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ABSTRACT
Of great value to modern municipalities is the task of emergency
medical response in the community. Resource allocation is vital
to ensure minimal response times, which we may perform via hu-
man experts or automate by maximising ambulance coverage. To
combat black-box modelling, we propose a modularised Genetic
Programming Hyper Heuristic framework to learn the five key
decisions of Emergency Medical Dispatch (EMD) within a reac-
tive decision-making process. We minimise the representational
distance between our work and reality by working with our local
ambulance service to design a set of heuristics approximating their
current decision-making processes and a set of synthetic datasets in-
fluenced by existing patterns in practice. Through our modularised
framework, we learn each decision independently to identify those
most valuable to EMD and learn all five decisions simultaneously,
improving performance by 69% on the largest novel dataset. We
analyse the decision-making logic behind several learned rules to
further improve our understanding of EMD. For example, we find
that emergency urgency is not necessarily considered when dis-
patching idle ambulances in favour of maximising fleet availability.
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1 INTRODUCTION
Emergency Medical Dispatch (EMD) is an NP-hard optimisation
task concerning the prompt assignment of medical resources to
emergencies in the community [40]. In EMD, a heterogeneous am-
bulance set must quickly respond to variant and uncertain emer-
gencies occurring in a dynamic manner. This objective aligns with a
pattern long known by the medical community; that patient mortal-
ity and ambulance response time are positively correlated [10, 16].
Research that aids EMD is undeniably valuable to society. In 2019,
the U.S. Federal Communications Commission estimated that reduc-
ing the average national ambulance response time by sixty seconds
would save more than 10,000 lives per year [9]. In the same year,
the U.S. Department of Transportation estimated the value of one
statistical life at US$10.9m [9].

Due to the inherently dynamic and uncertain nature of EMD,
dispatching ambulances a priori, e.g. by traditional, mathematical
optimisation techniques, is infeasible. Robust-proactive decision-
making techniques are typically two-staged [13, 44]: robust solution
construction and dynamic recourse. Building robust solutions to
EMD is impractical, given we do not know the location or urgency
of emergencies ahead of time. To address this issue, scholars have
developed predictive algorithms that distribute idle ambulances
to maximise coverage and send the nearest ambulance upon the
occurrence of a new emergency [20, 30, 43]. Such a simple real-time
dispatch is by no means optimal.

Real-time emergency dispatch is often the task of human decision-
makers, aided by manually designed dispatch rules, while data-
informed coverage criteria may aid idle ambulance relocation. The
primary value of human dispatchers is audit capacity. After a fa-
tal decision, an Emergency Services Provider can interview a dis-
patcher to understand their logic. This process improves dispatcher
training and refines the set of manually designed dispatch rules aid-
ing human dispatchers in line with the priorities of the Emergency
Services Provider in question.

The research community has recently rekindled its focus on am-
bulance dispatch [15, 17]. Most notably, Liu et al. [23] designed a
multiagent reinforcement learning algorithm for ambulance relo-
cation, and Yang and Albert [51] expanded their prior stochastic
programming model [49] to consider non-transport vehicles, de-
termining when to send multiple agents, or not. However, due to
several impractical assumptions, most of the existing research is
less applicable to real-world dispatch. First, most problem models
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discretise the service region (road network) to a grid-based network,
which blunts our understanding of the spatial emergency distribu-
tion [47] and oversimplifies the problem. Second, the techniques
used in existing works are incomprehensible to and non-adjustable
by non-expert Emergency Services Providers and are therefore in-
compatible with audit requirements. Third, most existing methods
simplify the types of ambulances and emergencies, increasing the
representational gap between the solved problems and the real
world, and thus the risk of practical adoption.

The Genetic Programming Hyper Heuristic (GPHH) is an effec-
tive technique to learn online decision-making heuristics [12, 18,
24]. Based on Genetic Programming (GP), a Darwinian-inspired
machine-learning algorithm, we evolve a population of heuristics
and evaluate each via a simulated Decision-Making Process (DMP).
We choose an EMD-specific GPHH formulation as it offers an ele-
gant solution to the above three practical limitations. A GP-evolved
heuristic can scale to larger, realistic instances without problem sim-
plification and information loss, and is inherentlymore interpretable
than alternative methods (e.g. reinforcement learning [23]). Finally,
we are collaborating with our local ambulance service, Welling-
ton Free Ambulance (WFA), to align our DMP with practical EMD,
decreasing the risk of real-world uptake.

This paper’s major research goal is to design a modularised
DMP framework that represents all decision-making processes for
EMD. The key in this modularised framework is the five types
of decisions that respond to dynamic events, i.e., new emergency
arrivals and ambulances becoming idle (Figure 1). For each decision,
we may use amanually designed rule or attempt to learn a superior
rule by GP. We aim to learn these component decisions of EMD
to outperform the manually designed rules. To achieve this, we
specifically investigate the following specific objectives:

(1) Develop a modular multi-tree GPHH framework that allows
us to simultaneously learn GP-rules for any subset of deci-
sions (while fixing the others to their manual rule);

(2) Explore which decisions benefit fromGP, and which wemust
defer to the manually designed rule;

(3) Investigate whether we must learn decision rules indepen-
dently or simultaneously;

(4) Identify the decision(s) that contribute most to improving
EMD performance.

The following Section formally details the EMD problem and
briefly introduces the GPHH algorithm for EMD. Section 3 describes
the developed multi-tree GPHH for EMD. Section 4 outlines our
experimental studies, presenting and discussing the achieved results
before Section 5 concludes this work.

2 BACKGROUND
2.1 Problem Description
EMD is based on a fully connected graph G(V, E) (city road net-
work), whereV denotes the vertex set and E the edge set. Between
any two vertices 𝑢, 𝑣 , the matrix 𝝉 = [𝜏𝑢𝑣] ∈ R |V |× |V | stores the
traversal time. We denote two subsets of the vertex set: one as facil-
ities F ⊂ V , to which idle ambulances may return, and another as
hospitals P ⊂ V , to which a capacitated ambulance must transport

Figure 1: The decisions (D1 through D5) required in a realistic
EMD environment and the dynamic events (E1 and E2) that
trigger them [15].

emergencies requiring hospitalisation. The heterogeneous ambu-
lance setA collaborate1 to serve the heterogeneous emergency set
T , where |A| =𝑚 and |T | = 𝑛. During the real-time dispatching
process, we denote the waiting emergency set as Π.

Each emergency 𝑡 𝑗 ∈ T comprises a tuple ⟨𝜏𝑟
𝑗
, ℓ𝑗 , d𝑗 , 𝛾 𝑗 ⟩. 𝜏𝑟𝑗 ∈

R+ denotes the emergency receipt time; ℓ𝑗 � 𝑣 𝑗1 + 𝛼 𝑗 · (𝑣 𝑗2 −
𝑣 𝑗1), the emergency’s location, where (𝑣 𝑗1, 𝑣 𝑗2) ∈ E and 𝛼 𝑗 ∈
[0, 1] (i.e. emergencies occur at some point along an edge); d𝑗 =
[𝑑 𝑗1, . . . , 𝑑 𝑗𝐷 ] ∈ R𝐷 , the demand (time required on site) of 𝐷 dif-
ferent ambulance skills, where 𝑑 𝑗𝐷 ∈ {0, 1}, 𝑑 𝑗𝐷 = 1 indicates that
the emergency requires hospitalisation, and 𝑑 𝑗𝐷 = 0, the inverse;
and 𝛾 𝑗 ∈ {1, . . . ,𝑈 }, the urgency class of the emergency, where
𝑈 is the number of distinct urgency classes specified by the ESP.
We maintain three pieces of information for each urgency class
𝛾 : the weight (urgency) as 𝜔𝛾 ∈ R; an ESP’s target response time
as 𝜏𝑇𝛾 ∈ R; and the fraction of historical emergencies of type 𝛾 as
𝜃𝛾 ∈ [0, 1], where

∑𝑈
𝛾=1 𝜃𝛾 = 1.

