
Research Article
Using Genetic Programming with Prior Formula
Knowledge to Solve Symbolic Regression Problem

Qiang Lu, Jun Ren, and Zhiguang Wang

Department of Computer Science and Technology, China University of Petroleum, Beijing 102249, China

Correspondence should be addressed to Qiang Lu; luqiang@cup.edu.cn

Received 28 May 2015; Revised 24 September 2015; Accepted 5 October 2015

Academic Editor: Christian W. Dawson

Copyright © 2016 Qiang Lu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A researcher can infermathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge).
But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic
Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary
algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a
huge space, its speed of finding the results is rather slow.Therefore, in this paper, a framework of connection between Prior Formula
Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network
(DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate
formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space
of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results
confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR.

1. Introduction

Symbolic regression (SR) is used to discover mathematical
expressions of functions that can fit the given data based
on the rules of accuracy, simplicity, and generalization. As
distinct from linear or nonlinear regression that efficiently
optimizes the parameters in the prespecified model, SR tries
to seek appropriate models and their parameters simulta-
neously for a purpose of getting better insights into the
dataset. Without any prior knowledge of physics, kinematics,
and geometry, some natural laws described by mathematical
expressions, such as Hamiltonians, Lagrangians, and other
laws of geometric and momentum conservation, can be dis-
tilled from experimental data by the Genetic Programming
(GP) method on SR [1].

Since SR is an NP-hard problem, some evolutionary
algorithms were proposed to find approximate solutions
to the problem, such as Genetic Programming (GP) [2],
Gene Expression Programming (GEP) [3], Grammatical
Evolution (GE) [4, 5], Analytic Programming (AP) [6], and
Fast Evolutionary Programming (FEP) [7]. Moreover, recent
researches in SR problem have taken into account machine

learning (ML) algorithms [8–10]. All of the above algorithms
randomly generate candidate population. But none of them
can use various features of known functions to construct
mathematical expressions adapted for describing the features
of given data. Therefore, these algorithms may exploit huge
search space that consists of all possible combinations of
functions and its parameters.

Nevertheless, a researcher always analyzes data, infers
mathematical expressions, and obtains results according to
his professional knowledge. After getting experimental data,
he observes the data distribution and their features and ana-
lyzes them with his knowledge. Then, he tries to create some
mathematical models based on natural laws. He can obtain
the values of coefficients in these models through regression
analysis methods or other mathematical methods. And he
evaluates the formulas which are mathematical models with
the values by using various fitness functions. If the researcher
finds some of the formulas that fit the experimental data, he
can transform and simplify these formulas and then obtain
the final formula that can represent the data. Furthermore,
his rich experience and knowledge can help him to reduce
the searching space complexity so that he can find the best

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 1021378, 17 pages
http://dx.doi.org/10.1155/2016/1021378

2 Computational Intelligence and Neuroscience

fit mathematical expression rapidly. As the researchers use
their knowledge to discover the best fitted formulas, the
methods that inject domain knowledge into the process of SR
problem solving have been proposed to improve performance
and scalability in complex problem [11–13]. The domain
knowledge, which is manually created by the researcher’s
intuition and experience, is of various formulas which are
prior solutions to special problems. If the domain knowledge
automatically generates some fitted formulas that are used
in evolutionary search without the researcher involvement,
the speed of solving SR problem will be quickened. A key
challenge is how to build and utilize the domain knowledge
just like the researcher does.

In this paper, we present a framework of connection
between Prior Formula Knowledge and GP (PFK-GP) to
address the challenge:

(i) We classify a researcher’s domain knowledge into
PFKBase (PFKB) and inference ability after analyzing
the process that a research discovered formulas from
experimental data (Section 2). PFKB contains two
primary functions: classification and recognition.The
aim of two functions is to generate feature functions
which can represent the feature of experimental data.

(ii) In order to implement classification, we use the deep
learning method DBN [14, 15] which, compared with
other shallow learning methods (Section 3.1), can
classify experimental data into a special mathematical
model that is consistent with data features. However,
the classification method may lead to overfitting
because themethod can only categorize experimental
data into known formula models which come from
the set of training formula models.

(iii) Therefore, recognition is used to overcome the
overfitting. It can extract mathematical models of
functions that can show full or partial features
of experimental data. Three algorithms GenerateFs,
CountSamePartF, and CountSpecU (see Algorithms
2, 3, and 4) are designed to implement recognition.
For example, from the dataset generated by 𝑓(𝑥) =

exp(sin(𝑥)+𝑥3/(8∗105)), the basic functions sin, exp,
and cube can be found by the above three algorithms.
In Figure 1, the function sin shows the periodicity
of data, and exp or cube shows the growth rate of
data. Therefore, these basic functions (called feature
functions) can describe some features of the dataset.

(iv) The inference ability is concluded to the search-
ing ability of evolutionary algorithm. As researches
infer mathematical models, GP is used to combine,
transform, and verify these models. These feature
functions that are generated by PFKB are selected to
be combined into the candidate population in the
light of algorithm randomGenP (see Algorithm 5).
With the candidate population,GP can get convergent
result quickly because it searches answers in a limit
space which is composed of various feature functions.
Through experiment on eight benchmark problems

−50 0 50 100 150
0

20

40

60

80

100

120

140
f(x) = exp(sin(x) + x3/(8 ∗ 105))

Figure 1: The function 𝑓(𝑥) = exp(sin(𝑥) + 𝑥3/(8 ∗ 105)).

(Table 5 𝐸
1
–𝐸
8
), the results demonstrate that PFK-

GP, compared with Pareto optimization GP [16, 17],
shows the significant improvement in accuracy and
convergence.

2. Background

2.1. Definition and Representation ofMathematical Expression.
In this section, we will define concepts about SR problem
and show how to represent these concepts by applying
BNF expression. For SR problem, the word “formula” is
the general term which describes mathematical expression
that fits the given data. We define a formula model is a
special mathematical model in which formulas have the same
relationships and variables except for different coefficient
values. Relationships can be described by operators, such
as algebraic operators, functions, and differential operators
(http://en.wikipedia.org/wiki/Mathematical model). There-
fore, a formulamodel is a set where each element is a formula.
For example, the two formulas 0.1 ∗ sin(𝑥) + 0.7 ∗ log(𝑥)
and 0.3 ∗ sin(𝑥) + 0.9 ∗ log(𝑥) belong to the formula model
𝑎
1
∗ sin(𝑥)+𝑎

2
∗ log(𝑥). Data that are represented by different

formulas in one formula model may have similar features
which are data distributions, data relationships between
different variables, data change laws, and so on, because these
formulas have the same relationships.

In order to represent a formulamodel and its correspond-
ing formulas, we define the following BNF expressions:

𝐹fl𝐶 | 𝑆,
𝐶fl𝑆"("𝐶")" | 𝑆,
𝑆fl𝐵"("𝐴𝑋,𝐴𝑋")" | 𝑈"("𝐴𝑋")",
𝐵fl" + " | " − " | " ∗ " | "/",
𝑈fl"sqrt" | "log" | "tanh" | "sin" | "cos" | "exp" |
"tan" | "abs" | "quart" | "cube" | "square" ⋅ ⋅ ⋅ ,
𝐴fl𝑎
1
| 𝑎
2
| 𝑎
3
| ⋅ ⋅ ⋅ | 𝑎

𝑛
,

𝑋fl𝑥
1
| 𝑥
2
| 𝑥
3
| ⋅ ⋅ ⋅ | 𝑥

𝑚
,

Computational Intelligence and Neuroscience 3

Data

Physical formula
knowledge base

Data analysis tool

Select

Analyze

Feedback

Data visualization

Researcher

Formula
model

Generate

Regression
method

Specific formula

Get coefficients

Data verification
and formula

evaluation

Determine

Formula results

−50 0 50 100 150
0

20

40

60

80

100

120

140
f(x) = exp(sin(x) + x3/(8 ∗ 105))

Figure 2: The process that researchers study the SR problem.

where 𝐹 is a formula model.𝑋 is a parameter set. 𝐴 indicates
a coefficient set. 𝐵 is a set of binary functions, while 𝑈
is a set of unary functions. 𝑆 is a set of atomic functions
which does not contain any subfunctions. 𝐶 is a set of
complex functions which contains complex functions in 𝐶
and atomic functions in 𝑆. With the above definitions, any
formulas and its corresponding model can be shown by these
BNF expressions. For instance, the formula exp(sin(𝑥) +
𝑥3/(8 ∗ 105)) is represented by 𝐹 and 𝐶, and its subfunction
sin(𝑥) is represented by 𝑈. The constants 8, 3, and 105 are
shown by elements in 𝐴. With these 𝐵𝑁𝐹 expressions, a
formula model can be transformed into one tree. And the
tree is a candidate individual in population of GP solving SR
problem. Every subtree in the tree is a subformula which can
show special data features. A subtree that shows features of
experimental data is called feature-subtree. If a tree has more
feature-subtrees, the tree is more likely to fit the data. How
to construct the tree consisting of feature-subtrees is a key
step in our method which is implemented by the algorithm
randomGenP (see Algorithm 5).

