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Abstract— Software effort estimation refers to the estimation 

of effort that is required in given software project. It starts at 

the proposal stage and can sometimes continue till the last stages 

of a software project. Projects normally have a budget, and 

continual cost estimation is necessary to ensure that spending is 

in line with the budget. There is need of finding a good model 

which can establish an accurate relationship between the 

software a project and cost drivers. It is important for project 

managers and the researchers working in the domain to explore, 

analyze and understand the strengths and weaknesses of various 

software cost estimation methods. This paper focusses on using 

Genetic Programming for software effort estimation. The 

implementation involves evolution of individuals for obtaining 

best results over several generations. Metrics are chosen to 

evaluate the model based on the literature survey. Standard 

software engineering datasets are used in this project so that 

suitability and possible relations that arise could be realized. K-

fold validation is used to sum up with more reliable values of 

evaluation. The design, implementation and result presentation 

are completed successfully and recorded clearly.   

 

Keywords— Software effort estimation, genetic programming, 

DEAP. 

I.  INTRODUCTION   

Precise evaluation of software development activities 

has important consequences in software development 

management. The software development team will be under 

considerable pressure if the manager's estimate is too low, the 

team tries to finish the product quickly and therefore the 

resulting software may not be completely functional or tested. 

As a result, the software can contain errors that need to be 

resolved in a later part of the software process in which the 

cost of corrective maintenance is greater. In contrary, if the 

estimation of the manager is too high then the project will be 

exposed to too many resources and if the organization 

develops contract software, then too high estimate may lead 

to failure of secure contract. The software project managers 

have to control project budgets and be able to calculate the 

costs of a software development [1]. 

The principal components of project costs are:  Effort costs 

(the costs of paying software engineers), Hardware costs, 

Training costs. The cost of effort is the dominant cost. It is 

very difficult to estimate and control, because it has the most 

substantial impact on total costs. Software cost estimation is 

continuous, starting at the stage of the proposal and 

continuing throughout the life of the project. Projects 

normally have a budget and a continuous cost estimate is 

needed to ensure that the expenditure is in line with the 

budget. Effort can be measured in staff-hours or in staff-

months (referred to as man-hours or man-months) [2]. 

There are many techniques for software cost estimation, 

some of the most popular approaches are: Non-Algorithmic, 

Algorithmic. Mathematical equations are used in algorithmic 

cost estimation techniques. Mathematical equations involved 

in the algorithmic technique depend on historical data, 

research and use features such as number of lines of code 

(SLOC), number of functions, and programming language 

used in the project, risk assessments, skill-levels, design 

methodology etc. There have been extensive studies of 

algorithmic processes and numerous models such as 

COCOMO models have been developed. Methods such as 

expert judgment and an analog estimation are contained in 

the non-algorithms. Some of those non-algorithm-based 

methods focus on evolutionary methods such as neural 

networks, genetic programming and fuzzy logic [2][3]. 

II. LITERATURE SURVEY 

 Bardsiri, Amid Khatibi et al [4], introduced some of 

the most important software effort estimation datasets and 

focused on five datasets. Desharnais, Canadian financial 

(CF), Maxwell, International software benchmarking 

standard group (ISBSG) and IBM data processing services 

(DPS). PROMISE and ISBSG repositories are among the 

most popular datasets, have so far been used in numerous 

studies. Thorough statistical analysis of these datasets was 

performed and was visualized using the above mentioned five 

datasets. A complete comparison was made to help select a 

suitable dataset. There was a tangible difference seen 

between the various repositories when compared with the 

results and figures of each repository. Study showed that the 

most crucial component in software effort prediction is the 

metrics suite and not the algorithm. 

 

Mohammad Azzeh et al[5], made comparative studies using 

seven datasets. Q-Q plots for each of the seven datasets was 

generated for all features in order to investigate if their values 

were normally distributed. As these plots showed quite small 

deviations from the straight line but was considered to show 

the characteristic normality. Desharnais, China and Albrecht 

show the characteristic of normal distribution. Desharnais 

dataset has more normality than Albrecht dataset.  