The emergency demand vector d𝑗 and urgency class 𝛾 𝑗 are ran-
dom variables. The true demand distribution d𝑗 ∼ D(d̃𝑗 ) is con-
ditioned on the estimated demand d̃𝑗 , and the true urgency class
distribution 𝛾 𝑗 ∼ U(𝛾 𝑗 ) is conditioned on the estimated urgency
class 𝛾 𝑗 . An Emergency Services Provider (ESP) knows an emer-
gency 𝑡 𝑗 ’s estimated values, i.e. d̃𝑗 and 𝛾 𝑗 , at time 𝜏𝑟

𝑗
, and learn the

true values, i.e. d𝑗 and 𝛾 𝑗 , when an ambulance first arrives at 𝑡 𝑗 .
Each ambulance 𝑎𝑖 ∈ A comprises a tuple ⟨ℓ𝑖 (𝜏𝑐 ), q𝑖 ⟩. The first

entry ℓ𝑖 (𝜏𝑐 ) denotes 𝑎𝑖 ’s location at the current time 𝜏𝑐 during the
dispatching process, where ℓ𝑖 (0) ∈ F , and q𝑖 = [𝑞𝑖1, . . . , 𝑞𝑖𝐷 ] ∈ R𝐷
denotes the ambulance’s 𝐷-dimensional skill vector to fulfill the
demands. 𝑞𝑖𝐷 = 1 means that the ambulance 𝑎𝑖 has the capacity to
transport an emergency to a hospital, and 𝑞𝑖𝐷 = 0 otherwise. The
actual on-site service time depends on the collaboration between
ambulances. At any time, the service efficiency is proportional to
the average skill of all the ambulances on site, and the service is
completed when all the demands has decreased to zero.

We represent a solution to an EMD instance 𝐼 as S𝐼 = (X𝐼 , Y𝐼 )
where X𝐼 = [X1, . . . ,X𝑚] and Y𝐼 = [Y1, . . . ,Y𝑚]. Like-indexed
entries correspond to a sequence of emergency path tuples for

1Explicitly differentiating EMD from self-interested agents (e.g. taxi dispatch) and
competitive agents (e.g. competitive games).
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Figure 2: A simple EMD instance with one hospital (node 𝐶)
and two facilities (nodes 𝐴 and 𝐶). Two capacitated ambu-
lances, 𝑎1 and 𝑎2 (𝑎2 is more skilled than 𝑎1) begin at 𝐴. The
emergencies 𝑡1, 𝑡2, and 𝑡3 have receipt times (𝜏𝑟

𝑗
), demand (d𝑗 )

and urgency (𝛾 𝑗 ). Assume edge traversal takes one minute,
hospital drop-off is instantaneous, and emergency locations
are at the nearest edge quarter.

Table 1: An example solution to the instance given by Figure
2. 𝑎1 immediately attends 𝑡1 (service takes 1 ∗ 10 = 10 mins)
and 𝑎2 attends 𝑡2 upon arrival (service takes 0.5 ∗ 20 = 10
mins). 𝑎1 has one minute idle at 𝐶 prior to being dispatched
to 𝑡3 at time 12, which requires a highly skilled ambulance.
𝑎2 arrives at 𝑡3 at time 15.75, at which point 𝑎1 has served 2
units of demand. The remaining demand is (10, 8) (or, equiv-
alently, (9, 10)) which we multiply by the average skill vector
(1.5, 0.75) to reach a remaining demand of (15, 6). Both ambu-
lances finish at the nearest facility 𝐶 at time 37.5.

Ambulance Component Solution

𝑎1
𝑋1 ⟨ (𝐴, 0) → (𝐶, 12) ⟩, ⟨ (𝐶, 13) → (𝐶, 37.5) ⟩
𝑌1 ⟨ (0, 𝑡1 ), (13, 𝑡3 ) ⟩

𝑎2
𝑋2 ⟨ (𝐴, 3) → (𝐶, 15) ⟩, ⟨ (𝐶, 15) → (𝐶, 37.5) ⟩
𝑌2 ⟨ (3, 𝑡2 ), (15, 𝑡3 ) ⟩

ambulance 𝑎𝑖 :

X𝑖 = [𝑥𝑖1, . . . , 𝑥𝑖𝑝 , . . . , 𝑥𝑖𝑃𝑖 , 𝑥𝑖𝑃𝑖+1]
Y𝑖 = [𝑦𝑖1, . . . , 𝑦𝑖𝑝 , . . . , 𝑦𝑖𝑃𝑖 ]

where 𝑃𝑖 ≤ 𝑛 indicates the number of distinct emergencies attended
by ambulance 𝑎𝑖 . The tuple 𝑥𝑖𝑝 � ⟨ℓ𝑖 (𝜏𝑖,𝑝−1), ℓ𝑖 (𝜏𝑖,𝑝 )⟩ is a pair of
locations and time stamps denoting the ambulance’s start location
ℓ𝑖 (𝜏𝑖,𝑝−1) at time 𝜏𝑖,𝑝−1 and end location ℓ𝑖 (𝜏𝑖,𝑝 ) at time 𝜏𝑖,𝑝 . Specif-
ically, ℓ𝑖 (𝜏𝑖,0) = ℓ𝑖 (0), 𝜏𝑖,0 equals the time the ambulance 𝑎𝑖 is first
dispatched to an emergency, and the final X𝑖 entry denotes the
path from ambulance 𝑎𝑖 ’s final emergency at location ℓ𝑖 (𝜏𝑖,𝑃𝑖 ) to a
facility at location ℓ𝑖 (𝜏𝑖,𝑃𝑖+1). The tuple 𝑦𝑖𝑝 � ⟨𝜏𝑑𝑖𝑝 , 𝑡𝑝 ⟩ records the
time ambulance 𝑎𝑖 is dispatched to each emergency 𝑡𝑝 as 𝜏𝑑

𝑖𝑝
. The

ambulance travels from one location to the next following the short-
est path, which can be pre-calculated in advance. Figure 2 shows an
example EMD instance with two heterogeneous ambulances and
three heterogeneous emergencies, and Table 1 shows an example
solution to this instance. It is not difficult to imagine a scenario
where this relatively efficient dispatch scheme goes awry. Should
𝑡3 have arrived at time = 4, for example, ambulance 𝑎1 would not
have been able to respond until time = 12.

A valid solution must adhere to the following constraints:
• the ambulance set must serve all emergency demand;
• all ambulance routes must start and end at facility nodes;
• we cannot dispatch an ambulance to an emergency prior to
having received the emergency;
• an ambulance cannot depart for a new emergency prior to it
having completed serving its current emergency;
• ambulance 𝑎𝑖 ’s traversal time from emergency 𝑡𝑝−1 to 𝑡𝑝
must be at least as long as the shortest path between the
two.

