10 techniques

in the context of a circuit sizing problem, plus the aim
of Double Strength CAFFEINE

This paper shows how we have sped up CAFFEINE
using two techniques novel to analog CAD and to
canonical-form function building: “smooth operators” and
“introns”. The contributions of this paper are:
• Reconciling so-called “smooth, uniform crossover”
and “smooth mutation” with canonical form functions
• Designing non-expressed subfunctions, or “introns”,
for canonical form functions
• Demonstration of faster creation of template-free
interpretable symbolic models, thus creating new
opportunities for applying CAFFEINE, most notably in
automated circuit sizing

This paper is organized as follows. Section 2 defines
the problem. Sections 3-5 give background on GP,
CAFFEINE, smooth / uniform operators, and introns.
Section 6 describes Double Strength CAFFEINE. Section
7 shows results; section 8 provides conclusions.

2 Problem Formulation
The problem that CAFFEINE addresses [3] is:

• Given: A set of {x(t),y(t)},t=1..N data samples where
x(t) is a d-dimensional design point t and y(t) is a
corresponding circuit performance value measured from
(SPICE) simulation of that design, and no model template
• Determine: A set of symbolic models *f F∈ that
together provide the optimal tradeoff between prediction
error and some measure of model complexity (i.e. a
multi-objective problem).
This paper has an additional aim: make CAFFEINE fast
enough to be used within the context of optimization;
specifically, make it at least 3x faster than [3].

We measure speedup as the reduction in number of
candidate functions (individuals) to solve test problems.
The multi-objective nature of CAFFEINE adds a wrinkle:
one can measure performance of multi-objective
algorithms [6], but such measures either lose information
making multi-objective measures scalar, or provide just
qualitative assessment. We took a simpler route
appropriate to our problem: have an upper bound of
complexity, minimize the training normalized mean-
squared error (nmse) with a single-objective algorithm,
and stop when target nmse is hit. This strategy is fair as
long as our speedups are independent of the number of
objectives.

3 Background: GP and CAFFEINE
Genetic programming (GP) [7] is an evolutionary

algorithm, i.e. a stochastic population-based search
technique. GP’s distinguishing characteristic is that
individuals (points in the design space) are trees. A
grammar can be used to structure this space of possible
trees for GP’s search [8, 9].

CAFFEINE uses GP as a starting point, but extends it
with a specially designed grammar which allows all

functional combinations but in just one canonical form;
that form is shown in Figure 3. CAFFEINE uses a multi-
objective algorithm [10] in order to provide a tradeoff
between prediction error and complexity.

An example function that CAFFEINE might evolve is:
f(x) = -10.3 + 3.1*x6 + 1.87 * x1 * log(-1.95 + 10.3 /
(x2*x7)/(x5)). The value ‘-10.3’ is the top wo; the ‘3.1’
and the ‘1.87’ are the weights of basis functions for the
top ‘weighted linear add’; the ‘x6’ is the lone instance of
top-level standalone ‘Poly/Ratl’; the ‘x1’ is a ‘Poly/Ratl’
that has a product with the nonlinear function log().
Inside the log() is another weighted linear add
subfunction.

Figure 3: CAFFEINE evolves functions of this

canonical form

4 Background: Smooth, Uniform Operators
We now describe why an algorithm designer would

aim for operators that are “smooth”, that are “uniform,”
and what those terms mean in the context of search.

When we design a search operator, we are effectively
shaping the structure of the space that the search
algorithm will be traversing. If we do a good job at
operator design, then the space will appear relatively
smooth to the search algorithm, have less local optima,
and thus be easier to navigate. Conversely, if we do a
poor job, then the space will have jagged peaks,
crevasses, and a high number of local optima. Algorithms
that search in a space of possible structures (such as GP)
usually to belong in this latter category – but only because
the importance of operator design is underestimated.

“Smooth operators” in GP are an explicit attempt to
make structural change better behaved, to “melt” the
jagged peaks into smooth hills. Smooth operators cause
small expected change in fitness when an individual is
changed slightly. This in turn gives a higher expected
probability of a successful search step. A key insight to
designing such smooth operators is via “behavioral
bridge” [11]: design an operator such that a small change
in a design space usually causes a small change in
behavior space, which usually causes a small change in
fitness space. In section 6, we show how we create
smooth operators for the search of structures of functions.

Even if one has smooth operators, the space might be
structured such that two near-identical designs are at

opposite ends of the space, such that reaching one from
the other would take an unreasonable number of
mutations. What one needs in search is a way to quickly
“tunnel” between two design regions that are similar
(though of course not “tunnel” in a way that is
catastrophic to the design).

