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Abstract 

CAFFEINE, introduced previously, automatically 
generates nonlinear, template-free symbolic performance 
models of analog circuits from SPICE data.  Its key was a 
directly-interpretable functional form, found via 
evolutionary search.  In application to automated sizing 
of analog circuits, CAFFEINE was shown to have the best 
predictive ability from among 10 regression techniques, 
but was too slow to be used practically in the optimization 
loop.  In this paper, we describe Double-Strength 
CAFFEINE, which is designed to be fast enough for  
automated sizing, yet retain good predictive abilities.  We 
design “smooth, uniform” search operators which have 
been shown to greatly improve efficiency in other 
domains.  Such operators are not straightforward to 
design; we achieve them in functions by simultaneously 
making the grammar-constrained functional form 
implicit, and embedding explicit ‘introns’ (subfunctions 
appearing in the candidate that are not expressed).  
Experimental results on six test problems show that 
Double-Strength CAFFEINE achieves an average 
speedup of 5x on the most challenging problems and 3x 
overall; thus making the technique fast enough for 
automated sizing. 

 

1 Introduction 
Symbolic models of analog circuits increase a 

designer’s understanding of a circuit, leading to better 
decision-making in sizing, layout, verification, and 
topology design.  Since manually creating such models 
can be time-consuming and difficult, automated model 
creation is of interest. 

  Symbolic analysis approaches [1] directly analyze an 
input topology, but are limited to linear and weakly 
nonlinear circuits.  Symbolic modeling approaches [2,3] 
use SPICE-like simulation data to generate interpretable 
mathematical expressions that relate the circuit 
performances to the design variables, i.e. “performance 
models”.  By leveraging SPICE, such approaches can 
handle nonlinear circuits, environmental effects, 
manufacturing effects, and different technologies.     

Unlike other approaches, CAFFEINE [3] generates 
symbolic models with open-ended functional forms, i.e. 
without a priori supplied templates. CAFFEINE’s 
strategy is to build Canonical Functional Form 
Expressions in Evolution so that functions are 
interpretable. Figure 1illustrates the flow.  

 
Figure 1: CAFFEINE symbolic modeling flow 

CAFFEINE’s weakness was speed.  In [4], ten 
modeling techniques were compared on six problems, in 
the context of circuit optimization.  While CAFFEINE 
had the best prediction ability, it needed to be at least 3x 
faster to have model building time below 5 minutes;   
Figure 2 illustrates.  Speed would also help behavioral 
modeling [5].   

 
Figure 2: Error vs. modeling time for 10 techniques 

in the context of a circuit sizing problem, plus the aim 
of Double Strength CAFFEINE 



This paper shows how we have sped up CAFFEINE 
using two techniques novel to analog CAD and to 
canonical-form function building: “smooth operators” and 
“introns”. The contributions of this paper are: 
• Reconciling so-called “smooth, uniform crossover” 
and “smooth mutation” with canonical form functions 
• Designing non-expressed subfunctions, or “introns”, 
for canonical form functions 
• Demonstration of faster creation of template-free 
interpretable symbolic models, thus creating new 
opportunities for applying CAFFEINE, most notably in 
automated circuit sizing 

This paper is organized as follows.  Section 2 defines 
the problem.  Sections 3-5 give background on GP, 
CAFFEINE, smooth / uniform operators, and introns.  
Section 6 describes Double Strength CAFFEINE. Section 
7 shows results; section 8 provides conclusions. 

2 Problem Formulation 
The problem that CAFFEINE addresses [3] is: 

• Given: A set of {x(t),y(t)},t=1..N data samples where 
x(t) is a d-dimensional design point t and y(t) is a 
corresponding circuit performance value measured from 
(SPICE) simulation of that design, and no model template 
• Determine: A set of symbolic models *f F∈  that 
together provide the optimal tradeoff between prediction 
error and some measure of model complexity (i.e. a 
multi-objective problem). 
This paper has an additional aim: make CAFFEINE fast 
enough to be used within the context of optimization; 
specifically, make it at least 3x faster than [3]. 

We measure speedup as the reduction in number of 
candidate functions (individuals) to solve test problems. 
The multi-objective nature of CAFFEINE adds a wrinkle: 
one can measure performance of multi-objective 
algorithms [6], but such measures either lose information 
making multi-objective measures scalar, or provide just 
qualitative assessment.  We took a simpler route 
appropriate to our problem: have an upper bound of 
complexity, minimize the training normalized mean-
squared error (nmse) with a single-objective algorithm, 
and stop when target nmse is hit.  This strategy is fair as 
long as our speedups are independent of the number of 
objectives.   

