
Estimation of Effort in Software Projects using

Genetic Programming

Mukesh Mahadev K
Department of CSE

B.M.S College of Engineering

Bengaluru, India

Dr. G. Gowrishankar
Department of CSE

B.M.S College of Engineering

Bengaluru, India

Abstract— Software effort estimation refers to the estimation

of effort that is required in given software project. It starts at

the proposal stage and can sometimes continue till the last stages

of a software project. Projects normally have a budget, and

continual cost estimation is necessary to ensure that spending is

in line with the budget. There is need of finding a good model

which can establish an accurate relationship between the

software a project and cost drivers. It is important for project

managers and the researchers working in the domain to explore,

analyze and understand the strengths and weaknesses of various

software cost estimation methods. This paper focusses on using

Genetic Programming for software effort estimation. The

implementation involves evolution of individuals for obtaining

best results over several generations. Metrics are chosen to

evaluate the model based on the literature survey. Standard

software engineering datasets are used in this project so that

suitability and possible relations that arise could be realized. K-

fold validation is used to sum up with more reliable values of

evaluation. The design, implementation and result presentation

are completed successfully and recorded clearly.

Keywords— Software effort estimation, genetic programming,

DEAP.

I. INTRODUCTION

Precise evaluation of software development activities

has important consequences in software development

management. The software development team will be under

considerable pressure if the manager's estimate is too low, the

team tries to finish the product quickly and therefore the

resulting software may not be completely functional or tested.

As a result, the software can contain errors that need to be

resolved in a later part of the software process in which the

cost of corrective maintenance is greater. In contrary, if the

estimation of the manager is too high then the project will be

exposed to too many resources and if the organization

develops contract software, then too high estimate may lead

to failure of secure contract. The software project managers

have to control project budgets and be able to calculate the

costs of a software development [1].

The principal components of project costs are: Effort costs

(the costs of paying software engineers), Hardware costs,

Training costs. The cost of effort is the dominant cost. It is

very difficult to estimate and control, because it has the most

substantial impact on total costs. Software cost estimation is

continuous, starting at the stage of the proposal and

continuing throughout the life of the project. Projects

normally have a budget and a continuous cost estimate is

needed to ensure that the expenditure is in line with the

budget. Effort can be measured in staff-hours or in staff-

months (referred to as man-hours or man-months) [2].

There are many techniques for software cost estimation,

some of the most popular approaches are: Non-Algorithmic,

Algorithmic. Mathematical equations are used in algorithmic

cost estimation techniques. Mathematical equations involved

in the algorithmic technique depend on historical data,

research and use features such as number of lines of code

(SLOC), number of functions, and programming language

used in the project, risk assessments, skill-levels, design

methodology etc. There have been extensive studies of

algorithmic processes and numerous models such as

COCOMO models have been developed. Methods such as

expert judgment and an analog estimation are contained in

the non-algorithms. Some of those non-algorithm-based

methods focus on evolutionary methods such as neural

networks, genetic programming and fuzzy logic [2][3].

II. LITERATURE SURVEY

 Bardsiri, Amid Khatibi et al [4], introduced some of

the most important software effort estimation datasets and

focused on five datasets. Desharnais, Canadian financial

(CF), Maxwell, International software benchmarking

standard group (ISBSG) and IBM data processing services

(DPS). PROMISE and ISBSG repositories are among the

most popular datasets, have so far been used in numerous

studies. Thorough statistical analysis of these datasets was

performed and was visualized using the above mentioned five

datasets. A complete comparison was made to help select a

suitable dataset. There was a tangible difference seen

between the various repositories when compared with the

results and figures of each repository. Study showed that the

most crucial component in software effort prediction is the

metrics suite and not the algorithm.