A good tool to consider “similar design regions” is the
notion of “building blocks” [12]. In GP, a building block
is a subtree; not all nodes of that subtree need to have
been chosen yet [13]. Similar points in the GP search
space have a large number of similar subtrees. From this
perspective, GP’s function is to process building blocks,
via its sub-processes of selection, reproduction, crossover,
and mutation. A key aim is to ensure that building blocks
continue to “mix well,” which is equivalent to ensuring a
good set of tunnels between similar regions in design
space. In GP, it has been shown that “uniform crossover”
accomplishes such mixing [13]. Recall that “crossover”
swaps sub-portions of the design of one parent with the
sub-portions of the second parent, to create two children.
In uniform crossover, each node in each location of the
child has equal probability of coming from either parent.
Compared to other crossover styles, uniform crossover
has the most possibility for variety in new designs.

Uniform crossover on trees is hard to implement, as
one needs to align operators, handle different depths, and
handle functions of different arity. [14] had heuristics to
handle these issues, which were complex but worked for
its problem domain; their payoff was a decent speedup. It
is also challenging to find a way to add smoothness to
uniform crossover. We address these in section 6.

We have just described what “smooth” and “uniform”
operators are about, and why they can be useful. We now
proceed to discuss one more algorithmic tool (introns),
after which we describe our proposed algorithm.

5 Background: Introns
Introns are subtrees that are not “expressed”, i.e. when

such subtrees change the fitness stays the same. They are
the equivalent of “junk DNA” in biology. They are
usually unintentional and therefore hard to control, but it
has been shown that they can be explicitly designed, and
that doing so improves search speed and reliability [15].

The explanation from a fitness landscape perspective
is that such “neutral” changes connect regions of search
space that would otherwise be poorly connected, therefore
reducing the probability of getting caught in local optima
[16]. So whereas in the last section we showed how an
operator can be designed to tunnel (crossover), introns
actually leverage representation to tunnel.

6 Double-Strength CAFFEINE
In this section, we present how to embed smooth

operators and introns into CAFFEINE, yet have
interpretable functions via a canonical form. We actually
retain the whole same algorithmic flow as the original
CAFFEINE; we just change the operators and
representation.

The trickiest part is designing the crossover operator,
most notably making it both uniform and smooth. The
key to solve this is to notice that a canonical form
function already imposes a structure – rather than trying
to work around it, we can exploit it. We will show how
we can abandon a “true” tree representation, and instead
use the canonical form to wedge the tree into a bitstring.

It’s not straightforward: different subfunctions may be
of different depth, arity, etc. Introns provide the answer:
put all trees at maximum depth and branchiness, but so
that simpler functions remain possible, we allow
subfunctions to be turned off, by merely setting that
subfunction’s exponent to zero. The same principle
applies to varcombo exponents, and weights. There are
still symbols inside the subfunctions, but they do not get
expressed. Thus, we have explicit introns. Now, since all
individuals’ trees have the same number of symbols, they
can truly be represented as a fixed-length string.

Figure 4 illustrates the representation.
The canonical functional form is now implicitly

followed. Equivalent types are aligned on a bitstring: the
sums of basis functions, the nonlinear operators, the
arguments within the operators, etc. Due to this, one can
perform simple string-style uniform crossover on them.
Furthermore, having the symbols line up means that the
“behavioral bridge” is maintained, thereby achieving
smoothness in crossover.

While it has an underlying hierarchical structure that

Figure 4: Search-space representation of one basis function of an individual in Double-Strength CAFFEINE.

follows the functional form of Figure 3, it can be treated
as a fixed-length string of symbols too, to make uniform
crossover possible. This tree/string duality puts it in a
gray area between GP and genetic algorithms (which have
fixed-length bitstrings).

The VC0 symbol is a depth-0 Poly/Ratl varcombo,
and VP0 is a varcombo pair consisting of a VV0 variable
name and VE0 variable exponent. There are
max_num_interacting_vars of these VP’s for each VC.
OPE is the operator exponent. The operator name is
implicit based on its position; each operator gets a place
in each basis function. Inside each operator OP is a list of
arguments (ARGs). Each ARG has an offset weight
(OW2) and a set of weight-VC tuples (VCW2 plus the
usual VC representation). Introns occur anytime a VE0,
OPE, VCW2, or VV2 is zero.