3 Background: GP and CAFFEINE 
Genetic programming (GP) [7] is an evolutionary 

algorithm, i.e. a stochastic population-based search 
technique.  GP’s distinguishing characteristic is that 
individuals (points in the design space) are trees.  A 
grammar can be used to structure this space of possible 
trees for GP’s search [8, 9].  

CAFFEINE uses GP as a starting point, but extends it 
with a specially designed grammar which allows all 

functional combinations but in just one canonical form; 
that form is shown in Figure 3.  CAFFEINE uses a multi-
objective algorithm [10] in order to provide a tradeoff 
between prediction error and complexity. 

An example function that CAFFEINE might evolve is: 
f(x) = -10.3 + 3.1*x6 + 1.87 * x1 * log(-1.95 + 10.3 / 
(x2*x7)/(x5)).  The value ‘-10.3’ is the top wo; the ‘3.1’ 
and the ‘1.87’ are the weights of basis functions for the 
top  ‘weighted linear add’; the ‘x6’ is the lone instance of 
top-level standalone ‘Poly/Ratl’; the ‘x1’ is a ‘Poly/Ratl’ 
that has a product with the nonlinear function log().  
Inside the log() is another weighted linear add 
subfunction. 

 
Figure 3: CAFFEINE evolves functions of this 

canonical form 

4 Background: Smooth, Uniform Operators 
We now describe why an algorithm designer would 

aim for operators that are “smooth”, that are “uniform,” 
and what those terms mean in the context of search.   

When we design a search operator, we are effectively 
shaping the structure of the space that the search 
algorithm will be traversing.   If we do a good job at 
operator design, then the space will appear relatively 
smooth to the search algorithm, have less local optima, 
and thus be easier to navigate.  Conversely, if we do a 
poor job, then the space will have jagged peaks, 
crevasses, and a high number of local optima.  Algorithms 
that search in a space of possible structures (such as GP) 
usually to belong in this latter category – but only because 
the importance of operator design is underestimated. 

“Smooth operators” in GP are an explicit attempt to 
make structural change better behaved, to “melt” the 
jagged peaks into smooth hills.  Smooth operators cause 
small expected change in fitness when an individual is 
changed slightly.  This in turn gives a higher expected 
probability of a successful search step.   A key insight to 
designing such smooth operators is via “behavioral 
bridge” [11]: design an operator such that a small change 
in a design space usually causes a small change in 
behavior space, which usually causes a small change in 
fitness space.  In section 6, we show how we create 
smooth operators for the search of structures of functions. 

Even if one has smooth operators, the space might be 
structured such that two near-identical designs are at 



opposite ends of the space, such that reaching one from 
the other would take an unreasonable number of 
mutations.  What one needs in search is a way to quickly 
“tunnel” between two design regions that are similar 
(though of course not “tunnel” in a way that is 
catastrophic to the design). 

A good tool to consider “similar design regions” is the 
notion of “building blocks” [12].   In GP, a building block 
is a subtree; not all nodes of that subtree need to have 
been chosen yet [13].  Similar points in the GP search 
space have a large number of similar subtrees.  From this 
perspective, GP’s function is to process building blocks, 
via its sub-processes of selection, reproduction, crossover, 
and mutation.  A key aim is to ensure that building blocks 
continue to “mix well,” which is equivalent to ensuring a 
good set of tunnels between similar regions in design 
space.  In GP, it has been shown that “uniform crossover” 
accomplishes such mixing [13].  Recall that “crossover” 
swaps sub-portions of the design of one parent with the 
sub-portions of the second parent, to create two children. 
In uniform crossover, each node in each location of the 
child has equal probability of coming from either parent.  
Compared to other crossover styles, uniform crossover 
has the most possibility for variety in new designs. 

Uniform crossover on trees is hard to implement, as 
one needs to align operators, handle different depths, and 
handle functions of different arity.  [14] had heuristics to 
handle these issues, which were complex but worked for 
its problem domain; their payoff was a decent speedup.  It 
is also challenging to find a way to add smoothness to 
uniform crossover.  We address these in section 6. 

We have just described what “smooth” and “uniform” 
operators are about, and why they can be useful.  We now 
proceed to discuss one more algorithmic tool (introns), 
after which we describe our proposed algorithm.  

5 Background: Introns 
Introns are subtrees that are not “expressed”, i.e. when 

such subtrees change the fitness stays the same. They are 
the equivalent of “junk DNA” in biology.  They are 
usually unintentional and therefore hard to control, but it 
has been shown that they can be explicitly designed, and 
that doing so improves search speed and reliability [15].   

The explanation from a fitness landscape perspective 
is that such “neutral” changes connect regions of search 
space that would otherwise be poorly connected, therefore 
reducing the probability of getting caught in local optima 
[16].  So whereas in the last section we showed how an 
operator can be designed to tunnel (crossover), introns 
actually leverage representation  to tunnel.  