2.2. The Process of Researcher Analyzing Data. The process
that a researcher tries to solve SR problems is shown in

Figure 2. He depends heavily on his experience which is
obtained through a long-term accumulation of study and
research. After a researcher collected experimental data, he
discovers regular patterns from data by using the methods of
data analysis and visualization. He then constructs formula
models which were consistent with these regular patterns
according to his experiences. After that, he computes the
coefficient values in formula models by using appropriate
regressionmethods andobtains some formulas fromdifferent
formula models. According to results of evaluating these
formulas, he chooses the formula that is most fitted to the
data. If the formula cannot represent data features, he needs
to reselect a new formula model and do the above steps until
one fitting formula is found.

We think the researcher’s experience and knowledge have
two roles in processing SRproblem.One role is Prior Formula
Knowledge (PFK) which can help a researcher to quickly
find fitted formulas that match experimental data features.
Through study and work, the researcher accumulates his
domain knowledge of various characteristics of formula
model. When the researcher observes experimental data, he
can apply his domain knowledge to recognize and classify the
data.The other is the ability of inference and deductionwhich

4 Computational Intelligence and Neuroscience

y = z + (a ∗ sin(x)) y = z + (a ∗ log(x)) y = z − (a ∗ tan(b ∗ x))

y = a ∗ x + b ∗ x2 + c ∗ x3 y = a ∗ x + b ∗ sin(x) y = a ∗ sin(x) + b ∗ log(x)

5

0

−5
−50 0 50

20

10

0

−10

−20
0 50 100

200

0

−200

−400
−20 0 20

5000

0

−5000
−20 0 20

200

100

0

−100

−200
−50 0 50

40

20

0

−20
0 100 200

Figure 3: Curves are generated by six formula models with different coefficient value.

can help the researcher to combine, transform, and verify
mathematical expression.We conclude that the PFK contains
two primary functions: classification and recognition.

Classification. when experimental data features are in accord
with characteristics of one formula model in PFK, the
dataset can be categorized into the model. The prerequisite
of classification is that different formulamodels have different
characteristics in PFKBase. As shown in Figure 3, six families
of curves are generated by six formulamodels taking different
coefficient values.The curves in the same family show similar
data features while the curves in different families show
different data features.Therefore, we can infer that the curves
(including surfaces and hypersurfaces) generated by different
formula models can be classified according to their data
features.

Although many machine learning algorithms such as
linear regression [18], SVM [19], Boosting [20], and PCVMs
[21] can be used to identify and classify data, it is dif-
ficult for these algorithms to classify these curves. That
is because these algorithms depend on features that are
extracted manually from data, while these features from
different complex curves are difficult to be represented by

a feature vector which is built based on the researcher’s
experiences. In contrast to these algorithms, DL can auto-
matically extract features and have a good performance for
the recognition of complex curves, such as image [15], speech
[22], and natural language [23]. The GenerateFs algorithm
(see Algorithm 2) based on DBN is shown to classify the
data.

Recognition. Some formulas can represent remark features
of curves generated by formula model. For example, after
observing the curve in Figure 1, a researcher can easily infer
that the formula sin or cos is one of formulas that constitute
the curve because data in curve show periodicity. Therefore,
these formulas are called feature functions that can be recog-
nized or extracted by PFK. Algorithms CountSamePartF and
CountSpecU (see Algorithms 3 and 4) are built to recognize
the feature functions.

Recognition can help the researcher overcome overfitting
of results that are generated by classification because classi-
fication can help researcher to only identify formula models
from training set while recognition can help the researcher
identify subformulamodels that are consistent with local data
features.

Computational Intelligence and Neuroscience 5

f(x) = exp(sin(x) + cube(x)/8 ∗ 105)

X

−50 0 50 100 150
0

20
40
60
80

100
120
140

f(x) = exp(sin(x) + x3/(8 ∗ 105))

exp(sin(x)) sin(x) + cube(x)/8 ∗ 105

f(x) = exp(sin(x))

XX

Y Y

3

2.5

2

1.5

1

0.5

0
−40 −20 0 20 40

−40 −20 0 20 40

−150 −100 −50 0 50 100 150

4
3
2
1
0

−1
−2
−3
−4

sin(x) cube(x) exp(x)
f(x) = sin(x) f(x) = cube(x) f(x) = exp(x)

X X

YYY

1
0.8
0.6
0.4
0.2
0

−0.2
−0.4
−0.6
−0.8
−1

1000
800
600
400
200
0

−200
−400
−600
−800
−1000

−10 −5 0 5 10

150

100

50

0
−5 0 5

Original data of the formula

f(x) = sin(x) + cube(x)/(8 ∗ 10 5)

f(x) = exp(sin(x) + cube(x)/8 ∗ 105)

Figure 4: Illustration of the DBN framework.

The ability of inference and deduction is one of
main measurements for evaluating performance of artificial
intelligence methods. In the SR problem, GP, compared
with other methods such as logical reasoning, statistical
learning, and genetic algorithm, is a revolutionary method of
searching fitting formulas because it can seek the appropriate
formula models and their coefficient values simultaneously
by evolving the population of formula individuals.Therefore,
in the paper, we use GP as the method of inferring and
deducing formulas.

To optimize GP, researchers have proposed various
approaches, such as optimal parsimony pressure [24]; Pareto
front optimization [17] and its age-fitness method [25] are
used to control bloat and premature convergence in GP. In
order to reduce the space complexity of searching formulas,
the methods of arithmetic [26] and machine learning are
injected into GP. In the paper, with the algorithm random-
GenP (see Algorithm 5) about generating population and the
method of Pareto front optimization, PFK-GP can research

the formulamodel in the appropriate space and can find right
formulas quickly.

3. Genetic Programming with
Prior Formula Knowledge Base

3.1. Formula Prior Knowledge Base. The FPK needs to have
the ability of identifying and classifying the formula model
𝐹 based on data features. Although the features between
formula models are different, it is difficult to extract features
from data which are generated by these models because
different formula models represent seemly similar but dif-
ferent features. Based on the above definitions in formula
model, the features among functions in set 𝑆 are different.
The features between the function 𝑠 ∈ 𝑆 and the function
𝑐 ∈ 𝐶 may be similar if 𝑐 is the parameter of 𝑠. As shown
in Figure 4, these functions sin(𝑥), cube(𝑥), and exp(𝑥)

6 Computational Intelligence and Neuroscience

100

90

80

70

60

50

40

30

20

10

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Formula index

Ac
cu

ra
cy

 (%
)

DBN
SVM

Figure 5: Accuracy result of SVM and DBN classifying 𝑃
1
–𝑃
39
.

belonging to 𝑆 constitute 𝐶, such as exp(sin(𝑥)) and sin(𝑥) +
cube(𝑥)/(8 ∗ 105), and are shaped into the final function
exp(sin(𝑥) + cube(𝑥)/(8 ∗ 105)). sin(𝑥) shows periodicity in
results; log(𝑥) shows slow variation trend in results; cube(𝑥)
shows high variation trend in results. So, these features
in the three functions are different. However, there are
similar features between cube(𝑥) and sin(𝑥) + cube(𝑥)/(8 ∗
105), because the two functions have high variation trend
in result. The shallow learning method such as SVM can
hardly identify complex features of functions shown in
Figure 5.