A concern is that introns create a search space with too
many dimensions. So we use domain knowledge to prune
the space. First, we note that our operators always have
arity of 1 or 2, which means exponential growth as depth
grows is reasonable. Also, even though the focus
application is sizing, maintaining the constraint of
“interpretability” from [3] acts as a useful surrogate to
reduce overfitting. Using that, we choose never to embed
one nonlinear operator into another one. Finally, an
interpretable design has a limit on how many variables
interact, so we change the design of varcombos from an
exponent for each variable, to a list of {variable name,
variable exponent) pairs.

With our representation in place, we can now design
the smooth mutation operators for functions. They are:
change real-valued weights by a small amount; delete
basis functions with near-zero weights; copy a basis
function, then mutate the new basis function (and let
linear learning determine weight allocation). Other
mutations are less smooth, yet still small: changing the
exponent of a single variable or nonlinear operator;
changing a variable name, setting any weight to zero (akin
to deletion, and simultaneously, intron insertion); copying
a varcombo into another varcombo location. Finally are
the neutral mutations that naturally occur inside introns:
swap the order of whole basis functions within an
individual; and swap the order of basis functions inside a
nonlinear operator.

7 Experimental Results

7.1 Experimental Setup
We used the same test setup as in the original

CAFFEINE paper [3]. The circuit being modeled is a
high-voltage CMOS OTA as shown in Figure 5. The goal
is to discover expressions for low-frequency gain (ALF),
unity-gain frequency (fu), phase margin (PM), input-
referred offset voltage (voffset), and the positive and
negative slew rate (SRp, SRn). There are 13 design

variables. Full orthogonal-hypercube Design-Of-
Experiments sampling was used, with scaled range
dx=0.1 to have 243 samples from simulation.

 The settings for both CAFFEINE and Double-
Strength CAFFEINE were identical. Operators: x ,
log10(x), 1/x, abs(x), x2, 10x, max(x1,x2), min(x1,x2).
Maximum number of basis functions = 7, population size
200, stop when 500 generations or target nmse of 0.05 hit,
varcombo exponents in [-3,-2,-1,-1/3,-1/2,0,1/3,1/2,1,2,3],
and weights in [] [] []1 10, 1 10 0 1 10, 1 10e e e e− + − − ∪ ∪ − + .
CAFFEINE’s maximum tree depth was 7, therefore
allowing just one layer of nonlinear operators. All
operators had equal probability, except parameter
mutation was 5x more likely. Ten runs were done, for
each performance goal, on both the old and proposed
algorithm, for a total of 10*6*2=120 runs.

Figure 5: Schematic of high-speed CMOS OTA

7.2 Results and Discussion
Figure 6(a) shows the error vs. time for each of the ten

runs, six problems, and both algorithms. We see that both
algorithms converge towards the target nmse of 0.05
(5%), but it is apparent that Double-Strength CAFFEINE
is doing better especially on the more challenging
problems (SRn, PM, ALF). Whereas CAFFEINE often
tapers off, Double-Strength CAFFEINE aggressively
charges on. Such behavior is attributable to the
combination of smooth, uniform operators and introns
(which together, allow refinement of structure, allow easy
access to other regions of search space, and bypass local
optima). Figure 6(b), which shows the normalized mean
square error averaged over all ten runs per performance
characteristic, highlights the difference in convergence
behavior on the challenging problems.

Our measure of speedups is based on the number of
individuals (or equivalently, generations) to meet the
target nmse. Figure 6(c) allows us to visualize this
measure, incorporated as a probability of success vs. time.
In the top-left plot (SRn) we see that CAFFEINE was
successful just twice, snagging the last success in its final
generations. In contrast, Double-Strength CAFFEINE
already had two successes within 250 generations,

Figure 6: Comparison of CAFFEINE to Double-Strength CAFFEINE. (a) Top two rows are normalized mean-
squared error (nmse) vs. generation for each of ten runs, for each performance characteristic (b) Middle two
rows are average nmse vs. generation (c) Bottom two rows are probability of successfully hitting target nmse
of 0.05, vs. generation

and by generation 400 was 100% successful. The
difference was even more pronounced in the PM
modeling problem, where Double-Strength CAFFEINE
had chalked up 100% success by generation 250, whereas
CAFFEINE barely chalked up 30% success in running
twice as long. In ALF, CAFFEINE for once stole an early
lead, but had forfeited that by generation 400 and by
generation 500 had only half the success rate of Double-
Strength CAFFEINE.

Table 1 shows the average number of generations to
success (in successful runs), the probability of success,
and divides them to get the effective number of
generations to solve a given problem. Speedup is the ratio
of the effective number of generations, from old to new.
The average speedup is 3.0x, and on challenging
problems the average speedup is 5.0x. Figure 7 shows
that, roughly speaking, the harder a problem was for old
CAFFEINE, the more the speedup.