6 Double-Strength CAFFEINE 
In this section, we present how to embed smooth 

operators and introns into CAFFEINE, yet have 
interpretable functions via a canonical form.  We actually 
retain the whole same algorithmic flow as the original 
CAFFEINE; we just change the operators and 
representation. 

The trickiest part is designing the crossover operator, 
most notably making it both uniform and smooth.  The 
key to solve this is to notice that a canonical form 
function already imposes a structure – rather than trying 
to work around it, we can exploit it.  We will show how 
we can abandon a “true” tree representation, and instead 
use the canonical form to wedge the tree into a bitstring. 

It’s not straightforward: different subfunctions may be 
of different depth, arity, etc.  Introns provide the answer: 
put all trees at maximum depth and branchiness, but so 
that simpler functions remain possible, we allow 
subfunctions to be turned off, by merely setting that 
subfunction’s exponent to zero.  The same principle 
applies to varcombo exponents, and weights.  There are 
still symbols inside the subfunctions, but they do not get 
expressed.  Thus, we have explicit introns.  Now, since all 
individuals’ trees have the same number of symbols, they 
can truly be represented as a fixed-length string.   

Figure 4 illustrates the representation.   
The canonical functional form is now implicitly 

followed.  Equivalent types are aligned on a bitstring: the 
sums of basis functions, the nonlinear operators, the 
arguments within the operators, etc.  Due to this, one can 
perform simple string-style uniform crossover on them.  
Furthermore, having the symbols line up means that the 
“behavioral bridge” is maintained, thereby achieving 
smoothness in crossover.   

While it has an underlying hierarchical structure that 

Figure 4: Search-space representation of one basis function of an individual in Double-Strength CAFFEINE.  



follows the functional form of Figure 3, it can be treated 
as a fixed-length string of symbols too, to make uniform 
crossover possible.  This tree/string duality puts it in a 
gray area between GP and genetic algorithms (which have 
fixed-length bitstrings).  

The VC0 symbol is a depth-0 Poly/Ratl varcombo, 
and VP0 is a varcombo pair consisting of a VV0 variable 
name and VE0 variable exponent.  There are 
max_num_interacting_vars of these VP’s for each VC.  
OPE is the operator exponent.  The operator name is 
implicit based on its position; each operator gets a place 
in each basis function.  Inside each operator OP is a list of 
arguments (ARGs).  Each ARG has an offset weight 
(OW2) and a set of weight-VC tuples (VCW2 plus the 
usual VC representation).  Introns occur anytime a VE0, 
OPE, VCW2, or VV2 is zero.  

A concern is that introns create a search space with too 
many dimensions.  So we use domain knowledge to prune 
the space.   First, we note that our operators always have 
arity of 1 or 2, which means exponential growth as depth 
grows is reasonable. Also, even though the focus 
application is sizing, maintaining the constraint of 
“interpretability” from [3] acts as a useful surrogate to 
reduce overfitting.  Using that, we choose never to embed 
one nonlinear operator into another one.  Finally, an 
interpretable design has a limit on how many variables 
interact, so we change the design of varcombos from an 
exponent for each variable, to a list of {variable name, 
variable exponent) pairs.  

With our representation in place, we can now design 
the smooth mutation operators for functions.  They are: 
change real-valued weights by a small amount; delete 
basis functions with near-zero weights; copy a basis 
function, then mutate the new basis function (and let 
linear learning determine weight allocation).  Other 
mutations are less smooth, yet still small: changing the 
exponent of a single variable or nonlinear operator; 
changing a variable name, setting any weight to zero (akin 
to deletion, and simultaneously, intron insertion); copying 
a varcombo into another varcombo location.  Finally are 
the neutral mutations that naturally occur inside introns: 
swap the order of whole basis functions within an 
individual; and swap the order of basis functions inside a 
nonlinear operator.  

7 Experimental Results 

7.1 Experimental Setup 
We used the same test setup as in the original 

CAFFEINE paper [3].  The circuit being modeled is a 
high-voltage CMOS OTA as shown in Figure 5.  The goal 
is to discover expressions for low-frequency gain (ALF), 
unity-gain frequency (fu), phase margin (PM), input-
referred offset voltage (voffset), and the positive and 
negative slew rate (SRp, SRn).  There are 13 design 

variables. Full orthogonal-hypercube Design-Of-
Experiments sampling was used, with scaled range 
dx=0.1 to have 243 samples from simulation.  