Equation (1) defines the EMD objective function to be minimised:
the average weighted response time, where 𝜏𝑎

𝑗
is the time the first

ambulance arrives at the emergency 𝑡 𝑗 . 𝜗 𝑗 = 1 if the solution is
valid, and some sufficiently large constant if some emergencies fail
to be completed. Equation (2) defines the emergency weight 𝜔𝛾 𝑗
that maintains the relative contribution of each emergency urgency
to the final objective value.

𝐶 (𝐼 ) = 1
𝑛

𝑛∑︁
𝑗=1
(𝜏𝑎𝑗 − 𝜏

𝑟
𝑗 )𝜗 𝑗𝜔𝛾 𝑗 , (1)

𝜔𝛾 𝑗 =
1

(𝜏𝑇𝛾 𝑗 )2 · 𝜃𝛾 𝑗
, (2)

2.2 Related Work
2.2.1 Optimising Ambulance Location. The typical approach to am-
bulance dispatch is to optimise the fleet’s coverage of the service
region by either optimally locating facilities [8, 38, 42] or dynam-
ically allocating ambulances among predefined facilities [2, 14].
As most services must operate with existing structures, we are
more interested in the latter. Restrepo [33], Maxwell, Henderson,
and Topaloglu [28], and Maxwell et al. [29] use approximate dy-
namic programming to redeploy idle ambulances among facilities.
Schmid [36] additionally considers ambulance dispatch (ambulance-
emergency allocation). Beraldi and Bruni [4] locate ambulances
among facilities in the first stage of a stochastic program, and
respond to dynamic emergencies in the second stage. Alanis, Ingolf-
sson, and Kolfal [1] develop a two-dimensional Markov chain model
to relocate idle ambulances in real time and use a Matlab emergency
simulator to validate that their model is accurate. Yoon and Albert
[48] merge an approximate hypercube model and a mixed-integer
linear program to locate and dispatch idle ambulances, improving
coverage over urgent emergencies in a dynamic environment. Liu
et al. [23] develop a multiagent deep reinforcement learning algo-
rithm for ambulance allocation, learning how many ambulances to
send to each region during each epoch, given demand.

2.2.2 Optimising Ambulance Dispatch. Yoon and Albert [49] intro-
duce multiple-response, preferring to send several heterogeneous
ambulances, if available, to urgent emergencies. They found that
multiple-response is preferred, even under high fleet utilisation,
given a suitable stochastic programming (or manually designed)
dispatch policy. Yoon and Albert [51] incorporate Bender’s Cut
[3] to their prior stochastic programming model [49] to consider
real-world scale problems and non-transport ambulances, finding
non-transport ambulances positively impact system performance.
Guigues et al. [15] proposed a column generation algorithm using
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region (and time) discretisation to learn the five fundamental deci-
sions of EMD (see Figure 1), showing improved performance over
basic nearest-first dispatch rules on real-world data.

McLay and Mayorga [31] and Yoon and Albert [50] formulate
EMD as a Markov Decision Process and actively learn which am-
bulance to send to each emergency under urgency uncertainty.
The former [31] finds that it is not always optimal to send the
nearest ambulance, both when queuing and passing unserved emer-
gencies to a neighbouring service. In contrast to many predefined
thresholds previously proposed [35, 41], the latter [50] designed a
dynamic cutoff scheme to automatically determine when advanced
ambulances should respond to emergencies under both finite and
infinite horizon scenarios. In addition, Jagtenberg, Bhulai, and van
der Mei [19] manually design a heuristic to solve instances with
large vehicle volumes. Specifically, the dispatch heuristic balances
the distance the ambulance is from the emergency and the am-
bulance’s impact on fleet coverage. However, while the authors
found that the heuristic decreased response time target violations,
it increased the average overall response time.

Yang et al. [47] devised an ambulance dispatch simulation to
evaluate the efficacy of a solution generated by a Gaussian-process-
based search algorithm [37]. The authors advised against the com-
mon practice of blunt region discretisation [11, 15, 46, 49, 51],
proposing a more realistic discretisation alternative based on a
Gaussian mixture model.

2.2.3 Genetic Programming Hyper Heuristic. GPHH [6] allows us
to search the heuristic space to possibly outperform these expert-
defined rules. GPHH generates high-level heuristics (learned rules)
using low-level heuristics (primitive set elements).

Scholars have successfully applied GPHH to various vehicle dis-
patching problems [7], routing problems [25, 45], and scheduling
problems [12, 52]. Despite this, ambulance dispatch has received
relatively little attention. Runka [34] applied GPHH to the Robocup
Rescue Simulation System, simultaneously coordinating an ambu-
lance fleet, fire department, and police force in response to disasters
(e.g. post-earthquake). MacLachlan et al. [26] used GPHH and an
ambulance dispatch simulation to learn decisions D1 and D4, con-
flating the two, thus observing nominal results.

2.2.4 Summary. While relocating an idle ambulance (Section 2.2.1)
and selecting a suitable ambulance for an emergency (Section 2.2.2)
are undoubtedly important, they are not the only decisions made
by real-world dispatchers. This work aims to learn all five key
decisions in EMD, as shown in Figure 1.

Many existing techniques rely on black-box models (e.g. rein-
forcement learning), or effectively black-box models to non-experts
(e.g. stochastic programming), and thus conflict with audit (inter-
pretability) objectives. We believe tree-based GP can learn inher-
ently more interpretable rules than said methods.

With regards to investigated problemmodels, many oversimplify
the problem via region discretisation, considering too few emer-
gency or ambulance types, or making assumptions such as passing
excess emergencies to neighbouring ambulance fleets. The problem
model and instances solved in this work void these issues.

3 GPHH FOR EMERGENCY MEDICAL
DISPATCH

We present the general framework of the GPHH in Algorithm 1,
and of the associated EMD simulation framework in Algorithm 2.
In multi-tree GP, we define an individual 𝑔 as a tupleZ𝑔 = ⟨r𝑔, b𝑔⟩,
where r𝑔 = [𝑟𝑔1, . . . , 𝑟𝑔𝑅] is a list of rules and b𝑔 = [0, 1]𝑅 a binary
vector that indicates whether or not we evolve the rule with GPHH
(𝑏𝑔1 = 1) or use a manually designed rule (𝑏𝑔1 = 0). Thus,

∑𝑅
𝑟=1 𝑏𝑔𝑟

equals the number of trees simultaneously learned.

Algorithm 1 The GPHH for EMD.
1: Randomly initialise a population of multi-tree individuals.
2: while stopping criteria not met do
3: Evaluate the population via Algorithm 2 and Equation (1).
4: Create a new, empty population (the next generation).
5: while the new population is empty do
6: Generate one or more individuals by:
7: Parent Selection and
8: Crossover, Mutation, Reproduction, or Elitism.
9: Add the new individual(s) to the new population.