Mohammad Azzeh et al[5], made comparative studies using

seven datasets. Q-Q plots for each of the seven datasets was

generated for all features in order to investigate if their values

were normally distributed. As these plots showed quite small

deviations from the straight line but was considered to show

the characteristic normality. Desharnais, China and Albrecht

show the characteristic of normal distribution. Desharnais

dataset has more normality than Albrecht dataset.

Ayesha Saeed, Wasi Haider Butt et al [6], surveyed 10 effort

estimation models, most of these estimation models used

public dataset. These models were efficient and, in some way,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070478
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1321

www.ijert.org
www.ijert.org
www.ijert.org

validating through empirical data. Azzeh, M suggested

Combination of Support vector machine and radial basis

neural networks. Rijwani, resolved effort estimation problem

through ANN. Non-linear Regression Model along with

Multi-layer perceptron (MLP) neural network model was

proposed by A.B. Nassif. Classical and fuzzy analogy-based

models and ensembles were presented. This survey paper

showed that machine learning methods are the most

frequently used models. MRE and MMRE are the most

frequently used accuracy metrics. The results show that there

is no single perfect method which is suitable for all the

datasets.

Rohit Kumar Sachan, Ayush Nigam et al [7], used simplified

form of genetic algorithm which was used for optimizing

values. They proposed an experiment in which COCOMO

model is used, the value of A and B of the basic COCOMO

model was optimized using simplified Genetic Algorithm. In

this experiment NASA dataset was used. The computed

values of effort for basic COCOMO model was 48.8360 and

for simplified GA was 6.7125. The result showed that effort

estimated by the proposed simplified GA is better as

compared to basic COCOMO effort.

Y. Shan, R. I. McKay [8], used Grammar Guided Genetic

Programming (GGGP) to fit nonlinear models to a dataset of

past projects, their aim was to determine appropriate metrics

sets and improve the prediction. 5 GP runs were generated,

on the same training and testing datasets, 5 linear and log-log

equations were also derived using standard regression

techniques. The training error of log regression was larger

than linear regression. The mean square error (MSE) of GP

was better compared to Linear and Log regression. The GP

model does not generalize perfectly so there is some loss of

accuracy on the test sets, it is still far more accurate in testing

error than the other two regression model. The results showed

that GP models perform better than traditional regression

models.

Colin Burgess and Martin Lefley [9], This project enlists the

importance of software cost estimation such as the effects of

better resource allocation due to improvement in accuracy of

effort prediction models. It provides a clear explanation of

software estimation metrics and provides reasons for

choosing some of them. It discusses about the usage of

Artificial Neural Network for effort prediction by stressing

upon the problems faced when configuring neural networks

and how it tends to counteract their performance in terms of

accuracy. The results of this paper indicate MMRE values

ranging between 37.95 and 52.12. It compares these values

with that of artificial neural network and prove genetic

programming yields better results. It also compares these two

prediction systems based on two factors: Transparency of

solution and Ease of configuration. It states that GP can

produce very transparent solutions in the sense that solution

is an algebraic expression. It illustrates that the configuration

of ANN and GP requires a great level of expertise. It

concludes by highlighting the need of further investigation,

particularly to explore the effects of various parameters on

the models in terms of improving robustness and accuracy.

DEAP is a framework that combines the flexibility and power

of the Python programming language. It contains transparent

Evolutionary Computing components which facilitates rapid

prototyping and testing of new Evolutionary Algorithm ideas.

It encourages creativity through simplicity and explicit

algorithms.15 examples of OpenBEAGLE plus 20 more

examples are implemented by DEAP with 10 times less lines

of code. This framework includes more than 35 applications

[10].