In this paper, DBN is used to classify data into a special
formula model according to features that are automatically
extracted from data. Generally, DBN is made up of multiple
layers that are represented by Restricted BoltzmannMachine
(RBM). As RBM is an universal approximate of discrete
models [27], we can speculate that DBN which has many
layers of RBM can recognize the features of data generated
by complex function just like Convolutional Neural Network
(CNN) classifying image [28]. The process of DBN recog-
nizing formulas is illustrated in Figure 4. DBN can extract
features from data, layer by layer. So, the lower RBM layer can
represent the simple functions and the higher RBM layer can
transform the simple functions intomore complex functions.

We use the data generated by the different formula
models 𝐹 (see Table 7) as training samples. DBN is trained
by these samples. The model that is finally gained by DBN
training methods is PFKB, which is aimed at identifying the
formula model that can represent features of the data. The
process of DBN training is outlined in algorithm TrainDBN
(Algorithm 1) which uses the same steps as mentioned in
[14, 15].

PFKB is only changed with formula models. If there
are no new trained formula models in an application, the
algorithm TrainDBN will not be executed.When the number
of trained formula models is large enough, little new formula
model will appear, and PFKB will seldom be changed. In
the paper, TrainDBN is performed exactly once in order to
generate PFKB.

3.2. Classification and Recognition with PFKB. In order to
deal with the problem of how to classify and recognize for-
mula model from data, we should consider the problem from
two aspects. One situation is that data can be represented by a
special formula model from PFKB, while the other one is that
data cannot be represented by a formula model from PFKB.
In the first case, we exploit PFKB to identify formula models
of data by DBN classification. Based on ordered results of
DBN classification, we gain a set of formula models (𝐹𝑠 =
𝑓
1
, . . . , 𝑓

𝑠
) which are most similar to features of the data. The

process that deals with the first case is outlined in algorithm
GenerateFs.The algorithm is fast becausePFKB has been built
by TrainDBN, and 𝑠 is small integer value.

In the second case, when a researcher observes laws that
are hidden in experimental data, he often tries to find some
formulas 𝐶 which are consistent with partial features of the
data. Therefore, we propose the two assumptions as follows.

Assumption 1. More formula models 𝑓s have the same
subformula model pf in the set Fs which is the result of
GenerateFs running, more strongly that the pf can express
features of data.

In order to compute the same pf in Fs, we express the
formula model as the string of expression and seek the same
part of them by using intersection between the two strings
(without considering the elements in sets X and A). Define
the intersection between two expressions as follows:

𝑓
𝑖
∩ 𝑓
𝑗
= 𝑐
1
, . . . , 𝑐

𝑘
,

𝑐
𝑚
∩ 𝑐
𝑛
= 0,

𝑚 ̸= 𝑛, 𝑐
𝑛
∈ 𝐶, 𝑐

𝑛
∉ 𝑆, 1 ≤ 𝑚, 𝑛 ≤ 𝑘, 1 ≤ 𝑖, 𝑗 ≤ 𝑘.

(1)

For example, 𝑓
1
= 𝑧 + 𝑎 ∗ cos(𝑥) + tan(𝑥)/(exp(𝑥) + log(𝑥)),

𝑓
2
= 𝑧 + 𝑎 ∗ cos(𝑥) + abs(𝑥)/(exp(𝑥) + log(𝑥)), 𝑓

1
∩ 𝑓
2
=

{𝑧 + 𝑎 ∗ cos(𝑥), exp(𝑥) + log(𝑥)}.Themethod, which obtains
pf whose frequency of occurrence in f is larger than threshold
t, is described as the algorithm CountSamePartF.

For verifying Assumption 1, we apply the dataset from
𝐸
0
(see Table 5) as the testing set and get the identifying

results 𝐹𝑠 = {𝑃
18
, 𝑃
15
, 𝑃
34
, 𝑃
11
, 𝑃
3
} from Table 7 through

the algorithm GenerateFs. The intersections between the
top two formulas 𝑃

18
∩ 𝑃
15

are (sqrt(𝑥
0
))/(tan(𝑥

1
)) and

(tan(𝑥
0
))/(exp(𝑥

1
)), which are partial mathematical expres-

sions in 𝐸
0
. And we use the dataset from Table 6 to test

𝐸
0
and get the identifying results 𝐹𝑠 = {𝑇

7
, 𝑇
6
, 𝑇
8
, 𝑇
9
, 𝑇
1
}

through GenerateFs algorithm.The intersection between two
expressions is as follows: 𝑇

7
∩ 𝑇
6
= {sqrt(𝑥

0
)/ tan(𝑥

1
)}, 𝑇
8
∩

𝑇
9
= {tan(𝑥

0
)/ exp(𝑥

1
), cos(𝑥

0
) ∗ sin(𝑥

1
)}. We find that the

elements which have more frequency of occurrence in the
intersections set aremore likely to express some data features.
The above two experiments illustrate that Assumption 1 is
rational.

Assumption 2. If function 𝑢 ∈ 𝑈 exists in Fs obtained by
GenerateFs and the number of the same 𝑢 is larger than
threshold 𝑡, we can conclude that 𝑢 can show some local data
features.

Computational Intelligence and Neuroscience 7

Input:𝑋1, 𝑌1,𝑋2, 𝑌2 (𝑋1, 𝑌1 are training data;𝑋2, 𝑌2 are testing data)
Output: PFKB
(1) Initial(DL, opts) // initial the structure of DL and the parameters opts
(2) DL = DLsetup(DBN,𝑋1, opts) // layer-wise pre-training DL
(3) DL = DLtrain(DBN, 𝑋1, opts) // build up each layer of DL to train
(4) 𝑛𝑛 = 𝐷𝐿𝑢𝑛𝑓𝑜𝑙𝑑𝑡𝑜𝑛𝑛(DBN, opts) // after training each layer, passing the parameters to nn
(5) PFKB = 𝑛𝑛train(𝑛𝑛,𝑋1, 𝑌1, opts) // fine-tune the whole deep architecture
(6) accuracy = 𝑛𝑛test(PFKB,𝑋2, 𝑌2) // accuracy is the criterion of the quality of PFKM, if it is too

small, then re-training after adjusting the model architecture or parameters
(7) return PFKB

Algorithm 1: TrainDBN: training DBN to generate the PFKB.

Input:𝑋, PFKB, 𝑠 (𝑋 is the dataset; 𝑠 is the number of formula models whose features can show the dataset)
Output: 𝐹𝑠 (formula model vector which are used in generating the initial population of GP)
(1) 𝐹temp = predictModel(PFKB,𝑋) // as the intermediate data, it is the original result that exploit the PFKB

to predict without sorting by the fitness
(2) 𝐹temp = sortModelByFit(𝐹temp) // sort the models in order of decreasing fitness
(3) for 𝑖 = 1 : 𝑠
(4) 𝐹𝑠(𝑖) = 𝐹temp(𝑖)
(5) end
(6) return 𝐹𝑠

Algorithm 2: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑠.

The function 𝑏 ∈ 𝐵 except 𝑥𝑦 is common function,
which has a high probability of occurrence in mathematical
expressions. Therefore, it is difficult to express special data
features. Compared with 𝐵, the function 𝑢 ∈ 𝑈 can show
obvious features of data. For instance, sin(𝑥) presents the
periodicity of data and log(𝑥) represents data features about
extreme increase or decrease.Themethod, which obtains the
special function 𝑢 that can show the local data features, is
outlined as the algorithm CountSpecU.

For verifying Assumption 2, we also choose the dataset
which are generated from 𝐸

0
(see Table 5) as the testing

data and apply the CountSpecU algorithm to calculate the
special 𝑢 among 𝐹𝑠 = {𝑃

18
, 𝑃
15
, 𝑃
34
, 𝑃
11
, 𝑃
3
}. The result of the

algorithm is shown in Table 1. We find the result 𝑠𝑝𝑒𝑐𝑈 =
{tan, cos, sqrt, exp, sin} (sin and cos are the operators of the
same kind) is part of 𝐸

0
. Hence, we can discover that the u

set, which is gained by the algorithm CountSpecU, can show
local features of the dataset.