Algorithm 2 The EMD simulation for fitness evaluation.
Input: EMD instance 𝐼 and GP individual Z.
Output: A solution S𝐼 .
1: 𝜉, S𝐼 = initialise a new EMD state and solution.
2: Γ = a new, empty event queue (ordered by minimal time).
3: for i = 1 . . .m do
4: Γ← new facility arrival event for ambulance 𝑎𝑖 at time 0.
5: for j = 1 . . . n do
6: Γ← new emergency event for 𝑡 𝑗 at time 𝜏𝑟

𝑗
. ⊲ i.e. E1

7: while Γ is not empty do
8: 𝜖 ← pop most prior (earliest) event from Γ.
9: trigger 𝜖 to update the state 𝜉 and solution S𝐼 .
10: return S𝐼

To evaluate the effectiveness of an individualZ𝑔 , we apply it to a
set of training instance samples via an EMD-specific simulated DMP
(i.e. Algorithm 2).We use rule 𝑟𝑔1 to make decisionD1: dispatch now,
𝑟𝑔2 to make decision D2: choose ambulance, and so on. Designing
a DMP representative of real-world EMD is pivotal to creating a
learning environment relevant to the industry.

Algorithm 3 shows the pseudocode for new emergency events
(i.e. E1). Line 1 determines whether to immediately attend the new
emergency (D1); Line 7, which ambulance to send (D2). Algorithm
4 shows the pseudocode for idle ambulance events (i.e. E2). Line
1 determines whether to dispatch an idle ambulance to a waiting
task (D3); Lines 4 and 11, which facility to return to (D5); Line 7,
which emergency to attend (D4). We treat 𝑟𝑔1 and 𝑟𝑔3 as threshold
functions around zero and 𝑟𝑔2, 𝑟𝑔4, and 𝑟𝑔5 as priority functions.

The purpose of this work is to simultaneously learn the important
component decisions of EMD,D1 -D5 (Figure 1), and identify those
that most impact performance. GP-D𝑖 denotes the algorithm used
to learn a rule for decision D𝑖 (e.g. GP-D1, D1), and GP-DA denotes
the algorithm used to learn rules for all decisions simultaneously.

3.1 Baseline Algorithm
To properly determine the effectiveness of the learned GPHH al-
gorithms, we test our learned rules against a baseline algorithm
(EMD-BL) using a set of rules manually designed alongside WFA
to approximate their human decision-making logic. The first three
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Algorithm 3 The new emergency event: E1
Input: EMD instance 𝐼 , GP individual Z𝑔 , current state 𝜉 , and new emergency 𝑡 𝑗 .
1: if 𝑟𝑔1 (𝑡 𝑗 ) ≥ 0.0 then ⊲ i.e. D1
2: Π← 𝑡 𝑗 ⊲ Add the new emergency to the global queue.
3: return
4: Ξ← idle ambulance subset A𝑖 ⊂ A.
5: Λ← new priority queue of ambulances ordered by 𝑟𝑔2 (Ξ) .
6: while Λ is not empty do
7: 𝑎𝑖 ← pop most prior ambulance from Λ. ⊲ i.e. D2
8: if 𝑎𝑖 required at 𝑡 𝑗 then
9: send 𝑎𝑖 to 𝑡 𝑗 .
10: Γ← new idle 𝑎𝑖 event: when 𝑡 𝑗 ends. ⊲ i.e. E2
11: if 𝑡 𝑗 insufficiently assigned then
12: Π← 𝑡 𝑗 . ⊲ Add the new emergency to the global queue.

Algorithm 4 The idle ambulance event: E2
Input: EMD instance 𝐼 , GP individual Z𝑔 , current state 𝜉 , and idle ambulance 𝑎𝑖 .
1: if 𝑟𝑔3 (𝑎𝑖 ) ≥ 0.0 then ⊲ i.e. D3
2: Γ← new send event: 𝑎𝑖 to a facility by 𝑟𝑔5 (𝑎𝑖 ) . ⊲ i.e. D5
3: return
4: Π← global waiting queue Π ⊂ T .
5: Λ← new priority queue of emergencies ordered by 𝑟𝑔4 (Π) .
6: while Λ is not empty do
7: 𝑡 𝑗 ← pop most prior emergency from Λ. ⊲ i.e. D4
8: if 𝑡 𝑗 requires ambulance 𝑎𝑖 then
9: send 𝑎𝑖 to 𝑡 𝑗 .
10: Γ← new idle 𝑎𝑖 event: when 𝑡 𝑗 ends. ⊲ i.e. E2
11: return
12: Γ← new send event: 𝑎𝑖 to a facility by 𝑟𝑔5 (𝑎𝑖 ) . ⊲ i.e. D5

of these are consistent with those previously studied. We show the
manual rules below.

𝑟𝑚𝑔1 (𝑡 𝑗 ) = −1 (3)
𝑟𝑚𝑔2 (𝑎𝑖 , 𝑡 𝑗 ) = travel_time(ℓ𝑖 (𝜏𝑐 ), ℓ𝑗 ) (4)

𝑟𝑚𝑔3 (𝑎𝑖 ) = −1 (5)
𝑟𝑚𝑔4 (𝑎𝑖 , 𝑡 𝑗 ) = travel_time(ℓ𝑖 (𝜏𝑐 ), ℓ𝑗 )/𝜔𝛾 𝑗 (6)

𝑟𝑚𝑔5 (𝑎𝑖 , 𝑓𝑘 ) = 𝑔(𝑓𝑘 ) (7)

𝑟𝑚
𝑔1 (𝑡 𝑗 ) (Equation 3) always immediately dispatches an idle am-

bulance to a new emergency; 𝑟𝑚
𝑔2 (𝑡 𝑗 ) (Equation 4) prioritises nearby

ambulances; 𝑟𝑚
𝑔3 (𝑡 𝑗 ) (Equation 5) always immediately dispatches

an idle ambulance to a waiting emergency; 𝑟𝑚
𝑔4 (𝑡 𝑗 ) (Equation 6)

prioritises nearby emergencies, weighted by emergency urgency;
and 𝑟𝑚

𝑔5 (𝑡 𝑗 ) (Equation 7) dispatches an idle ambulance to a facil-
ity by 𝑔(𝑓𝑘 ): to the nearest facility with the minimal number of
capacitated ambulances present.

4 EXPERIMENTS
4.1 Experiment Design
The function set is {+,−,×, /,𝑚𝑎𝑥,𝑚𝑖𝑛, 𝑖 𝑓 } for learning all rules.
The / operator denotes protected division, returning one if the
denominator is zero, and the 𝑖 𝑓 operator takes three variables 𝑥,𝑦, 𝑧
as input, and returns 𝑦 if 𝑥 > 0 and 𝑧 otherwise. However, each
of the five decisions considers a different aspect of the current
EMD state. For example, D1 examines a single new emergency,
and D2 examines a single new emergency with respect to each
idle ambulance. As a result, we require a different GP terminal set
for each rule r𝑔 . Table 2 details all terminals used (A stands for

ambulance features; A:F for ambulance-facility features; A:E for
ambulance-emergency features; F for facility features; G for global
features; and E for emergency features), while Table 3 outlines
which terminal sub-sets each rule r𝑔 uses during evolution.

Table 2: The proposed terminals used in GP.

Set Code Description

A AC Ambulance transport capacity.
| SK Relative ambulance skill, an integer.
| TTI Approximated time until idle.