 

Ayesha Saeed, Wasi Haider Butt et al [6], surveyed 10 effort 

estimation models, most of these estimation models used 

public dataset. These models were efficient and, in some way, 
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validating through empirical data. Azzeh, M suggested 

Combination of Support vector machine and radial basis 

neural networks. Rijwani, resolved effort estimation problem 

through ANN. Non-linear Regression Model along with 

Multi-layer perceptron (MLP) neural network model was 

proposed by A.B. Nassif. Classical and fuzzy analogy-based 

models and ensembles were presented. This survey paper 

showed that machine learning methods are the most 

frequently used models. MRE and MMRE are the most 

frequently used accuracy metrics. The results show that there 

is no single perfect method which is suitable for all the 

datasets. 

 

Rohit Kumar Sachan, Ayush Nigam et al [7], used simplified 

form of genetic algorithm which was used for optimizing 

values. They proposed an experiment in which COCOMO 

model is used, the value of A and B of the basic COCOMO 

model was optimized using simplified Genetic Algorithm. In 

this experiment NASA dataset was used. The computed 

values of effort for basic COCOMO model was 48.8360 and 

for simplified GA was 6.7125. The result showed that effort 

estimated by the proposed simplified GA is better as 

compared to basic COCOMO effort. 

 

Y. Shan, R. I. McKay [8], used Grammar Guided Genetic 

Programming (GGGP) to fit nonlinear models to a dataset of 

past projects, their aim was to determine appropriate metrics 

sets and improve the prediction. 5 GP runs were generated, 

on the same training and testing datasets, 5 linear and log-log 

equations were also derived using standard regression 

techniques. The training error of log regression was larger 

than linear regression. The mean square error (MSE) of GP 

was better compared to Linear and Log regression. The GP 

model does not generalize perfectly so there is some loss of 

accuracy on the test sets, it is still far more accurate in testing 

error than the other two regression model. The results showed 

that GP models perform better than traditional regression 

models. 

 

Colin Burgess and Martin Lefley [9], This project enlists the 

importance of software cost estimation such as the effects of 

better resource allocation due to improvement in accuracy of 

effort prediction models. It provides a clear explanation of 

software estimation metrics and provides reasons for 

choosing some of them. It discusses about the usage of 

Artificial Neural Network for effort prediction by stressing 

upon the problems faced when configuring neural networks 

and how it tends to counteract their performance in terms of 

accuracy. The results of this paper indicate MMRE values 

ranging between 37.95 and 52.12. It compares these values 

with that of artificial neural network and prove genetic 

programming yields better results. It also compares these two 

prediction systems based on two factors: Transparency of 

solution and Ease of configuration. It states that GP can 

produce very transparent solutions in the sense that solution 

is an algebraic expression. It illustrates that the configuration 

of ANN and GP requires a great level of expertise. It 

concludes by highlighting the need of further investigation, 

particularly to explore the effects of various parameters on 

the models in terms of improving robustness and accuracy. 

 

DEAP is a framework that combines the flexibility and power 

of the Python programming language. It contains transparent 

Evolutionary Computing components which facilitates rapid 

prototyping and testing of new Evolutionary Algorithm ideas. 

It encourages creativity through simplicity and explicit 

algorithms.15 examples of OpenBEAGLE plus 20 more 

examples are implemented by DEAP with 10 times less lines 

of code. This framework includes more than 35 applications 

[10]. 

 

III. GENETIC PROGRAMMING 

Genetic Programming (GP) is an extension of Genetic 

Algorithm (GA). The basic idea of GA is based on Darwinian 

theory of evolution, which says that genetic operations 

between chromosomes eventually leads to fitter individuals 

which are more likely to survive. Thus, over a long period of 

time, the population of the species as a whole 

improves. Genetic Algorithm is a random search algorithm 

based on natural selection and genetic mechanism it starts 

from a set of random generation of initial solution called 

“population”. Each individual in the population is a solution 

to the problem. Chromosome is a string of symbols, such as a 

binary string, these chromosomes constantly evolve in the 

subsequent iterations. Crossover and mutation operations are 

performed on previous generation of chromosomes to 

produce offspring. Crossover operation involves combining 

the characteristics of the parents in the new generation 

individuals. Crossover reflects the idea of information 

exchange. Mutation involves changing the value of one of the 

string structure data(chromosome) for the selected individual. 