3.3. GP with Prior Formula Knowledge Base. In order to deal
with SR problem, GP is executed to automatically composite
and evolve mathematical expression. The process of GP is
similar to the process that a researcher transforms formula
models and obtains fitting formulas based on his knowledge.
Since those algorithms in PFKB, which is created based
on analyzing the process of how a research infers fitted
formulas, can recognize formula models that are consistent
with data features, we combine these formula models of
PFKB recognizing into the process of GP in order to reduce

Table 1: The result of U in Fs computed by algorithm
Count𝑆𝑝𝑒𝑐𝑈 (see Algorithm 4).

𝑢 in 𝐹𝑠 Frequency of occurrence
tan 3
cos 2
sqrt 1
exp 1
log 1

the searching space and increase the speed of discovering
right solutions.

When initializing GP algorithm, we can select candidate
formulas from Fs, C, and specU as individuals in population
of GP. The sets Fs, C, and specU are gained by the above
algorithms in PFKB. Therefore, the PFKB is injected into
the process of population generating. And this population
can contribute to reserving data features as much as possible
and reducing the searching space because these individuals
commonly have good fitness value. With the population, GP
algorithm can speed up the convergence and improve the
accuracy of SR results.However, itmay lead to the bias results.
To overcome the problem, some random individuals must
be imported into the population. The process of population
creating is as follows.

Firstly, the elements in sets Fs and 𝐶 are inserted into
the population. Then, the set specU and the candidate
function sets 𝐵 and U are merged into the new candidate
function queue Q. And the number of elements in specU

8 Computational Intelligence and Neuroscience

Input: 𝑡, 𝐹𝑠
Output: 𝐶 (ordered local expressions set that are sorted according to frequency of occurrence which is larger than 𝑡)
(1) 𝐶 = 𝐹 = 0
(2) for each pair ⟨𝑓

𝑖
, 𝑓
𝑗
⟩ in 𝐹𝑠

(3) 𝐹
𝑖𝑗
= 𝑓
𝑖
∩ 𝑓
𝑗

(4) for each 𝑐
𝑚
in 𝐹
𝑖𝑗

(5) if 𝑐
𝑚
∈ 𝐹

(6) change 𝐹’s element 𝑐V
𝑚
to 𝑐V+1
𝑚

// V indicates the number of times that 𝑐
𝑚
appears

(7) else
(8) add 𝑐1

𝑚
into 𝐹

(9) end
(10) end
(11) for each 𝑐V

𝑚
in 𝐹

(12) if V ≥ 𝑡
(13) add 𝑐V

𝑚
into 𝐶

(14) end
(15) sort(𝐶)
(16) return C

Algorithm 3: 𝐶𝑜𝑢𝑛𝑡𝑆𝑎𝑚𝑒𝑃𝑎𝑟𝑡𝐹.

Input: 𝑡, 𝐹𝑠
Output: 𝑠𝑝𝑒𝑐𝑈 (ordered spec𝑈 function set that are sorted according to frequency of occurrence which is larger than 𝑡)
(1) 𝑈 = 𝐹 = 0
(2) for each 𝑓

𝑖
in 𝐹𝑠

(3) for each 𝑢
𝑚
in 𝑓
𝑖

(4) if 𝑢
𝑚
∈ 𝐹

(5) change 𝐹’s element 𝑢V
𝑚
to 𝑢V+1
𝑚

// V indicates the number of times that 𝑢
𝑚
appears

(6) else
(7) add 𝑢1

𝑚
into 𝐹

(8) end
(9) end
(10) for each 𝑢V

𝑚
in 𝐹

(11) if V ≥ 𝑡
(12) add 𝑢V

𝑚
into 𝑠𝑝𝑒𝑐𝑈

(13) end
(14) return 𝑠𝑝𝑒𝑐𝑈

Algorithm 4: 𝐶𝑜𝑢𝑛𝑡𝑆𝑝𝑒𝑐𝑈.

Input: 𝐹𝑠, 𝐶, 𝑠𝑝𝑒𝑐𝑈, 𝐵, 𝑈, 𝑛 where, 𝑛 represents the number of individuals which are generated, 𝐵 and 𝑈 is the candidate
function library)

Output: 𝑃 (population)
(1) 𝐼 = 𝐹𝑠 ∪ 𝐶
(2) for each 𝑖 in 𝐼
(3) add 𝑖 into 𝑃
(4) end
(5) 𝑘 = |𝑠𝑝𝑒𝑐𝑈|
(6) 𝑄 = 𝑠𝑝𝑒𝑐𝑈 + 𝐵 + 𝑈 // add the elements of 𝑠𝑝𝑒𝑐𝑈, 𝐵 and 𝑈 into the queue 𝑄 successively, 𝑢V

𝑚
∈ 𝑈, add 𝑢V

𝑚
into 𝑄

(7) 𝑃 temp = traditionalRandomIndividual(𝑄, 𝑘)
(8) add 𝑃 temp into 𝑃
(9) 𝑘 = 𝑛 − |𝐼| − 𝑘
(10) 𝑃 temp = traditionalRandomIndividual(𝐵 + 𝑈, 𝑘)
(11) add 𝑃 temp into 𝑃
(12) return 𝑃

Algorithm 5: 𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑒𝑛𝑃.

Computational Intelligence and Neuroscience 9

Input: data, PFKB, 𝑡
1
, 𝑡
2
, 𝐵, 𝑈, 𝑛, 𝑘, 𝑔, interval

Output: 𝐹 (candidate formulas set)
(1) 𝐹𝑠 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑠(data, PFKB)
(2) 𝐶 = CountSamePartF(𝑡

1
, 𝐹𝑠)

(3) 𝑈 = 𝐶𝑜𝑢𝑛𝑡𝑆𝑝𝑒𝑐𝑈(𝑡
2
, 𝐹𝑠)

(4) 𝑃 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑒𝑛𝑃(𝐹𝑠, 𝐶, 𝑠𝑝𝑒𝑐𝑈, 𝐵 + 𝑈, 𝑛)
(5) while (bestFitness <= threshold && 𝑖 < 𝑔)
(6) 𝑃 = crossover(𝑃)
(7) 𝑃 =mutate(𝑃)
(8) 𝑃𝑡 = ParetoOptimise(𝑃) // prevent the formula model too complex
(9) 𝑃𝑡 fitnees = EvaluatePopulation(𝑃𝑡)
(10) bestFitness, 𝐹 = Selectbest(𝑃𝑡, 𝑃𝑡 fitness, 𝑘) // choose the best 𝑘 individuals and get the best fitness value from the individuals
(11) if 𝑖mod interval
(12) 𝑃

1
= 𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑒𝑛𝑃(𝐹, 𝐶, 𝑠𝑝𝑒𝑐𝑈, 𝐵 + 𝑈, 𝑛/2)

(13) 𝑃
2
= traditionalRandomIndividual(𝐵 + 𝑈, 𝑛/2)

(14) 𝑃 = 𝑃
1
∪ 𝑃
2

(15) else
(16) 𝑃

1
= traditionalRandomIndividual(𝐵 + 𝑈, 𝑛 − 𝑘)

(17) 𝑃 = 𝑃
1
∪ 𝑃

(18) end
(19) 𝑖++
(20) end
(21) return 𝐹

Algorithm 6: PFK-GP.

is twice as much as the other elements in Q because 𝐵 ∪
𝐶 ⊆ 𝑠𝑝𝑒𝑐𝑈. Those elements in specU are more likely to
be part of individuals in the population after applying the
method traditionalRandomIndividual [16] which is designed
to generate randomly 𝑘 individuals from the special function
set. At last, the rest of individuals of population are created
by traditionalRandomIndividual with sets B and U. The
process of population generating is described as the algorithm
randomGenP.

Generally, |𝐹𝑠| + |𝐶| + |𝑠𝑝𝑒𝑐𝑈| < 𝑛/2, where 𝑛 is
the number of individuals in population. Furthermore, in
order to enhance the affection of PFKB in the process of
GP evolution, the method randomGenP is used to create
new individuals in every few generations of evolutionary
computation. Meanwhile, the method of Pareto front [17]
is introduced into the algorithm PFK-GP to balance the
accuracy against the complexity of model. The detail of
algorithm PFK-GP is shown in Algorithm 6.