A:F FTD Distance: ambulance to facility.
A:E DCA Distance: closest alternative ambulance to emergency.
| TTD Distance: ambulance to emergency.
F FQ Maximum facility capacity.
| FC The fraction of V within a given RTT.
| NP Number of ambulances present.
G EL The state Escalation Level (pressure).
| FB Fraction of ambulances currently busy.
| NWA Number of ambulances waiting for backup.
| NWT Number of queued emergencies, i.e. |Π | .
| NWUT Number of queued urgent emergencies (i.e. tier 1 or 2).
E AD The number of ambulances yet assigned to the emergency.
| PD The number of ambulances yet present at the emergency.
| RTA Binary: does this emergency require a transport ambulance?
| T The tardiness of the current emergency.
| UR Emergency weight: 𝜔𝛾𝑗

, where 𝜑 𝑗 = 1.
| TR The estimated time until we complete this emergency.

Table 3: The terminals used for learning different rules.

Rule Terminal sub-sets Codes

𝑟𝑔1 Emerg and Global. {E, G}
𝑟𝑔2 Emerg, Ambo, Ambo:Emerg, and Global. {E, A, A:E, G}
𝑟𝑔3 Ambo and Global. {A, G}
𝑟𝑔4 Emerg, Ambo, Ambo:Emerg, and Global. {E, A, A:E, G}
𝑟𝑔5 Ambo, Fac, Ambo:Fac, and Global. {A, F, A:F, G}

Table 4 shows the other GP parameters of the proposed algo-
rithms, following the settings for other popular GPHH techniques
[25, 32]. Specifically, we train each individual on five instances (five
days of emergencies), rotating the instance set each generation.
We test the best individual of the final generation (the ‘learned
rules’) on a size-500 unseen test set (500 days of emergencies). The
test performance is the average objective value of the generated
solutions over the test instances. Each GP algorithm is run 30 times
independently, and we compare their results byWilcoxon rank sum
test and Friedman test with a significance level of 0.05.

We test the algorithms on three synthetic datasets based on
the graphs of the EGL [21, 22], EGL-G [5], and HFE [39] datasets.
We collaborate with WFA to consider real-world patterns such as
time-variant demand volume, approximate urgency proportions,
and daily ambulance fluctuations to improve data realism. These
datasets are available for public download [27].

4.2 Results and Discussions
4.2.1 Performance analysis. Table 5 shows the test performance
on the EGL, EGL-G, and HFE datasets, including a Wilcoxon rank
sum and Friedman test. The symbols after each performance value
denote an algorithm’s instance-level performance relative to those
following: a (+) indicates this method significantly outperforms
the equivalently indexed other; a (−), the opposite; an (=), no
significant difference. The symbols after each average rank denote
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Table 4: The GP parameter setting.

Parameter Value Parameter Value

Population size 1024 Generations 51
Tournament size 7 Crossover rate 0.8
Mutation rate 0.15 Reproduction rate 0.05
Maximal depth 8 Elitism 10

an algorithm’s dataset-level performance relative to those following.
The values marked in bold indicate the algorithm with the lowest
test performance. From this, we make the following observations.

On average, GP-D1 performs worse than EMD-BL on all three
datasets, performing significantly worse on the EGL dataset. GP-D1
suffers a high standard deviation, suggesting it contains a consid-
erable number of outliers and overfit the training data on several
instances, namely egl-e2-b, egl-g1-b, hfe-3, and hfe-9. Com-
paring the training and test performance in these instances confirms
this hypothesis; several rules that perform well during training fail
during test. We create new emergency events under two circum-
stances: a) when a new emergency occurs, and b) when an ambu-
lance requests backup. Solution analysis shows that poor heuristics
frequently decide not to dispatch an ambulance to such urgent
events. This behaviour leads to an accumulation of incapacitated
non-transport ambulances and invalid solutions which we heavily
penalise. Future research will aim to capture these edge cases.

On average, GP-D2 performs the same or worse than EMD-BL
on all three datasets, with no statistical significance. Intuitively, 𝑟𝑚

𝑔1
increases the likelihood that the entire fleet is busy when an urgent
emergency arrives, thus offering little opportunity for GP-D2 to
learn. Solution analysis over the test set supports this hypothesis:
the idle ambulance set is empty on over 60% of D2 invocations.

GP-D3 performs significantly worse than EMD-BL on the EGL
dataset, and significantly better than EMD-BL on the EGL-G and
HFE datasets. GP-D1 suffers a high standard deviation, suggesting
it contains several outliers and overfit the training data. Poorly
learned D3 rules often fail to dispatch idle transport ambulance
backup to non-transport ambulances present at urgent emergencies,
deciding to return to a facility instead. Identifying or otherwise
mitigating the cause of these rare events during training will inform
future works. GP-D3 significantly outperforms the other individu-
ally learned rules on the largest two datasets, suggesting that an
idle ambulance delay strategy for EMD is preferred over an immedi-
ate dispatch strategy in the presence of many urgent emergencies.
This aligns with real-world EMD practices while contrasting with
often-held assumptions in the online decision-making literature.

GP-D4 significantly outperforms EMD-BL on all three datasets. GP-
D4 significantly outperforms all other individually learned rules on
the EGL dataset and is only significantly outperformed by GP-D3
on the larger datasets. While we expected GP-D4 to perform well,
as D4 is the most explicit point at which the fleet can discriminate
between emergencies, we did not expect GP-D3 to outperform it.
We believe GP-D3 outperforms GP-D4 on the larger datasets as
GP-D4 cannot skip Π in favour of returning to a facility. As the fleet
encounters more high-urgency emergencies on the larger datasets,
GP-D4 is penalised when no ambulances are idle.

On average, GP-D5 performs the same or worse than EMD-BL on all
three datasets, with no statistical significance. Over the HFE dataset
we observe that an idle ambulance only applies the D5 rule around
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Figure 3: The test curves over generations of GP-D1, GP-D2,
GP-D3, GP-D4, GP-D5, and GP-DA on the hfe-10 instance.

20% of the time an ambulance becomes idle. The only case D5 will
apply is when Π is empty, offering few opportunities for GP to learn
an appropriate D5 rule, particularly in circumstances where the
system is under significant stress.

Figure 3 suggests D3 and D4 are the most valuable independent
decisions of the EMD simulation. GP-D1 is unstable and shows no
learning curve. Despite this, several GP-D1 rules achieve a better
test performance than GP-D3. Should we remedy the flaws of the
GP-D1 learning process, D1 may be very valuable to EMD. GP-D2
and GP-D5 are barely indistinguishable, showing no performance
variability (mean or standard deviation), indicating neither algo-
rithm was able to learn during the GPHH process. We may be able
to defer to 𝑟𝑚

𝑔2 and 𝑟
𝑚
𝑔5 in this case. GP-D3 and GP-D4 exhibit a good

performance curve and a significantly improved default level of
performance than alternate individually learned rules.

GP-DA significantly outperforms EMD-BL on all datasets and out-
performs all independent decision algorithms on the EGL-G and HFE
datasets. The test curve of GP-DA in Figure 3 shows that it over-
comes the erratic learning path of GP-D1 and mitigates the down-
falls of the manually designed rules. We wish to determine whether
GP-DA performs well because it can learn more effective individual
rules, or because, while each rule is less effective, they combine well.
Table 6 shows the test performance of the best and mean individual
decision rules (i.e. GP-D1 - GP-D5), and the test performance of the
best, median (16/30), and worst performing GP-DA rule, where each
isolated decision rule is run alongside the four other manually de-
signed rules on the hfe-1 instance. We observe that the individual
GP-GA decision rules need not be independently high-performing
to contribute to a high-performing multi-tree GP-GA rule. Merely,
such individual rules need only be average. Nonetheless, a better
D4 rule tends to lead to better GP-DA test fitness.