III. GENETIC PROGRAMMING

Genetic Programming (GP) is an extension of Genetic

Algorithm (GA). The basic idea of GA is based on Darwinian

theory of evolution, which says that genetic operations

between chromosomes eventually leads to fitter individuals

which are more likely to survive. Thus, over a long period of

time, the population of the species as a whole

improves. Genetic Algorithm is a random search algorithm

based on natural selection and genetic mechanism it starts

from a set of random generation of initial solution called

“population”. Each individual in the population is a solution

to the problem. Chromosome is a string of symbols, such as a

binary string, these chromosomes constantly evolve in the

subsequent iterations. Crossover and mutation operations are

performed on previous generation of chromosomes to

produce offspring. Crossover operation involves combining

the characteristics of the parents in the new generation

individuals. Crossover reflects the idea of information

exchange. Mutation involves changing the value of one of the

string structure data(chromosome) for the selected individual.

Genetic algorithm selects part of the offspring and eliminates

some offspring according to the fitness value to form the new

generation and to maintain a constant population size.

“Fitness” is to measure the chromosomes in each generation

as good or bad. The optimal or sub-optimal solutions of the

problem is the best chromosomes that are produced after

some generations. The fitness function is also known as the

evaluation function. The fitness function is always non-

negative and is determined according to the objective

function. It is the standard for distinguishing the individuals

of the population [11].

GP adds more advantages to the ones offered by other

evolutionary algorithms is considered one of the evolutionary

algorithms that hold all the advantages offered by

evolutionary algorithms and adds several more. One of the

advantages of GP is, it is not prone to local optimal values

like the neural networks. GP is a global search technique and

it is less likely to get stuck in the local optimum. GP has the

capability to perform the task of feature extraction algorithm

and eliminate unrelated features, of the Modelling problem. It

represents a tree in which less important features would

appear deeper in the tree and more important features can

appear near the root[5]. GP can operate on portion of data to

extract significant rules.[6]

A. Represntation of GP

In GP, programs are usually represented as a variable sized

tree structure. This type of representation allows a variety of

models to be developed. A tree consists of nodes and

terminals. In every terminal node, there is an operand and in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070478
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1322

www.ijert.org
www.ijert.org
www.ijert.org

every node there is a function. Trees can be easily evaluated

in a recursive manner. This way we can evolve mathematical

models in a very simple way [14].

B. Units

Two well-known evaluation criteria are used to assess

the degree of accuracy to which the estimated efforts match

actual efforts:

• MMRE: MMRE is the mean of absolute percentage

errors.

MMRE =

Where E is the actual effort and is the predicted

effort, and N is the number of projects.

• PRED (25): Pred(25) is the percentage of predictions

that fall within 25 percent of the actual value [15].

IV. SYSTEM DESIGN

The system consists of four stages:

• Data Input.

• Genetic Programming Configuration.

• Genetic Programming execution

• Evaluation

A. Data Input

The datasets used in the project commonly called

“Desharnais”, “China”, “Albrecht”. They contain the

information related to software projects derived from

different software projects. They are publicly available

datasets and can be used to evaluate performance of new

software cost estimation models. The dataset is in attribute-

relation file format (.arff) format. Parsing of these files is

done using parser packages that are available in python. The

datasets also consist of some features which are not required

for estimation of effort are eliminated. Only some of the input

variables are used in the effort estimation. The dataset is

parsed and the input is made available as numeric values for

further use.

B. Genetic Programming Configuration

User has to perform preparatory steps for a genetic

programming which are used in configuration and execution

of programs(individuals). User defined primitives and

terminals are contained in a primitive set, which are primarily

used in the algorithm. The five steps which are treated as

preparatory steps are mentioned below:

• Primitive Set: This set consists of the operators and input

variables which are found as nodes of individual

programs. The operators used in the project are basic

mathematical operators such as addition, multiplication,

subtraction and division. The terminals are classified in

two types: the constants and the arguments. The

constants remain the same for the entire evolution while

the arguments are the program inputs. The input

variables of the dataset act as the terminals. The input

variables are all numeric values and can be operated on

by basic mathematical operators to build expressions.

• Fitness function: The fitness is implemented considering

one of the metrics that are used for evaluation of

software cost estimation techniques. The individuals of

the population are evaluated based on this function.