Genetic algorithm selects part of the offspring and eliminates 

some offspring according to the fitness value to form the new 

generation and to maintain a constant population size. 

“Fitness” is to measure the chromosomes in each generation 

as good or bad. The optimal or sub-optimal solutions of the 

problem is the best chromosomes that are produced after 

some generations. The fitness function is also known as the 

evaluation function. The fitness function is always non-

negative and is determined according to the objective 

function. It is the standard for distinguishing the individuals 

of the population [11]. 

GP adds more advantages to the ones offered by other 

evolutionary algorithms is considered one of the evolutionary 

algorithms that hold all the advantages offered by 

evolutionary algorithms and adds several more.  One of the 

advantages of GP is, it is not prone to local optimal values 

like the neural networks. GP is a global search technique and 

it is less likely to get stuck in the local optimum.  GP has the 

capability to perform the task of feature extraction algorithm 

and eliminate unrelated features, of the Modelling problem. It 

represents a tree in which less important features would 

appear deeper in the tree and more important features can 

appear near the root[5]. GP can operate on portion of data to 

extract significant rules.[6] 

A. Represntation of GP 

In GP, programs are usually represented as a variable sized 

tree structure. This type of representation allows a variety of 

models to be developed. A tree consists of nodes and 

terminals. In every terminal node, there is an operand and in 
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every node there is a function. Trees can be easily evaluated 

in a recursive manner. This way we can evolve mathematical 

models in a very simple way [14].  

B. Units 

Two well-known evaluation criteria are used to assess 

the degree of accuracy to which the estimated efforts match 

actual efforts: 

 

• MMRE:  MMRE is the mean of absolute percentage 

errors. 

MMRE =  

 

 

Where E is the actual effort and  is the predicted 

effort, and N is the number of projects. 

• PRED (25):  Pred(25) is the percentage of predictions 

that fall within 25 percent of the actual value [15]. 

IV. SYSTEM DESIGN 

The system consists of four stages: 

• Data Input. 

• Genetic Programming Configuration. 

• Genetic Programming execution 

• Evaluation 

A. Data Input 

The datasets used in the project commonly called 

“Desharnais”, “China”, “Albrecht”. They contain the 

information related to software projects derived from 

different software projects. They are publicly available 

datasets and can be used to evaluate performance of new 

software cost estimation models. The dataset is in attribute-

relation file format (.arff) format. Parsing of these files is 

done using parser packages that are available in python. The 

datasets also consist of some features which are not required 

for estimation of effort are eliminated. Only some of the input 

variables are used in the effort estimation.  The dataset is 

parsed and the input is made available as numeric values for 

further use. 

B. Genetic Programming Configuration 

User has to perform preparatory steps for a genetic 

programming which are used in configuration and execution 

of programs(individuals). User defined primitives and 

terminals are contained in a primitive set, which are primarily 

used in the algorithm. The five steps which are treated as 

preparatory steps are mentioned below: 

• Primitive Set: This set consists of the operators and input 

variables which are found as nodes of individual 

programs. The operators used in the project are basic 

mathematical operators such as addition, multiplication, 

subtraction and division. The terminals are classified in 

two types: the constants and the arguments. The 

constants remain the same for the entire evolution while 

the arguments are the program inputs. The input 

variables of the dataset act as the terminals. The input 

variables are all numeric values and can be operated on 

by basic mathematical operators to build expressions. 

• Fitness function: The fitness is implemented considering 

one of the metrics that are used for evaluation of 

software cost estimation techniques. The individuals of 

the population are evaluated based on this function.  

• Parameters: Size of the population and the number of 

generations are the main parameters that are decided for 

efficient results. They are varied according to the 

convergence of the resulting accuracy. 