4.2.2 Rule analysis. When using GP, it is important to understand
learned rules. Via terminal frequency analysis (Figure 4), we make
the following observations regarding decisions D3 and D4:

GP-D3 uses SK 36.67% more than GP-DA (D3). This aligns with
the industry standard of considering skill in dispatch decisions.
However, as GP-D3 works in tandem with the manual rule set,
learned rules are the only point at which we may incorporate skill,
hence its increased use. GP-D3 uses TTI 36.14% less than GP-DA
(D3). Given the high rate of use and the fact that the TTI terminal
always equals zero for idle ambulances, this observation suggests
GP-DA (D3) identifies the value of a zero-valued constant. GP-D3
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Table 5: The test performance (weighted response times) of the proposed algorithms.

Graph EMD-BL GP-D1 GP-D2 GP-D3 GP-D4 GP-D5 GP-DA

egl-e1-a 0.37(0.00)(+)(-)(+)(-)(-)(-) 0.45(0.18)(-)(=)(-)(-)(-) 0.36(0.01)(+)(-)(=)(-) 0.46(0.21)(-)(-)(-) 0.30(0.10)(+)(=) 0.36(0.02)(-) 0.27(0.03)
egl-e1-b 0.41(0.00)(+)(=)(+)(-)(=)(-) 0.43(0.02)(-)(=)(-)(-)(-) 0.41(0.01)(=)(-)(=)(-) 0.43(0.05)(-)(-)(-) 0.30(0.09)(+)(=) 0.41(0.02)(-) 0.31(0.06)
egl-e1-c 0.31(0.00)(+)(-)(+)(=)(=)(=) 0.34(0.04)(-)(+)(=)(-)(=) 0.30(0.01)(+)(=)(=)(=) 0.66(1.05)(-)(-)(-) 0.30(0.10)(=)(=) 0.31(0.01)(=) 0.34(0.12)
egl-e2-a 0.35(0.00)(-)(-)(=)(-)(=)(-) 0.34(0.02)(=)(=)(-)(=)(-) 0.34(0.01)(+)(-)(=)(-) 0.38(0.10)(-)(-)(-) 0.23(0.03)(+)(+) 0.34(0.02)(-) 0.26(0.05)
egl-e2-b 0.49(0.00)(+)(=)(+)(-)(+)(-) 2.41(5.68)(=)(=)(-)(=)(-) 0.50(0.03)(+)(-)(=)(-) 0.68(0.24)(-)(-)(-) 0.33(0.06)(+)(=) 0.51(0.02)(-) 0.36(0.07)
egl-e2-c 0.31(0.00)(+)(=)(+)(-)(=)(-) 0.38(0.11)(-)(=)(-)(-)(-) 0.31(0.02)(+)(-)(=)(-) 0.40(0.14)(-)(-)(-) 0.21(0.03)(+)(+) 0.30(0.01)(-) 0.27(0.08)
egl-e3-a 0.40(0.00)(+)(-)(=)(-)(-)(-) 0.54(0.15)(-)(-)(-)(-)(-) 0.38(0.01)(=)(-)(-)(-) 0.47(0.21)(-)(=)(-) 0.25(0.02)(+)(+) 0.37(0.02)(-) 0.28(0.04)
egl-e3-b 0.39(0.00)(+)(+)(+)(-)(=)(-) 0.43(0.05)(-)(-)(-)(-)(-) 0.41(0.01)(=)(-)(=)(-) 0.43(0.09)(-)(=)(-) 0.29(0.06)(+)(=) 0.40(0.02)(-) 0.28(0.04)
egl-e3-c 0.27(0.00)(+)(+)(=)(-)(+)(-) 0.34(0.04)(-)(-)(-)(-)(-) 0.30(0.01)(=)(-)(-)(-) 0.31(0.13)(-)(=)(-) 0.20(0.02)(+)(+) 0.28(0.01)(-) 0.25(0.07)
egl-e4-a 0.28(0.00)(+)(-)(+)(-)(-)(-) 0.30(0.02)(-)(+)(-)(-)(-) 0.26(0.01)(+)(-)(+)(-) 0.37(0.15)(-)(-)(-) 0.20(0.03)(+)(+) 0.27(0.01)(-) 0.23(0.04)
egl-e4-b 0.33(0.00)(+)(+)(+)(-)(+)(-) 0.37(0.03)(-)(=)(-)(=)(-) 0.35(0.02)(=)(-)(=)(-) 0.40(0.12)(-)(=)(-) 0.23(0.02)(+)(=) 0.36(0.02)(-) 0.24(0.05)
egl-e4-c 0.42(0.00)(+)(-)(=)(-)(-)(-) 0.43(0.03)(-)(=)(-)(-)(-) 0.40(0.02)(+)(-)(=)(-) 0.49(0.19)(-)(-)(-) 0.35(0.19)(+)(=) 0.39(0.02)(-) 0.35(0.18)
egl-s1-a 0.36(0.00)(=)(=)(+)(-)(+)(-) 0.38(0.05)(=)(+)(-)(=)(-) 0.36(0.01)(+)(-)(=)(-) 0.47(0.15)(-)(-)(-) 0.26(0.03)(+)(=) 0.37(0.01)(-) 0.29(0.04)
egl-s1-b 0.34(0.00)(=)(-)(+)(-)(-)(-) 0.34(0.01)(-)(+)(-)(=)(-) 0.33(0.01)(+)(-)(=)(-) 0.38(0.06)(-)(-)(-) 0.25(0.03)(+)(=) 0.33(0.01)(-) 0.26(0.03)
egl-s1-c 0.38(0.00)(+)(=)(+)(=)(=)(=) 0.40(0.02)(-)(=)(=)(-)(=) 0.38(0.01)(+)(=)(=)(=) 0.46(0.16)(=)(-)(=) 0.43(0.17)(=)(=) 0.38(0.01)(=) 0.45(0.19)
egl-s2-a 0.40(0.00)(+)(+)(+)(-)(+)(-) 0.44(0.03)(=)(=)(-)(=)(-) 0.43(0.01)(=)(-)(=)(-) 0.51(0.26)(-)(=)(-) 0.35(0.08)(+)(=) 0.42(0.01)(-) 0.35(0.09)
egl-s2-b 0.46(0.00)(+)(+)(+)(-)(+)(-) 0.50(0.03)(-)(+)(-)(-)(-) 0.47(0.01)(+)(-)(=)(-) 0.62(0.22)(-)(-)(-) 0.33(0.16)(+)(=) 0.48(0.01)(-) 0.34(0.07)
egl-s2-c 0.34(0.00)(+)(=)(+)(-)(=)(-) 0.36(0.02)(-)(=)(-)(-)(-) 0.34(0.01)(+)(-)(=)(-) 0.39(0.13)(-)(-)(-) 0.24(0.03)(+)(+) 0.33(0.01)(-) 0.27(0.04)
egl-s3-a 0.36(0.00)(=)(-)(=)(-)(-)(-) 0.37(0.02)(-)(=)(-)(-)(-) 0.35(0.01)(=)(-)(=)(-) 0.41(0.17)(-)(-)(-) 0.24(0.03)(+)(+) 0.34(0.02)(-) 0.26(0.03)
egl-s3-b 0.36(0.00)(+)(+)(+)(-)(+)(-) 0.42(0.06)(-)(-)(-)(-)(-) 0.38(0.02)(=)(-)(=)(-) 0.38(0.05)(-)(=)(-) 0.23(0.04)(+)(+) 0.37(0.01)(-) 0.34(0.21)
egl-s3-c 0.35(0.00)(+)(+)(+)(-)(+)(-) 0.41(0.13)(-)(=)(-)(-)(-) 0.37(0.01)(+)(-)(=)(-) 0.47(0.21)(-)(-)(-) 0.24(0.02)(+)(+) 0.37(0.01)(-) 0.28(0.05)
egl-s4-a 0.32(0.00)(=)(+)(+)(-)(+)(-) 0.33(0.05)(=)(+)(-)(=)(-) 0.33(0.01)(+)(-)(=)(-) 1.06(1.01)(-)(-)(-) 0.24(0.04)(+)(+) 0.33(0.01)(-) 0.27(0.06)
egl-s4-b 0.34(0.00)(=)(-)(+)(-)(-)(-) 0.35(0.03)(=)(+)(-)(-)(-) 0.33(0.01)(+)(-)(-)(-) 0.39(0.05)(-)(-)(-) 0.25(0.03)(+)(+) 0.33(0.01)(-) 0.28(0.02)
egl-s4-c 0.37(0.00)(+)(=)(+)(-)(=)(-) 0.39(0.03)(-)(=)(-)(-)(-) 0.36(0.01)(+)(-)(=)(-) 0.51(0.26)(-)(-)(-) 0.26(0.02)(+)(+) 0.36(0.01)(-) 0.32(0.07)