• Parameters: Size of the population and the number of

generations are the main parameters that are decided for

efficient results. They are varied according to the

convergence of the resulting accuracy.

C. Genetic Programming Execution

The genetic programming execution is the execution

of the algorithm with the given configuration parameters. The

execution is the looping of a set of genetic operations. The set

of steps involved can be listed as:

• Population Initialization: The population is a set of

individual programs or tress that can parsed to get an

expression.

• Evolution through algorithm execution: The

algorithm is executed as per the provided

parameters. The execution of the algorithm includes

fitness evaluation, selection, crossover, mutation,

reproduction. The reproduction stage incorporates

the new individual into next generation. The number

of times the algorithm is executed is dependent on a

parameter passed to an execution function.

D. Evaluation

The evaluation of the predicted results is done based

empirically evident software cost estimation metrics. The

evaluation metric is chosen after substantial exploration of

the literature and is discussed in the introduction section of

this report. The detailed information about the selection of the

metric can be found in part in the implementation section as

well.

Workflow

Figure 1: Pipeline of Execution

The Figure 1, Pipeline of Execution shows the complete

workflow of execution on different stages. The dataset is

obtained from a repository of publicly available software

engineering datasets. The dataset goes though the pre-

processing stage where some the features are selected for

carrying out the estimation procedure. The subsequent phase

is the configuration of the Genetic Programming. The

primitive set i.e. the set of operators and operands which act

as nodes for individuals of a population are selected. The GP

execution involves looping through the set of genetic

operators such as selection, crossover and mutation, to obtain

new generation of individuals. The individuals are evaluated

constantly for fitness and fitter individuals are propagated to

next generations. The evaluation phase involves the

calculation of the metrics which are chosen for evaluation of

the estimation model.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070478
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1323

www.ijert.org
www.ijert.org
www.ijert.org

V. IMPLEMENTATION

The project is implemented in Python programming

language and popular evolutionary algorithm framework

called DEAP. The following sections will describe about the

implementation in details.

DEAP (Distributed Evolutionary Algorithms in Python):

DEAP is a framework used for realizing all the evolutionary

computation process. The DEAP framework is built over the

Python programming language that provides the essential

components that make each and every step of genetic

programming implementation easy.

DEAP is made up of two main components: a creator and a

toolbox. The ‘creator’ helps in creating classes that represent

the individual programs. New classes can also be built from

any built-in python datatype like list, set, ‘PrimitiveTree’.

‘ToolBox’ is a container to store primitive set and genetic

operators. The users have several options to populate the

toolbox to implement the genetic programming with

flexibility.

A. Data Parsing

The information about the dataset is discussed in detail in

the introduction part. The data is made of only numeric

attributes. The data format of the files is attribute-relation

format file. The data is parsed using a built-in parser of the

scipy.io package.

B. Data Pre-processing

Selection and Elimination of features, the datasets

contain many features some of which can be used for effort

estimation and some prove to be unnecessary for the

predicting the effort. So, the pre-processing stage involves

identification and elimination of features. This step proves to

be important, as most of the features in the dataset are

numeric, they may play a deciding role in the predicting the

effort by the model. The chance of deviation of results could

be the effect of including such features. Some features

represent names and, such features are eliminated

There are four major steps in achieving the implementation of

evolutionary computations using DEAP:

• Primitive set Configuration

• Individuals and population Initialization

• Genetic operations Setup

• Algorithm execution

The individual steps listed above are discussed in detail

below.

➢ Primitive Set Configuration: The individuals of the

genetic programming are the individual programs which

are represented as trees. The trees are made up of nodes.

The nodes consist of operands or operators. Operands are

found on the terminal nodes and operators can be found

in the non-terminal nodes. The set of the operators and

operands together is called the ‘Primitive Set’. The

operands usually are either the input features in the

datasets or constants. The choice of the operators

depends on the operands. The datasets chosen for this

project contain only numeric features, so simple

mathematical operators are considered and added to the

primitive set.