Table 1: Speedups. Average is 3.0x; on challenging
problems (*) average is 5.0x.

Figure 7: Speedup vs. Difficulty for old CAFFEINE

8 Conclusion
CAFFEINE generates interpretable, template-free

symbolic models of nonlinear analog circuit performance
characteristics as a function of design variables. This
paper has presented an improved version, Double
Strength CAFFEINE, that over all test problems had an
average speedup over CAFFEINE of 3.0x, and 5.0x over

challenging problems. This makes the approach fast
enough for automated circuit sizing applications.

The key to speed is in achieving “smooth, uniform
crossover” and “smooth mutation”, via the special
combination of an implicit canonical form function and
explicit introns which allowed us to view candidate
functions as fixed-length strings, and manipulate
accordingly.

9 References

[1] G. E. Gielen, “Techniques and Applications of Symbolic

Analysis for Analog Integrated Circuits: A Tutorial Overview”,
in Computer Aided Design of Analog Integrated Circuits And
Systems, R.A. Rutenbar et al., eds., IEEE, 2002, pp. 245-261

[2] W. Daems, G. Gielen, W. Sansen, "Simulation-based
generation of posynomial performance models for the sizing of
analog integrated circuits," IEEE Trans. CAD 22(5), May 2003,
pp. 517-534

[3] T. McConaghy, T. Eeckelaert, G. Gielen, “CAFFEINE:
Template-Free Symbolic Model Generation of Analog Circuits
via Canonical Form Functions and Genetic Programming”,
Proc. DATE 2005, March 2005

[4] T. McConaghy, G. Gielen, “Analysis of Simulation-
Driven Numerical Performance Modeling Techniques for
Application to Analog Circuit Optimization,” Proc. ISCAS 05,
May 2005

[5] T. McConaghy, G. Gielen, “IBMG: Interpretable
Behavioral Model Generator for Nonlinear Analog Circuits via
Canonical Form Functions and Genetic Programming,” Proc.
ISCAS 05, May 2005

[6] E. Zitzler, K. Deb, and L. Thiele, "Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results,"
Evolutionary Computation 8(2), Summer 2000, pp. 173-195

[7] J. R. Koza. Genetic Programming. MIT Press, 1992.
[8] P. A. Whigham, “Grammatically-based Genetic

Programming,” Proc. Workshop on GP:Theory to Real-World
Applications, J. Rosca ed, 1995

[9] M. O’Neill, C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer, 2003.

[10] K. Deb, S. Agrawal, A. Pratap, T.A. Meyarivan, “A
Fast Elitist Non-dominated Sorting Genetic Algorithm for
Multi-objective Optimization: NSGA-II,” Proc. PPSN VI, Sept.
2000, pp. 849-858

[11] T. McConaghy, “Smooth Operators in Optimization of
Circuit Structures,” US Patent # 6,859,914, granted Feb. 2005

[12] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley, 1989.

[13] W.B. Langdon, R. Poli. Foundations of Genetic
Programming. Springer, 2002.

[14] R. Poli, J. Page, W. B. Langdon, “Smooth Uniform
Crossover, Sub-Machine Code GP and Demes,” Proc. Genetic
and Ev. Comp. Conf. (GECCO), vol 2, July 1999, pp. 1162-1169

[15] V. Vassilev, J. Miller, “The Advantages of Landscape
Neutrality in Digital Circuit Evolution,” ICES, 2000,pp. 252-263

[16] W. Banzhaf, “Genotype-Phenotype Mapping and
Neutral Variation – A Case Study in Genetic Programming,” In
Y. Davidor et al, eds., Proc. PPSN III, 1994, pp. 322-332

 CAFF Fast Acting CAFF

Metric

Avg #
gen
when
succ p(succ)

Eff.

gen

 Avg #
gen
when
succ

p(succ)

Eff. #
gen

Spd-
up

ALF* 303 0.3 1010 394 0.7 563 1.8x
PM* 260 0.3 867 173 1.0 173 5.0x
SRn* 399 0.2 1995 263 1.0 263 7.6x
SRp 213 0.9 237 111 1.0 111 2.1x
Voffst 30 1.0 30 39 1.0 39 0.8x
fu 29 1.0 29 26 1.0 26 1.1x

	
	1 Introduction
	2 Problem Formulation
	3 Background: GP and CAFFEINE
	4 Background: Smooth, Uniform Operators
	5 Background: Introns
	6 Double-Strength CAFFEINE
	7 Experimental Results
	7.1 Experimental Setup
	7.2 Results and Discussion
	8 Conclusion
	9 References