4. Experiments

In the experiments, we employ DBN in the DeepLearnTool-
box [30] to classify formula models and build the algorithm
PFK-GP based on GPTIPS [29]. The 39 formula models in
Table 7 are composed of formulas from [31, 32] and some
formulas are created by ourselves.Thedata generated by these
39 formula models is used as training data of algorithmDBN
to create PFKB. The formula models in Table 5 are used to
generate the testing data for verifying accuracy of algorithms
GenerateFs and PFK-GP. The formula models in Table 6 are
devoted to validating the two algorithms CountSamePartF
and CountSpecU (see Algorithms 3 and 4).

Table 2: The parameter values in algorithm of DBN and SVM.

DBN parameters Value SVM
parameters Value

The number of DBN
layers 4 svm type c-svc

The size of DBN hide
nodes 50 Kernel Gaussian

The number of epochs 200 Gamma 0.07
Batch size 40 Coef 0
Momentum 0 Cost 1.0
Alpha 1 Degree 3.0
activation function sigm Shrinking 1

For most formula models from Tables 5, 6, and 7, we
sampled them by equal step taking their parameter values
from the range [−49, 50]. For some particular formulas, we
also sample them with a special equal step from special
numerical scope. For example, the value 𝑥 in sqrt(𝑥) is in
the range [0, 99], the value 𝑥 in log(𝑥) ranges between 1
and 100. We create 500 groups of different parameters value
in each formula model. The coefficients in these formula
models are fetched with equal step from the range [−2.996,
3.0]. When all coefficients of a formula model take special
values, the formula model generates a formula, namely, a
sample of the formula model. We create 7500 groups of
different coefficients in each formulamodel. So, each formula
model has 7500 samples where each sample has 500 groups
of different parameters value. We take 6000 samples of these
samples as training data and the others as test data.

10 Computational Intelligence and Neuroscience

Table 3: Parameter values in GP and PFK-GP.

Parameter Value
GPTIPS [29] multigene
syntax

Representation Number of genes: 1
Maximum tree depth: 5

Population size 50
Number of generations 1000

Selection Lexicographic tournament
selection

Tournament size 3
Crossover operator Subtree crossover
Crosser probability 0.85
Mutation operator Subtree mutation
Mutation probability 0.1
Reproduction probability 0.05

Fitness
1

𝑁
√∑(𝑦 − 𝑦)

2

Elitism Keep 1 best individual

Table 4: The best mathematical expression of PFK-GP finding.

Number The best mathematical expression

𝐸
1

𝑦 = 0.7001 ∗ tan (𝑥
1
∗ 𝑥
4
− 5.049) − 0.7001

∗ 𝑥
1
∗ cube (2.575) ∗ cube (𝑥

4
) − 1.001

𝐸
2 𝑦 = 7.214 ∗ sin (𝑥

1
) + 1.001 ∗ tan (𝑥

2
)

𝐸
3 𝑦 = 0.25 ∗ square (𝑥

1
+ 𝑥
2
− 6) − 0.2179

𝐸
4

𝑦 = 1.001 −
(1.332 ∗ (4 ∗ 𝑥

1
+ log (square (𝑥

2
))))

(2 ∗ square (𝑥
2
) + 5.585)

𝐸
5 𝑦 = 𝑥

2
− 2.092 tanh (square (sin (𝑥

1
))) + 0.8795

𝐸
6 𝑦 = 6 ∗ cos (𝑥

2
) ∗ sin (𝑥

1
) − 0.00444

𝐸
7 𝑦 = sin (𝑥

1
) − 6 ∗ 𝑥

1
+ square (𝑥

1
) + 14

𝐸
8 𝑦 = log (𝑥

2
) + sqrt (𝑥

1
) + sin (𝑥

1
) + 0.1823

Table 5: Test data used in PFK-GP.

Number Formula

𝐸
0

𝑦 = −1.97 + 1.25 ∗
sqrt (𝑥

0
)

tan (𝑥
1
)
+

tan (𝑥
0
)

exp (𝑥
1
)
+ cos (𝑥

0
)

∗ sin (𝑥
1
)

𝐸
1 𝑦 = exp (2 ∗ 𝑥

1
∗ sin (𝑝𝑖 ∗ 𝑥

4
)) + sin (𝑥

2
∗ 𝑥
3
)

𝐸
2 𝑦 = 3.56 + 7.23 ∗ sin (𝑥

0
) + tan (𝑥

3
)

𝐸
3 𝑦 = (𝑥

0
− 3)∗(𝑥

3
− 3)+2∗sin ((𝑥

0
− 4) ∗ (𝑥

3
− 4))

𝐸
4

𝑦 =
(quart (𝑥

1
− 3) + cube (𝑥

2
− 3) − (𝑥

2
− 3))

(quart (𝑥
2
− 4) + 10)

𝐸
5 𝑦 = tanh (cos (2 ∗ 𝑥

0
)) + 𝑥

3

𝐸
6 𝑦 = 6 ∗ sin (𝑥

0
) ∗ cos (𝑥

3
)

𝐸
7 𝑦 = sin (𝑥

0
) + square (𝑥

0
) + 5

𝐸
8 𝑦 = sqrt (𝑥

0
) + log (1.2 ∗ 𝑥

3
) + sin (𝑥

0
)

We adopt DBN as the classification model and compare
it with SVM that is implemented by the tool libsvm [33]. The
training and testing data for the two algorithms are originated
from formula models 𝑃

1
–𝑃
39
. The parameter values in DBN

Table 6: Test data of two algorithms CountSamePartF and
CountSpecU (see Algorithms 3 and 4).

Number Formula
𝑇
1

𝑃
1

𝑇
2

𝑃
2

𝑇
3

𝑃
3

𝑇
4

𝑃
4

𝑇
5

𝑃
5

𝑇
6

𝑦 = 𝑧 + 𝑎 ∗
sqrt (𝑥

0
)

tan (𝑥
1
)
+ sin (𝑥

1
)

𝑇
7

𝑦 = 𝑧 + 𝑎 ∗
sqrt (𝑥

0
)

tan (𝑥
1
)
+ 𝑥
1

𝑇
8

𝑦 = 𝑧 + 𝑎 ∗
tan (𝑥

0
)

exp (𝑥
1
)
+ cos (𝑥

0
) ∗ sin (𝑥

1
) + sin (𝑥

1
)

𝑇
9

𝑦 = 𝑧 + 𝑎 ∗
tan (𝑥

0
)

exp (𝑥
1
)
+ cos (𝑥

0
) ∗ sin (𝑥

1
) + 𝑥
1

𝑇
10

𝑦 = 𝑧 + 𝑎 ∗ cos (𝑥
0
) ∗ sin (𝑥

1
) + square (𝑥

1
)

Tr
ai

ni
ng

 er
ro

r

Generation

70

60

50

40

30

20

10

0
0 100 200 300 400 500 600 700 800 900 1000

PO-GP
PFK-GP

Figure 6: The evolutionary result of 𝑃
13
with PO-GP and PFK-GP.

and SVM are illustrated as Table 2. We take the first five
formulas from Fs generated by GenerateFs as a result set of
recognition. If the test formula is included in the set, we
think that the recognition result is correct. The accuracy of
recognition results of DBN and SVM is showed as Figure 5.
TheDBNmethod can help to classify all kinds of test data into
its fitted formulamodels.However, the SVMmethod can only
correctly classify several kinds of test data.Theoverall average
accuracy of DBN classification is 99.65%, while the accuracy
of SVM is 26.72%. The result demonstrates that DBN is
more suitable for recognizing data generated bymathematical
expression, because DBN can automatically extract features
from the data, layer by layer, and is similar to composition of
formula which is constituted by its subformulas.

We set parameters in GP with Pareto optimization (PO-
GP) [29] and PFK-GP as shown in Table 3. For data generated
by𝑃
13
(see Table 7, coefficient 𝑧 is−2.098, 𝑎 is−2.998),PO-GP

Computational Intelligence and Neuroscience 11

Table 7: Training data of algorithm TrainDBN (see Algorithm 1).