➢ Individual and Population Initialization: The

individual trees and a population are created in a

preliminary step in genetic programming. The DEAP

framework provides a package to create individuals and

population. The individuals are created ‘creator’

package. The individual creation and population

initialization is done using the ‘toolbox’. The creator

package creates individuals using built-in types.

‘Primitive Tree’ is data type used for individuals. The

population is made up a fixed number of individuals

which is specified by the user.

➢ Genetic Operations Setup: Genetic Operations form the

core part of genetic algorithm. These operations function

to produce newer off-springs which in-turn produce

newer generations. The evolution of new generations is

supported by fitter individuals in the current generation.

This mechanism can be implemented easily with DEAP

framework. The genetic operations are added

successively to the toolbox. The elements in the toolbox

are used during the execution of algorithm.

➢ Genetic Algorithm Execution: The iterative

transformation of the population is executed inside the

main generational loop of the run of genetic

programming. The algorithms module in DEAP contains

some specific algorithms in order to execute common

evolutionary algorithms. The method used here are for

convenience than reference as the implementation of

every evolutionary algorithm may vary infinitely.

Algorithm in this module use operators registered in the

toolbox. Generally, the keyword used are mate() for

crossover, mutate() for mutation, select() for selection

and evaluate() for evaluation of fitness. DEAP provides a

straight-forward function called eaMuPlusLambda()

which takes in as parameters population, toolbox,

number of individuals in the next generation (called

‘Mu’), number of children to produce at each generation

(called ‘Lambda’), probability of crossover,

probability of mutation, number of generations and etc.

VI. RESULT

Genetic Programming yields different results based on

parameters values. The parameter values provided to the

algorithm are as listed below.
Parameter Value

Population size 300

Number of Generations 100

Mutation Probaliltity 0.5

Crossover Probability 0.5

Table 1: Genetic Programming Parameters

The results of the application of implementation on three

different sets can be concluded using the below table.

Dataset Name MMRE Pred(25)

Desharnais 11.970 93.827

China 13.264 87.374

Albrecht 55.493 58.333

Table 2: Results

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070478
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1324

www.ijert.org
www.ijert.org
www.ijert.org

Figure 2: Graph showing the MMRE values over different folds of the K-fold

validation

The graph provides a clear picture of how the MMRE values

range between the different folds of the K-fold validation.

The deviation of the MMRE values is seen to be more when

the dataset is small (‘Albrecth’ dataset). The MMRE values

for ‘Desharnais’ dataset show more deviation compared to

the ‘China’ dataset which the biggest among the three. The

graph hiddenly illustrates the relation of the deviation with

the size of the datset.

VII. CONCLUSION AND FUTURE WORK

Genetic Programming as an approach to software effort

estimation has been explored and implemented. Systematic

study of Genetic programming and its adaptation for the task

of effort estimation has been carried out and reported clearly

as part of the work. The steps include understanding of bio-

inspired evolutionary algorithms, exploration for the metrics

to evaluate the model, implementation of the algorithm,

presentation of results. The implementation of the genetic

programming model using the Metrics like Pred25 and

MMRE were considered for evaluation of the prediction

model. Different datasets with varying sizes were used to test

the predictive model. The K-fold validation results in more

reliable accuracy measures. The results indicate that the

model built using GP shows good accuracy values. The size

of the dataset is also a factor which decides the deviation of

the accuracy values over different folds of validation. The

amount of deviation is observed to be high when the dataset

size is smaller compared to the bigger ones. The results

warrant that GP can be further explored on its different

characteristics for better results.

The results of the GP on smaller dataset are very low

which can be further worked upon. The future works could

aim to attain better configurations of the GP setup which give

more accuracy. Comparisons with other predictive model

building methods can be considered for future research works

which yield a comparable accuracy. More robust metrics

could be designed for evaluating the accuracy of the effort

estimation models as the currently used ones. Comparative

studies showing the difference in accuracy due to the change

in configuration parameters of the GP will help future

researchers in choosing them wisely.