Average 0.36 0.48 0.36 0.48 0.27 0.36 0.30
Average rank 4.24(+)(=)(+)(-)(=)(-) 5.59(-)(=)(-)(-)(-) 4.35(+)(-)(=)(-) 5.72(-)(-)(-) 1.67(+)(+) 4.23(-) 2.20

egl-g1-a 3.95(0.00)(+)(+)(-)(-)(+)(-) 4.44(1.77)(=)(-)(-)(=)(-) 3.98(0.05)(-)(-)(=)(-) 1.85(0.24)(+)(+)(-) 2.73(0.07)(+)(-) 3.99(0.06)(-) 1.61(0.08)
egl-g1-b 3.67(0.00)(+)(+)(-)(-)(=)(-) 5.80(9.97)(-)(-)(-)(-)(-) 3.71(0.04)(-)(-)(=)(-) 1.67(0.10)(+)(+)(-) 2.48(0.09)(+)(-) 3.71(0.09)(-) 1.53(0.17)
egl-g1-c 3.77(0.00)(+)(=)(-)(-)(-)(-) 3.78(0.13)(=)(-)(-)(=)(-) 3.77(0.06)(-)(-)(=)(-) 2.24(0.90)(+)(+)(-) 2.64(0.07)(+)(-) 3.73(0.04)(-) 1.61(0.23)
egl-g1-d 3.45(0.00)(+)(+)(-)(-)(+)(-) 3.51(0.06)(=)(-)(-)(=)(-) 3.51(0.05)(-)(-)(=)(-) 1.68(0.09)(+)(+)(-) 2.63(0.22)(+)(-) 3.51(0.05)(-) 1.57(0.12)
egl-g1-e 4.50(0.00)(=)(=)(-)(-)(=)(-) 4.64(0.53)(=)(-)(-)(=)(-) 4.49(0.05)(-)(-)(=)(-) 1.90(0.13)(+)(+)(+) 3.12(0.11)(+)(-) 4.49(0.06)(-) 2.19(2.72)
egl-g2-a 4.55(0.00)(+)(+)(-)(-)(=)(-) 4.79(0.22)(-)(-)(-)(-)(-) 4.61(0.06)(-)(-)(-)(-) 1.86(0.08)(+)(+)(-) 3.12(0.06)(+)(-) 4.54(0.07)(-) 1.71(0.14)
egl-g2-b 4.65(0.00)(=)(=)(-)(-)(=)(-) 4.68(0.07)(=)(-)(-)(=)(-) 4.64(0.06)(-)(-)(=)(-) 2.07(0.19)(+)(+)(-) 3.51(0.10)(+)(-) 4.66(0.06)(-) 1.82(0.08)
egl-g2-c 3.45(0.00)(+)(+)(-)(-)(=)(-) 3.73(1.50)(=)(-)(-)(=)(-) 3.49(0.07)(-)(-)(=)(-) 1.78(0.22)(+)(+)(-) 2.42(0.18)(+)(-) 3.46(0.05)(-) 1.53(0.21)
egl-g2-d 4.11(0.00)(+)(+)(-)(-)(+)(-) 4.20(0.06)(=)(-)(-)(=)(-) 4.21(0.06)(-)(-)(=)(-) 1.86(0.28)(+)(+)(-) 2.82(0.06)(+)(-) 4.21(0.05)(-) 1.65(0.24)
egl-g2-e 3.54(0.00)(=)(=)(-)(-)(=)(-) 3.59(0.10)(=)(-)(-)(=)(-) 3.60(0.07)(-)(-)(=)(-) 1.84(0.31)(+)(+)(-) 2.45(0.08)(+)(-) 3.58(0.05)(-) 1.53(0.15)

Average 3.96 4.31 4.00 1.88 2.79 3.99 1.67
Average rank 4.93(=)(=)(-)(-)(=)(-) 5.87(=)(-)(-)(=)(-) 5.70(-)(-)(=)(-) 1.97(+)(+)(-) 2.95(+)(-) 5.46(-) 1.11