Number Formula
𝑃
1

𝑦 = 𝑧 + 𝑎 ∗ 𝑥
0

𝑃
2

𝑦 = 𝑧 + (𝑎
1
∗
(𝑥
3
+ 𝑥
1
)

(𝑎
2
∗ 𝑥
4
)
)

𝑃
3

𝑦 = 𝑧 + (𝑎
1
∗ (

((𝑥
3
− 𝑥
0
) + (𝑥

1
/𝑥
4
))

(𝑎
2
∗ 𝑥
4
)

))

𝑃
4

𝑦 = 𝑧 + 𝑎 ∗ sin (𝑥)
𝑃
5

𝑦 = 𝑧 + 𝑎 ∗ log (𝑥)
𝑃
6

𝑦 = 𝑧 + 𝑎 ∗ sqrt (𝑥)
𝑃
7

𝑦 = 𝑧 − (𝑎
1
∗ exp (𝑎

2
∗ 𝑥
0
))

𝑃
8

𝑦 = 𝑧 + (𝑎
1
∗ sqrt (𝑎

2
∗ 𝑥
0
∗ 𝑥
3
∗ 𝑥
4
))

𝑃
9

𝑦 = ((
(𝑎
1
∗ sqrt (𝑥

0
))

(𝑎
2
∗ log (𝑥

1
))
) ∗ (

(𝑎
3
∗ exp (𝑥

2
))

(𝑎
4
∗ square (𝑥

3
))
))

𝑃
10

𝑦 = 𝑧 + (𝑎
1
∗ (

((𝑎
2
∗ 𝑥
1
) + (𝑎

3
∗ square (𝑥

2
)))

(𝑎
4
∗ cube (𝑥

3
)) + (𝑎

5
∗ quart (𝑥

4
))
))

𝑃
11

𝑦 = 𝑧 + (𝑎
1
∗ cos (𝑎

2
∗ 𝑥
0
∗ 𝑥
0
∗ 𝑥
0
))

𝑃
12

𝑦 = 𝑧 − (𝑎
1
∗ (cos (𝑎

2
∗ 𝑥
0
) ∗ sin (𝑎

3
∗ 𝑥
4
)))

𝑃
13

𝑦 = 𝑧 − (𝑎 ∗ ((
tan (𝑥

0
)

tan (𝑥
1
)
) ∗ (

tan (𝑥
2
)

tan (𝑥
3
)
)))

𝑃
14

𝑦 = 𝑧 − (𝑎 ∗ ((cos (𝑥
0
) − tan (𝑥

1
)) ∗ (

tanh (𝑥
2
)

sin (𝑥
3
)
)))

𝑃
15

𝑦 = 𝑧 − (𝑎 ∗ ((
tan (𝑥

0
)

exp (𝑥
1
)
) ∗ (log (𝑥

2
) − tan (𝑥

3
))))

𝑃
16

𝑦 = 𝑎 ∗ 𝑥
3

𝑃
17

𝑦 = 𝑎
1
∗ 𝑥
1
+ 𝑎
2
∗ 𝑥
4

𝑃
18

𝑦 =
sqrt (𝑥

2
)

tan (𝑥
5
/𝑎)

𝑃
19

𝑦 =
cos (𝑥

2
)

cube (𝑥
5
/𝑎)

𝑃
20

𝑦 = tanh (𝑥
2
∗ 𝑎 ∗ cube (𝑥

5
+ abs (𝑥

1
)))

𝑃
21

𝑦 = tanh (abs (𝑥
2
∗ 𝑎 + 𝑥

5
) ∗ cube (𝑥

5
+ abs (𝑥

1
)))

𝑃
22

𝑦 = tanh(tan(
𝑥
5

𝑎
) ∗ cube (𝑥

5
+ abs (𝑥

1
)))

𝑃
23

𝑦 = tanh (cos (𝑥
2
∗ 𝑎) ∗ cube (sqrt (𝑥

2
)))

𝑃
24

𝑦 = tanh (cos (𝑥
2
∗ 𝑎) ∗ cube (𝑥

5
+ abe (𝑥

1
)))

𝑃
25

𝑦 = 𝑧

𝑃
26

𝑦 = 𝑧 + 𝑥
2

𝑃
27

𝑦 =
(𝑧 + 𝑥

2
)

(𝑥
0
∗ 𝑥
2
)

𝑃
28

𝑦 = (
(𝑥
0
− 𝑧
1
)

(𝑥
0
+ 𝑥
2
)
) ∗ (

(𝑥
5
− 𝑧
2
)

(𝑥
0
∗ 𝑎
1
)
)

𝑃
29

𝑦 = 𝑎 ∗ sqrt (𝑥)
𝑃
30

𝑦 = 𝑎 ∗ log (𝑥)
𝑃
31

𝑦 = 𝑎 ∗ square (𝑥)
𝑃
32

𝑦 = 𝑎 ∗ tanh (𝑥)
𝑃
33

𝑦 = 𝑎 ∗ sin (𝑥)
𝑃
34

𝑦 = 𝑎 ∗ cos (𝑥)
𝑃
35

𝑦 = 𝑎 ∗ exp (𝑥)
𝑃
36

𝑦 = 𝑎 ∗ cube (𝑥)
𝑃
37

𝑦 = 𝑎 ∗ quart (𝑥)
𝑃
38

𝑦 = 𝑎 ∗ tan (𝑥)
𝑃
39

𝑦 = 𝑎 ∗ abs (𝑥)

Generation
0 200 400 600 800 1000

M
ea

n
tr

ai
ni

ng
 er

ro
r (

no
rm

al
iz

ed
)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

PFK-GP(E)
PO-GP(E)

PFK-GP(P)
PO-GP(P)

Figure 7: Average results from six groups of means training errors
in PO-GP and PFK-GP.

and PFK-GP deal with the SR problem, respectively. The
result was illustrated as Figure 6, where

Trainerror = √mean ((𝑦train − 𝑦predtrain)2). (2)

We could find that after processing test data of formula
model 𝑃

13
, PFK-GP found its best model at the first gener-

ation and its fitness is higher, while PO-GP found its best
model until 718th generation and its fitness is much lower
than that in PFK-GP. The PFK-GP can get the right formulas
quickly because the model 𝑃

13
recognized by the algorithm

GenerateFs is inserted into the initialized population of
evolutionary computation. For the formula models whose
characteristics are consistent with data features in PFKB, they
can be recognizedwith high probability and can be combined
into population of PFK-GP.The PFK-GP can firstly search the
coefficients in these formulamodels and get themathematical
expression with good fitness value. Therefore, the algorithm
GenerateFs can speed up the process of PFK-GP dealing with
SR and can improve the accuracy of SR results.

In order to test whetherPFK-GP can overcome overfitting
or not, a dataset is created by 𝐸

1
which has not existed in

the training models of PFKB. The two algorithms PO-GP
and PFK-GP are, respectively, applied to process the dataset.
The two algorithms, which run, respectively, 100 and 1000
generations, have similar convergence curves in Figure 8.
However, PFK-GP can find better fitness results compared
with PO-GP, because PFK-GP searches fitted solution in the
space includes more functions whose data features are in
accord with 𝐸

1
. Since the initial population, which is gener-

ated by the algorithms (CountSamePartF and CountSpecU)
in PFKB, contains subformulas in formula models which are
recognized by PFKB and represents data features of these
subformulas, PFK-GP can find the right formulas which are
more fitted to the raw dataset.

12 Computational Intelligence and Neuroscience
Tr

ai
ni

ng
 er

ro
r

Generation

PO-GP
PFK-GP

PO-GP
PFK-GP

0.12

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Tr
ai

ni
ng

 er
ro

r

0.12

0.1

0.08

0.06

0.04

0.02

0 10 20 30 40 50 60 70 80 90 100

Generation
0

0
100 200 300 400 500 600 700 800 900 1000

Figure 8: The SR evolutionary process of 𝐸
1
with PO-GP or PFK-GP under different generations.