REFERENCES

[1] K. Srinivasan and D. Fisher, "Machine learning approaches to

estimating software development effort," in IEEE Transactions on

Software Engineering, vol. 21, no. 2, pp. 126-137, Feb. 1995, doi:
10.1109/32.345828.

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,

vol. 2. Oxford: Clarendon, 1892, pp.68-73. The Comparison of the
Software Cost Estimating Methods. (With Liming

Wu).Link(https://www.computing.dcu.ie/~renaat/ca421/LWu1.html).

[3] G. Gabrani and N. Saini, "Effort estimation models using evolutionary
learning algorithms for software development," 2016 Symposium on

Colossal Data Analysis and Networking (CDAN), Indore, 2016, pp. 1-

6, doi: 10.1109/CDAN.2016.7570916.
[4] Bardsiri, Amid Khatibi, Seyyed Mohsen Hashemi, and Mohammadreza

Razzazi. "Statistical analysis of the most popular software service effort

estimation datasets." Journal of Telecommunication, Electronic and
Computer Engineering (JTEC) 7.1 (2015): 87-96.

[5] Azzeh, M. A replicated assessment and comparison of adaptation

techniques for analogy-based effort estimation. Empir Software Eng 17,
90–127 (2012).

[6] Saeed, Ayesha, et al. "Survey of software development effort

estimation techniques." Proceedings of the 2018 7th International
Conference on Software and Computer Applications. 2018.

[7] Sachan R.K., Nigam A. et al. Optimizing Basic COCOMO Model
Using Simplified Genetic Algorithm (2016) Procedia Computer

Science, 89, pp. 492-498. https://doi.org/10.1016/j.procs.2016.06.107
[8] Y. Shan, R. I. McKay, C. J. Lokan and D. L. Essam, "Software project

effort estimation using genetic programming," IEEE 2002 International

Conference on Communications, Circuits and Systems and West Sino

Expositions, Chengdu, China, 2002, pp. 1108-1112 vol.2, doi:
10.1109/ICCCAS.2002.1178979.

[9] Burgess, C. J. and Martin Lefley. “Can genetic programming improve

software effort estimation? A comparative evaluation.” Inf. Softw.
Technol. 43 (2001): 863-873.

[10] Fortin, Félix-Antoine & De Rainville, François-Michel & Gardner,

M.A. & Parizeau, Marc & Gagné, Christian. (2012). DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning

Research, Machine Learning Open Source Software. 13. 2171-2175.

[11] S. Liu and X. Xu, "Distributed Database Query Based on Improved
Genetic Algorithm," 2016 3rd International Conference on Information

Science and Control Engineering (ICISCE), Beijing, 2016, pp. 348-

351, doi: 10.1109/ICISCE.2016.84.
[12] F. S. Alaa and A. Al-Afeef, "A GP effort estimation model utilizing

line of code and methodology for NASA software projects," 2010 10th

International Conference on Intelligent Systems Design and
Applications, Cairo, 2010, pp. 290-295, doi:

10.1109/ISDA.2010.5687251.

[13] J. K. Kishore, L. M. Patnaik, V. Mani and V. K. Agrawal, "Application
of genetic programming for multicategory pattern classification", IEEE

Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 242-258,

September 2000.
[14] Willis, Mark & Hiden, Hugo & Marenbach, P. & McKay, Ben &

Montague, Gary. (1997). Genetic programming: An introduction and

survey of applications. 314 - 319. 10.1049/cp:19971199.
[15] M. Shepperd and C. Schofield, "Estimating software project effort

using analogies," in IEEE Transactions on Software Engineering, vol.

23, no. 11, pp. 736-743, Nov. 1997, doi: 10.1109/32.637387.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070478
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1325

www.ijert.org
www.ijert.org
www.ijert.org