hfe-1 3.97(0.00)(=)(=)(-)(-)(=)(-) 3.98(0.04)(=)(-)(-)(=)(-) 3.98(0.04)(-)(-)(=)(-) 1.39(0.05)(+)(+)(-) 2.38(0.09)(+)(-) 3.98(0.04)(-) 1.21(0.11)
hfe-2 3.77(0.00)(+)(=)(-)(-)(=)(-) 3.82(0.06)(=)(-)(-)(-)(-) 3.80(0.06)(-)(-)(=)(-) 1.44(0.12)(+)(+)(-) 2.29(0.10)(+)(-) 3.78(0.03)(-) 1.19(0.09)
hfe-3 4.16(0.00)(=)(+)(-)(-)(+)(-) 7.44(12.17)(=)(-)(-)(=)(-) 4.17(0.04)(-)(-)(=)(-) 1.59(0.83)(+)(+)(-) 2.36(0.08)(+)(-) 4.18(0.03)(-) 1.19(0.07)
hfe-4 3.69(0.00)(-)(=)(-)(-)(=)(-) 3.67(0.07)(=)(-)(-)(=)(-) 3.69(0.03)(-)(-)(=)(-) 1.61(0.63)(+)(+)(-) 2.18(0.09)(+)(-) 3.68(0.04)(-) 1.21(0.24)
hfe-5 3.70(0.00)(+)(+)(-)(-)(+)(-) 3.78(0.12)(+)(-)(-)(=)(-) 3.78(0.03)(-)(-)(=)(-) 1.38(0.08)(+)(+)(-) 2.29(0.15)(+)(-) 3.77(0.03)(-) 1.14(0.10)
hfe-6 3.94(0.00)(=)(-)(-)(-)(-)(-) 5.82(10.15)(=)(-)(-)(-)(-) 3.92(0.04)(-)(-)(-)(-) 1.48(0.37)(+)(+)(-) 2.44(0.19)(+)(-) 3.88(0.03)(-) 1.21(0.09)
hfe-7 3.77(0.00)(+)(=)(-)(-)(=)(-) 3.90(0.51)(-)(-)(-)(=)(-) 3.78(0.03)(-)(-)(=)(-) 1.67(0.98)(+)(+)(-) 2.24(0.10)(+)(-) 3.78(0.04)(-) 1.24(0.11)
hfe-8 4.05(0.00)(+)(+)(-)(-)(+)(-) 4.11(0.04)(=)(-)(-)(=)(-) 4.13(0.05)(-)(-)(=)(-) 1.47(0.21)(+)(+)(-) 2.45(0.12)(+)(-) 4.14(0.05)(-) 1.19(0.09)
hfe-9 2.85(0.00)(=)(=)(-)(-)(=)(-) 29.04(80.37)(=)(-)(-)(=)(-) 2.85(0.04)(-)(-)(=)(-) 1.03(0.05)(+)(+)(-) 1.43(0.07)(+)(-) 2.85(0.03)(-) 0.84(0.05)
hfe-10 4.10(0.00)(=)(=)(-)(-)(=)(-) 4.14(0.03)(=)(-)(-)(=)(-) 4.11(0.04)(-)(-)(=)(-) 1.48(0.08)(+)(+)(-) 2.51(0.18)(+)(-) 4.12(0.04)(-) 1.27(0.10)

Average 3.80 6.97 3.82 1.46 2.26 3.82 1.17
Average rank 5.07(=)(=)(-)(-)(=)(-) 5.68(=)(-)(-)(=)(-) 5.63(-)(-)(=)(-) 2.04(+)(+)(-) 2.97(+)(-) 5.56(-) 1.04

Table 6: Comparing the hfe-1 test performances of the indi-
vidually learned rules and the individual rules of the best,
median (16th), and worst GP-GA rules run alongside the
other manually designed rules.

DX Best GP-DX Mean GP-DX Best GP-DA 16th GP-DA Worst GP-DA

D1 3.89 3.98 3.97 3.97 3.97
D2 3.89 3.98 3.94 3.97 3.96
D3 1.32 1.39 1.48 1.42 1.50
D4 2.23 2.38 2.83 3.11 3.33
D5 3.90 3.98 4.00 3.88 3.91

uses NWA 32.92% more than GP-DA (D3). Intuitively, if we do not
send a transport ambulance to another waiting for backup, we
may indefinitely lose a member of the fleet. Increased use of NWA

aligns with countering this potential error. Figure 5 shows a high-
performing GP-D3 rule, simplified to the case of only considering
advanced-skill ambulances. Here, if the skilled ambulance has trans-
port capacity, the rule returns a negative value if NWUT is positive,
thus will choose to attend a waiting task (i.e. D4). Else, if the ambu-
lance does not have transport capacity, the output is either one (if
NWA = 0) or equivalent to a transport ambulance (if NWA > 0). This
behaviour aligns with practice: use transport ambulances as much
as possible, and reserve the more mobile, non-transport agents in
cases of relaxed pressure on the fleet. GP-D4 uses AC 44.56% more
than GP-DA (D4). Given we learn GP-D4 alongside the manual rule
𝑟𝑚
𝑔3 (always dispatch), and the frequent use of RTA, we deduce that
GP-D4 adequately identifies the emergencies that require backup,
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Figure 4: The rates at which the learned rules of GP-D3, GP-
DA (D3), GP-D4, andGP-DA (D4) use each terminal on average
on the EGL-G and HFE dataset.

aligning with the point above. GP-D4 uses T 56.02% less than GP-
DA (D4). Given the generic nature of T and the specialisation of
GP-D4, we hypothesise that T is not valuable to EMD. GP-D4 uses
TR 42.73% more than GP-DA (D4). TR offers an approximation as to
how much longer an ambulance will take before completing the
demand of an emergency (given historical information). As such,
we expect GP-D4 rules to avoid sending ambulances to emergencies
that have little time remaining. GP-D4 uses UR 36.67% less than GP-
DA (D4), a highly unexpected observation. From rule analysis, we
make two observations: rules that use UR frequently, as expected (i.e.
prioritising urgent emergencies), and rules that ignore UR and focus
on features that maintain fleet availability (i.e. providing backup).
Consider Figure 6, showing a high-performing GP-D4 rule of the
latter type, learned on the hfe-10 instance. If RTA = 0, the rule
prioritises emergencies requiring minimal additional resources. If
RTA = 1, the rule prioritises emergencies requiring maximal ad-
ditional resources. Further, the rule prioritises emergencies with
nearby ambulances, maximising the likelihood of receiving backup,
scaled by the current pressure on the fleet. Finally, the rule prefers
emergencies with a larger expected time remaining, maximising
dispatch value. In general, while this rule does not utilise the UR
terminal, it does balance the remaining terminals in a manner pur-
suant to our expectations of fleet management. Further, we observe
that the D3 and D4 rules use more primitives per tree, on average.
However, GP-DA can learn more succinct trees across all decisions,
while still achieving better performance than all GP-DX algorithms.

4.2.3 Summary. Through a comprehensive analysis, we confirm
that GPHH is capable of simultaneously learning effective decision
rules for EMD. On instances that incur few urgent emergencies
(the EGL dataset), deciding whether or not to immediately attend an
emergency (D1) or send an idle ambulance to a waiting emergency
(D3) are the least valuable decisions and identifying the most suit-
able emergency for an idle ambulance is the most valuable (D4).
For instances that incur many urgent emergencies (the EGL-G and
HFE datasets), while D4 remains pertinent, D3 is the most valuable.
Finally, we show that we can learn all rules simultaneously and
obtain both more succinct and performant heuristics.

Nonetheless, our implementation leaves room for improvement.
We believe GP-D1, GP-D2, and GP-D5 perform poorly due to an

Figure 5: A learned GP-D3 rule, simplified for advanced skill
ambulances, learned on the hfe-10 instance.

Figure 6: A learned GP-D4 rule learned on the hfe-10 in-
stance.

insufficient representation. Future research will improve the DMP
and identify additional terminal features to ensure these decisions
contribute to improving the system performance of GP-DA.

5 CONCLUSIONS
This paper aims to determine whether GPHH could successfully
learn dispatch rules for EMD to outperform those that approximate
human dispatchers. We have proposed a modularised DMP frame-
work that facilitated thorough analysis which showed GPHH is an
algorithm capable of learning such rules. We make three specific
conclusions from this work: a) two idle ambulance decision points
are of high value to EMD (D3 andD4), b) our current representation
likely disadvantages the new task decision points (D1 and D5), and
c) learning all decisions simultaneously can overcome the flaws of
the manually designed rule set, performing better via succinct rules.
Our future work will simplify the decision set, expand the problem
representation, and consider paramedic workload restrictions [11].
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