In order to observe overall performance of the PFK-GP,
we select six datasets as testing set. Three of them generated
by formula models (𝑃

9
, 𝑃
13
, 𝑃
19
) from Table 7 are involved in

the process of training DBN, while the other three generated
by formula models (𝐸

1
, 𝐸
4
, 𝐸
6
) from Table 5 are not involved

in that process. The two algorithms PFK-GP and PO-GP
are executed, respectively, ten times in order to gain the
right formulas from the six different datasets. The six results
of mean training error gained by the two algorithms are
shown in Figure 9. And the average results from six groups
of mean training errors are listed in Figure 7. The PFK-
GP(E) and GP(E) are the average results of 𝐸

1
, 𝐸
4
, and 𝐸

6
,

while PFK-GP(P) and PO-GP(P) are the average results of
𝑃
9
, 𝑃
13
, and 𝑃

19
. We can conclude that the comprehensive

performance of the PFK-GP is better than that of the PO-GP
based on the results in Figures 7 and 9, because the algorithm
PFK-GP utilizes the method GenerateFs to find the fitted
formula model directly and the methods CountSamePartF
and CountSpecU to identify subformula models which have
data features consistent with test set. The best mathematical
expressions PFK-GP and PO-GP found are listed in Table 4.

In order to measure relativity between experimental data
andpredictive data, the formulaTrainingVariationExplained
(TVE) is defined as follows:

TVE = 1 −
sum ((𝑦train − 𝑦predtrain)2)

sum ((𝑦train −mean (𝑦train))2)
. (3)

The higher the TVE value, the more valid the predictive
data. PO-GP and PFK-GP are run ten times, respectively,
in the dataset generated from eight prediction models (see
Table 6 𝐸

1
–𝐸
8
). The eight results of different dataset pro-

cessed by the above two algorithms are listed in Figure 10.
And the maximum, minimum, and average results of TVE
are listed in Figure 11. From the results in the two figures,
the formulas that PFK-GP finds are more relative to the
experimental formula models than those PO-GP finds.

5. Related Work

The search space of SR is huge even for rather simple basis
functions [31]. In order to avoid search space that is too far
from the desired output range determined by the training
dataset, the interval arithmetic [34] and the affine arithmetic
[26], which can compute the bounds of GP tree expression,
are imported into SR. Although the method based on affine
arithmetic can generate the tighter bounds of the expression
in comparison with the interval arithmetic method, its
accuracy often leads to high computational complexity [35].
Moreover, the size of search space is still huge because there
are plentiful candidate expressionswhich fit to the data bound
computed by the above two arithmetic methods.

In addition to the above arithmetic method, machine
learning methods are used to compact or reduce the search
space of SR. FFX technology uses pathwise regularized
learning algorithm to rapidly prune a huge set of candidate
basis functions down to compactmodel based on the general-
ization linearly model (GLM); hence the technology outper-
forms GP-SR in speed and scalability due to its simplicity and
deterministic nature [8]. However, it may abandon correct
expressions and make them not in the space of GLM. A
hybrid deterministic GP-SR algorithm [36] is proposed to
overcome the problem of missing correct expression. The
hybrid algorithm extracts candidate basis expressions by
using FFX and inputs the expressions into the GP-SR. The
hybrid algorithm utilizes the candidate expression gener-
ated by the linear regression method (pathwise regulation),
while our algorithm utilizes the candidate expression by
applying the algorithms CountSamePartF, GenerateFs, and
CountSpecU.

By applying expectation-maximization (EM) framework
to SR, the clustered SR (CSR) can identify and infer symbolic
repression of piecewise function from unlabelled, time-
series data [9]. The CSR can reduce the space of searching
piecewise function owing to the fact that the EM can search

Computational Intelligence and Neuroscience 13

0 200 400 600 800 1000
0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation
0 200 400 600 800 1000

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000
0

50

100

150

0 200 400 600 800 1000
0

10

20

30

40

50

60

0 200 400 600 800 1000
0

100

200

300

400

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation

M
ea

n
tr

ai
ni

ng
 er

ro
r

Generation

PO-GP(P19)
PFK-GP(P19)

PO-GP(E9)
PFK-GP(E9)

PO-GP(P13)
PFK-GP(P13)

PO-GP(E6)
PFK-GP(E6)

PO-GP(E1)
PFK-GP(E1)

PO-GP(E4)
PFK-GP(E4)

Figure 9: Training error results in which six datasets generated by 𝐸
1
, 𝐸
4
, 𝐸
6
, 𝑃
1
, 𝑃
13
, and 𝑃

19
dealt with PO-GP and PFK-GP, respectively.

14 Computational Intelligence and Neuroscience

0 500 1000
0

20

40

60

80

100

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation
0 500 1000

20

40

60

80

100

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation
0 500 1000

99.2

99.4

99.6

99.8

100

0 500 1000
20

40

60

80

100

0 500 1000
99.92

99.94

99.96

99.98

100

0 500 1000
0

20

40

60

80

100

0 500 1000
70

75

80

85

90

95

100

0 500 1000
85

90

95

100

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

M
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

Generation

PO-GP(E1)
PFK-GP(E1)

PO-GP(E2)
PFK-GP(E2)

PO-GP(E3)
PFK-GP(E3)

PO-GP(E6)
PFK-GP(E6)

PO-GP(E5)
PFK-GP(E5)

PO-GP(E4)
PFK-GP(E4)

PO-GP(E7)
PFK-GP(E7)

PO-GP(E8)
PFK-GP(E8)

Figure 10: TVE for models 𝐸
1
–𝐸
8
contrast the random population in traditional PO-GP with the PFK-GP.

simultaneously the subfunction parameters and latent vari-
ables that represent the information of function segment.
The abstract expression grammar (AEG) SR is proposed to
perform the process of genetic algorithm (GA), allowing user
control of the search space and the final output formulas

[37]. On understanding the given application, users can
specify the goal expression of SR and limit the size of search
space by using abstract expression grammars. Compared
with manually assigning expression and limiting the search
space with AEGSR, in the paper, the methods about PFK can

Computational Intelligence and Neuroscience 15

0

10

20

30

40

50

60

70

80

90

100

110

Formula index

M
in

 m
ax

 m
ea

n
tr

ai
ni

ng
 v

ar
ia

tio
n

ex
pl

ai
ne

d
re

su
lt

(%
)

PO-GP
PFK-GP

E1 E2 E3 E4 E5 E6 E7 E8

Figure 11: TVE results of PO-GP compared with PFK-GP in eight
formula models.

automatically extract the candidate expression from dataset
by using statistical method and dynamically adjust the search
space by using GP.

The methods that inject prior or expert knowledge in
evolutionary search [12, 13] are introduced to find effective
solutions that can show mathematical expression more com-
pactable and interpretable. In these papers, the prior and
expert knowledge are the solutions which are mathematical
expressions in some applications. The knowledge is merged
into GP by inserting randomized pieces of the approxi-
mate solution into population. One of the major differences
between these methods and our method is how prior or
expert knowledge is created. The knowledge in [12, 13] is
the existing formula model that comes from the previous
solutions and can be called static knowledge. However, the
knowledge in our method is the formula model which is
consistent with data features that are originated from the
algorithms GenerateFs, CountSamePartF, and CountSpecU
and can be called dynamical knowledge that is changed with
the features of test dataset. Therefore, our methods can insert
more suitable knowledge into the GP.

6. Conclusion

In this paper, a PFK-GP method is proposed to deal with
the problem of symbolic regression based on analyzing the
process of how a researcher constructs amathematicalmodel.
The method can understand experimental data features and
can extract some formulas consistent with experimental data
features. In order to implement the function of understanding
data features, PFK-GP, through the DBN method, firstly
creates PFKB that can extract features from test dataset
generated by training formulamodels.The experiment results
confirm, compared with SVM, that DBN can produce bet-
ter results that extract features from formula models and
classify test data into its corresponding formula model.

Then, the methods of classification and recognition are
implemented to find some formula models that are similar
or related to experimental data features as much as possible.
For the classification, we exploit the algorithm GenerateFs
based on DBN to match the experimental data with formula
models in PFKB. With regard to recognition, we propose the
algorithms of CountSamePartF and CountSpecU to obtain
some subformulamodels which have local features consistent
with experimental data. The classification can help PFKB
to find formula models that are consistent with whole
data features while the recognition can help PFKB to find
subformulamodels consistent with local data features. At last,
the algorithm randomGenP is used to generate individuals of
evolutionary population according to the result of the above
three algorithms. Through combining and transforming
these individuals, GP can automatically obtain approximate
formulas that are best fitting to the experimental data.