 The settings for both CAFFEINE and Double-
Strength CAFFEINE were identical.  Operators: x , 
log10(x), 1/x, abs(x), x2, 10x, max(x1,x2), min(x1,x2).  
Maximum number of basis functions = 7, population size 
200, stop when 500 generations or target nmse of 0.05 hit, 
varcombo exponents in [-3,-2,-1,-1/3,-1/2,0,1/3,1/2,1,2,3], 
and weights in [ ] [ ] [ ]1 10, 1 10 0 1 10, 1 10e e e e− + − − ∪ ∪ − + .  
CAFFEINE’s maximum tree depth was 7, therefore 
allowing just one layer of nonlinear operators.  All 
operators had equal probability, except parameter 
mutation was 5x more likely.  Ten runs were done, for 
each performance goal, on both the old and proposed 
algorithm, for a total of 10*6*2=120 runs.   

 
Figure 5: Schematic of high-speed CMOS OTA 

7.2 Results and Discussion 
Figure 6(a) shows the error vs. time for each of the ten 

runs, six problems, and both algorithms.  We see that both 
algorithms converge towards the target nmse of 0.05 
(5%), but it is apparent that Double-Strength CAFFEINE 
is doing better especially on the more challenging 
problems (SRn, PM, ALF).  Whereas CAFFEINE often 
tapers off, Double-Strength CAFFEINE aggressively 
charges on.  Such behavior is attributable to the 
combination of smooth, uniform operators and introns 
(which together, allow refinement of structure, allow easy 
access to other regions of search space, and bypass local 
optima).   Figure 6(b), which shows the normalized mean 
square error averaged over all ten runs per performance 
characteristic, highlights the difference in convergence 
behavior on the challenging problems.  

Our measure of speedups is based on the number of 
individuals (or equivalently, generations) to meet the 
target nmse.  Figure 6(c) allows us to visualize this 
measure, incorporated as a probability of success vs. time.  
In the top-left plot (SRn) we see that CAFFEINE was 
successful just twice, snagging the last success in its final 
generations.   In contrast, Double-Strength CAFFEINE 
already had two successes within 250 generations,  



 

Figure 6: Comparison of CAFFEINE to Double-Strength CAFFEINE.  (a) Top two rows are normalized mean-
squared error (nmse) vs. generation for each of ten runs, for each performance characteristic (b) Middle two 
rows are average nmse vs. generation (c) Bottom two rows are probability of successfully hitting target nmse
of 0.05, vs. generation



and by generation 400 was 100% successful.  The 
difference was even more pronounced in the PM 
modeling problem, where Double-Strength CAFFEINE 
had chalked up 100% success by generation 250, whereas 
CAFFEINE barely chalked up 30% success in running 
twice as long.  In ALF, CAFFEINE for once stole an early 
lead, but had forfeited that by generation 400 and by 
generation 500 had only half the success rate of Double-
Strength CAFFEINE. 

Table 1 shows the average number of generations to 
success (in successful runs), the probability of success, 
and divides them to get the effective number of 
generations to solve a given problem.  Speedup is the ratio 
of the effective number of generations, from old to new.  
The average speedup is 3.0x, and on challenging 
problems the average speedup is 5.0x.  Figure 7 shows  
that, roughly speaking, the harder a problem was for old 
CAFFEINE, the more the speedup. 

Table 1: Speedups. Average is 3.0x; on challenging 
problems (*) average is 5.0x. 

 
Figure 7: Speedup vs.  Difficulty for old CAFFEINE 

8 Conclusion 
CAFFEINE generates interpretable, template-free 

symbolic models of nonlinear analog circuit performance 
characteristics as a function of design variables.  This 
paper has presented an improved version, Double 
Strength CAFFEINE, that over all test problems had an 
average speedup over CAFFEINE of 3.0x, and 5.0x over 

challenging problems.  This makes the approach fast 
enough for automated circuit sizing applications.  

The key to speed is in achieving “smooth, uniform 
crossover” and “smooth mutation”, via the special 
combination of an implicit canonical form function and 
explicit introns which allowed us to view candidate 
functions as fixed-length strings, and manipulate 
accordingly.   
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   CAFF   Fast  Acting  CAFF  

Metric 

Avg # 
gen 
when 
succ p(succ) 

Eff. 
# 
gen 
 

 Avg # 
gen   
when 
succ 

 
p(succ) 

Eff. # 
gen 
  

Spd-
up 

ALF* 303 0.3 1010 394 0.7 563 1.8x
PM* 260 0.3 867 173 1.0 173 5.0x
SRn* 399 0.2 1995 263 1.0 263 7.6x
SRp 213 0.9 237 111 1.0 111 2.1x
Voffst 30 1.0 30 39 1.0 39 0.8x
fu 29 1.0 29 26 1.0 26 1.1x
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