C. Genetic Programming Execution 

The genetic programming execution is the execution 

of the algorithm with the given configuration parameters. The 

execution is the looping of a set of genetic operations. The set 

of steps involved can be listed as: 

• Population Initialization: The population is a set of 

individual programs or tress that can parsed to get an 

expression. 

• Evolution through algorithm execution: The 

algorithm is executed as per the provided 

parameters. The execution of the algorithm includes 

fitness evaluation, selection, crossover, mutation, 

reproduction. The reproduction stage incorporates 

the new individual into next generation. The number 

of times the algorithm is executed is dependent on a 

parameter passed to an execution function. 

D. Evaluation 

The evaluation of the predicted results is done based 

empirically evident software cost estimation metrics. The 

evaluation metric is chosen after substantial exploration of 

the literature and is discussed in the introduction section of 

this report. The detailed information about the selection of the 

metric can be found in part in the implementation section as 

well. 

Workflow

 
 

Figure 1: Pipeline of Execution 

The Figure 1, Pipeline of Execution shows the complete 

workflow of execution on different stages. The dataset is 

obtained from a repository of publicly available software 

engineering datasets. The dataset goes though the pre-

processing stage where some the features are selected for 

carrying out the estimation procedure. The subsequent phase 

is the configuration of the Genetic Programming. The 

primitive set i.e. the set of operators and operands which act 

as nodes for individuals of a population are selected. The GP 

execution involves looping through the set of genetic 

operators such as selection, crossover and mutation, to obtain 

new generation of individuals. The individuals are evaluated 

constantly for fitness and fitter individuals are propagated to 

next generations. The evaluation phase involves the 

calculation of the metrics which are chosen for evaluation of 

the estimation model. 
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V. IMPLEMENTATION 

The project is implemented in Python programming 

language and popular evolutionary algorithm framework 

called DEAP. The following sections will describe about the 

implementation in details. 

DEAP (Distributed Evolutionary Algorithms in Python): 

DEAP is a framework used for realizing all the evolutionary 

computation process. The DEAP framework is built over the 

Python programming language that provides the essential 

components that make each and every step of genetic 

programming implementation easy.  

DEAP is made up of two main components: a creator and a 

toolbox. The ‘creator’ helps in creating classes that represent 

the individual programs. New classes can also be built from 

any built-in python datatype like list, set, ‘PrimitiveTree’. 

‘ToolBox’ is a container to store primitive set and genetic 

operators. The users have several options to populate the 

toolbox to implement the genetic programming with 

flexibility. 

A. Data Parsing 

The information about the dataset is discussed in detail in 

the introduction part.  The data is made of only numeric 

attributes. The data format of the files is attribute-relation 

format file. The data is parsed using a built-in parser of the 

scipy.io package. 

 

B. Data Pre-processing 

Selection and Elimination of features, the datasets 

contain many features some of which can be used for effort 

estimation and some prove to be unnecessary for the 

predicting the effort. So, the pre-processing stage involves 

identification and elimination of features. This step proves to 

be important, as most of the features in the dataset are 

numeric, they may play a deciding role in the predicting the 

effort by the model. The chance of deviation of results could 

be the effect of including such features. Some features 

represent names and, such features are eliminated  

There are four major steps in achieving the implementation of 

evolutionary computations using DEAP:  

•  Primitive set Configuration 

•  Individuals and population Initialization 

•  Genetic operations Setup 

•  Algorithm execution 

The individual steps listed above are discussed in detail 

below. 

 

➢ Primitive Set Configuration: The individuals of the 

genetic programming are the individual programs which 

are represented as trees. The trees are made up of nodes. 

The nodes consist of operands or operators. Operands are 

found on the terminal nodes and operators can be found 

in the non-terminal nodes. The set of the operators and 

operands together is called the ‘Primitive Set’. The 

operands usually are either the input features in the 

datasets or constants. The choice of the operators 

depends on the operands. The datasets chosen for this 

project contain only numeric features, so simple 

mathematical operators are considered and added to the 

primitive set. 