Compared with ParetoGP, PFK-GP, which is built on the
PFKBwith the functions of classification and recognition, can
explore formulas in the search space of data features. So, it can
accelerate the speed of convergence and improve the accuracy
of formula obtained.

Obviously, the high efficiency of PFK-GP depends on the
powerful methods of classification and recognition based on
PFKB. Therefore, it is an important part of the future work
to improve the accuracy of the above two methods. The two
methods depend on the representation of data features of
formula model. In the paper, the two assumptions based on
statistics and counts are used to obtain the formulas which
can show the data features. The features of formula model
are not defined explicitly. And the two assumption are not
proved by formal proofs. There are some uncertainties in
those assumptions. Therefore, the new representation which
can show whole or local features of formula models will be
researched to find formulaswhich can better fit to experiment
data. In addition, the rules of formulas transforming and
inferring that are similar to researchers’ methods will be
explored in the evolution of GP.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (Grant no. 61402532), Science Foundation
of China University of Petroleum-Beijing (no. 01JB0415), and
China Scholarship Council.

References

[1] M. Schmidt and H. Lipson, “Distilling free-form natural laws
from experimental data,” Science, vol. 324, no. 5923, pp. 81–85,
2009.

[2] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection, MIT Press, Cambridge,
Mass, USA, 1992.

16 Computational Intelligence and Neuroscience

[3] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13, no.
2, pp. 87–129, 2001.

[4] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans-
actions on Evolutionary Computation, vol. 5, no. 4, pp. 349–358,
2001.

[5] J. O’Sullivan and C. Ryan, “An investigation into the use
of different search strategies with grammatical evolution,” in
Genetic Programming, J. Foster, E. Lutton, J. Miller, C. Ryan,
and A. Tettamanzi, Eds., vol. 2278 of Lecture Notes in Computer
Science, pp. 268–277, Springer, Berlin, Germany, 2002.

[6] Z. Oplatkova and I. Zelinka, “Symbolic regression and evo-
lutionary computation in setting an optimal trajectory for a
robot,” in Proceedings of the 18th International Workshop on
Database and Expert Systems Applications (DEXA ’07), pp. 168–
172, IEEE, Regensburg, Germany, September 2007.

[7] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

[8] T. McConaghy, “Ffx: fast, scalable, deterministic symbolic
regression technology,” in Genetic Programming Theory and
Practice IX, R. Riolo, E. Vladislavleva, and J. H. Moore, Eds.,
Genetic and Evolutionary Computation, pp. 235–260, Springer,
New York, NY, USA, 2011.

[9] D. L. Ly and H. Lipson, “Learning symbolic representations
of hybrid dynamical systems,” Journal of Machine Learning
Research, vol. 13, pp. 3585–3618, 2012.

[10] P. Tomson and G. W. Greenwood, “Using ant colony optimiza-
tion to find low energy atomic cluster structures,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’05),
vol. 3, pp. 2677–2682, September 2005.

[11] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open
issues in genetic programming,” Genetic Programming and
Evolvable Machines, vol. 11, no. 3-4, pp. 339–363, 2010.

[12] M.-R. Akbarzadeh-T and M. Jamshidi, “Incorporating a-priori
expert knowledge in genetic algorithms,” in Proceedings of the
IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA ’97), pp. 300–305, IEEE,
Monterey, Calif, USA, July 1997.

[13] M.D. Schmidt andH. Lipson, “Incorporating expert knowledge
in evolutionary search: a study of seeding methods,” in Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’09), pp. 1091–1098, ACM, Montreal,
Canada, July 2009.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313, no.
5786, pp. 504–507, 2006.

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,”Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[16] D. P. Searson, D. E. Leahy, and M. J. Willis, “GPTIPS: an open
source genetic programming toolbox for multigene symbolic
regression,” in Proceedings of the International Multiconference
of Engineers and Computer Scientists, vol. 1, pp. 77–80, Hong
Kong, March 2010.

[17] G. Smits and M. Kotanchek, “Pareto-front exploitation in sym-
bolic regression,” in Genetic Programming Theory and Practice
II, vol. 8 of Genetic Programming, pp. 283–299, Springer, 2005.

[18] J. Neter, W. Wasserman, and M. Kutner, Applied Linear Regres-
sion Models, Irwin, Martinsville, Ohio, USA, 1989.

[19] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[20] Y. Freund and R. Schapire, “A desicion-theoretic generalization
of online learning and an application to boosting,” in Compu-
tational Learning Theory, vol. 904 of Lecture Notes in Computer
Science, pp. 23–37, Springer, Berlin, Germany, 1995.

[21] H. Chen, P. Tiňo, and X. Yao, “Probabilistic classification vector
machines,” IEEE Transactions on Neural Networks, vol. 20, no.
6, pp. 901–914, 2009.

[22] G. Hinton, L. Deng, D. Yu et al., “Deep neural networks for
acoustic modeling in speech recognition: the shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[23] R. Collobert and J. Weston, “A unified architecture for natural
language processing: deep neural networks with multitask
learning,” in Proceedings of the 25th International Conference on
Machine Learning (ICML ’08), pp. 160–167, ACM, July 2008.

[24] R. Poli and N. F. McPhee, “Parsimony pressure made easy,”
in Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’08), pp. 1267–1274, ACM,
Atlanta, Ga, USA, July 2008.

[25] M. Schmidt and H. Lipson, “Age-fitness pareto optimization,”
in Genetic Programming Theory and Practice VIII, R. Riolo, T.
McConaghy, and E. Vladislavleva, Eds., vol. 8 of Genetic and
Evolutionary Computation, pp. 129–146, Springer, New York,
NY, USA, 2011.

[26] C. L. Pennachin, M. Looks, and J. A. de Vasconcelos, “Robust
symbolic regression with affine arithmetic,” in Proceedings
of the 12th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’10), pp. 917–924, ACM, Portland, Ore,
USA, July 2010.

[27] Y. Freund and D. Haussler, “Unsupervised learning of distribu-
tions on binary vectors using two layer networks,” Tech. Rep.
UCSC-CRL-94-25, 1994.

[28] Y. Bengio, Y. Lecun, and Y. Lecun, “Convolutional networks
for images, speech, and time-series,” in The Handbook of
Brain Theory and Neural Networks, pp. 255–258, AT&T Bell
Laboratories, 1995.

[29] D. Searson, “Gptips package for matlab,” 2012, http://sites
.google.com/site/gptips4matlab.

[30] R. Palm, “Deepldeeptoolbox,” 2012, https://github.com/rasmus-
bergpalm/DeepLearnToolbox.

[31] M. F. Korns, “A baseline symbolic regression algorithm,” in
Genetic Programming Theory and Practice X, R. Riolo, E.
Vladislavleva, M. D. Ritchie, and J. H. Moore, Eds., Genetic and
Evolutionary Computation, pp. 117–137, Springer, New York,
NY, USA, 2013.

[32] Toy benchmarks test suite 1, http://www.symbolicregression
.com/?q=node/5.

[33] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[34] M. Keijzer, “Improving symbolic regression with interval arith-
metic and linear scaling,” in Genetic Programming, C. Ryan, T.
Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol.
2610 of Lecture Notes in Computer Science, pp. 70–82, Springer,
Berlin, Germany, 2003.

[35] P. Baranyi, Y. Yam, D. Tikk, and R. J. Patton, “Trade-off between
approximation accuracy and complexity: TS controller design
via HOSVD based complexity minimization,” in Interpretability
Issues in Fuzzy Modeling, J. Casillas, O. Cordn, F. Herrera, and
L. Magdalena, Eds., vol. 128 of Studies in Fuzziness and Soft
Computing, pp. 249–277, Springer, Berlin, Germany, 2003.

Computational Intelligence and Neuroscience 17

[36] I. Icke and J. C. Bongard, “Improving genetic programming
based symbolic regression using deterministic machine learn-
ing,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’13), pp. 1763–1770, IEEE, Cancun, Mexico,
June 2013.

[37] M. Korns, “Abstract expression grammar symbolic regression,”
in Genetic Programming Theory and Practice VIII, R. Riolo, T.
McConaghy, and E. Vladislavleva, Eds., vol. 8 of Genetic and
Evolutionary Computation, pp. 109–128, Springer, New York,
NY, USA, 2011.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