➢ Individual and Population Initialization: The 

individual trees and a population are created in a 

preliminary step in genetic programming.  The DEAP 

framework provides a package to create individuals and 

population. The individuals are created ‘creator’ 

package. The individual creation and population 

initialization is done using the ‘toolbox’. The creator 

package creates individuals using built-in types. 

‘Primitive Tree’ is data type used for individuals. The 

population is made up a fixed number of individuals 

which is specified by the user. 

➢ Genetic Operations Setup: Genetic Operations form the 

core part of genetic algorithm. These operations function 

to produce newer off-springs which in-turn produce 

newer generations. The evolution of new generations is 

supported by fitter individuals in the current generation. 

This mechanism can be implemented easily with DEAP 

framework. The genetic operations are added 

successively to the toolbox. The elements in the toolbox 

are used during the execution of algorithm.  

➢ Genetic Algorithm Execution: The iterative 

transformation of the population is executed inside the 

main generational loop of the run of genetic 

programming. The algorithms module in DEAP contains 

some specific algorithms in order to execute common 

evolutionary algorithms. The method used here are for 

convenience than reference as the implementation of 

every evolutionary algorithm may vary infinitely. 

Algorithm in this module use operators registered in the 

toolbox. Generally, the keyword used are mate() for 

crossover, mutate() for mutation, select() for selection 

and evaluate() for evaluation of fitness. DEAP provides a 

straight-forward function called eaMuPlusLambda() 

which takes in as parameters population, toolbox, 

number of individuals in  the next generation (called 

‘Mu’), number of children to produce at each generation 

(called ‘Lambda’), probability of crossover, 

probability of mutation, number of generations and etc. 

VI. RESULT 

Genetic Programming yields different results based on 

parameters values. The parameter values provided to the 

algorithm are as listed below.  
Parameter  Value 

Population size 300 

Number of Generations 100 

Mutation Probaliltity 0.5 

Crossover Probability  0.5 

Table 1: Genetic Programming Parameters 

 

The results of the application of implementation on three 

different sets can be concluded using the below table. 

 
Dataset Name MMRE Pred(25)  

Desharnais 11.970 93.827 

China 13.264 87.374 

Albrecht 55.493 58.333 

Table 2: Results 
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Figure 2: Graph showing the MMRE values over different folds of the K-fold 

validation 

 

The graph provides a clear picture of how the MMRE values 

range between the different folds of the K-fold validation. 

The deviation of the MMRE values is seen to be more when 

the dataset is small (‘Albrecth’ dataset). The MMRE values 

for ‘Desharnais’ dataset show more deviation compared to 

the ‘China’ dataset which the biggest among the three. The 

graph hiddenly illustrates the relation of the deviation with 

the size of the datset. 

VII.  CONCLUSION AND FUTURE WORK 

 

Genetic Programming as an approach to software effort 

estimation has been explored and implemented. Systematic 

study of Genetic programming and its adaptation for the task 

of effort estimation has been carried out and reported clearly 

as part of the work. The steps include understanding of bio-

inspired evolutionary algorithms, exploration for the metrics 

to evaluate the model, implementation of the algorithm, 

presentation of results. The implementation of the genetic 

programming model using the Metrics like Pred25 and 

MMRE were considered for evaluation of the prediction 

model. Different datasets with varying sizes were used to test 

the predictive model. The K-fold validation results in more 

reliable accuracy measures. The results indicate that the 

model built using GP shows good accuracy values. The size 

of the dataset is also a factor which decides the deviation of 

the accuracy values over different folds of validation. The 

amount of deviation is observed to be high when the dataset 

size is smaller compared to the bigger ones. The results 

warrant that GP can be further explored on its different 

characteristics for better results. 

The results of the GP on smaller dataset are very low 

which can be further worked upon. The future works could 

aim to attain better configurations of the GP setup which give 

more accuracy. Comparisons with other predictive model 

building methods can be considered for future research works 

which yield a comparable accuracy. More robust metrics 

could be designed for evaluating the accuracy of the effort 

estimation models as the currently used ones. Comparative 

studies showing the difference in accuracy due to the change 

in configuration parameters of the GP will help future 

researchers in choosing them wisely. 
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