
Beneficial Aspects of Neutrality in GP

Edgar Galván López
University of Essex

Colchester, CO4 3SQ, UK

edgar.galvan@gmail.com

Katya Rodŕiguez
Vázquez

IIMAS-UNAM Delegación
Álvaro Obregón México, D.F.

01000, MEXICO

katya@uxdea4.iimas.unam.mx

Riccardo Poli
University of Essex

Colchester, CO4 3SQ, UK

rpoli@essex.ac

ABSTRACT
In this paper we propose a new approach, called Multiple Outputs

in a Single Tree (MOST), to Genetic Programming. The idea of

this approach is to specify explicitly Neutrality and study how this

improves the evolutionary process. For this sake, we have used

several evolvable hardware problems of different complexity taken

from the literature. Our results indicate that our approach has a

better overall performance in terms of consistency to reach fea-

sible solutions.

Keywords: Multiple Outputs in a Single Tree, Neutrality, Evolv-

able Hardware.

1. INTRODUCTION
Natural Selection is the only theory known which can ex-

plain the existence of adaptation in nature. However, this
does not mean that natural selection is the only force that
directs evolution. Indeed, at molecular scale there is sup-
port for the idea that most evolutive variations are neutral.
This Neutral Theory has been defined by Motoo Kimura in
the late 1970s [6]. The neutral theory does not affirm that
during evolution the genes are not making something useful,
rather it suggests that different forms of the same gene are
indistinguishable in their effects. In other words, a mutation
from one gene to another is neutral if this modification does
not affect the phenotype.

Kimura’s theory is sometimes considered to contradict the
Darwinian theory, which is an error. The darwinian the-
ory judges genes by their phenotypic expression whereas
Kimura’s theory argues that mutations occurring during
evolution are neither advantageous nor disadvantageous to
the survival and reproduction of individuals. Such random
genetic drift should be considered in the study of the evolu-
tionary process.

Some researchers have been interested in understanding
how neutrality works in Evolutionary Computation (EC)
systems in order to add elements to the evolutionary process
to evolve complex problem solutions.

The aims of this paper is to introduce a new-technique
that allows one to understand how neutrality works in the
evolutionary search process. For the purpose of illustrating
this technique we have used several evolvable hardware prob-
lems of different complexity taken from the literature. The
approach described in this paper has two advantages: (a) it
allows specifying explicit neutrality, (b) it makes easier to
understand how explicit neutrality improves the evolution-
ary search process.

The paper is organized as follows. In Section 2, neutrality

is explained in the Genetic Programming (GP) paradigm. In
Section 3, previous work on neutrality is presented. Section
4 explains the approach proposed. In Section 5, a compar-
ison of results is shown. Analysis and discussion of results
are presented in Section 6 and in Section 7 conclusions are
drawn.

2. NEUTRALITY
In GP [7, 8], neutrality is often identified with redundancy

and introns. Both have being widely studied in the EC
community [1, 15, 13, 14, 9, 16].

Functional redundancy refers to the fact that many differ-
ent individuals, at the phenotype level, represent the same
function. For example, the following two genotypes repre-
sent the xor function:

(nor (and (not (not a )) b) (not (or a b)))
(nor ((nand (nand a b) (or a b)) (not (or a b))))

Introns refer to code that is part of an individual but that
semantically does not affect the program’s behavior.

The problem with functional redundancy and introns is
that both emerge and vary during the evolutionary process
and for this reason it is difficult to measure neutrality. The
idea of this paper is to specify explicit neutrality and study
its effects. For that purpose, we have adopted several com-
binational logic circuits with multiple outputs. In our ap-
proach, as will be explained later, we add an extra element
in the function set which will allow explicit neutrality and
inactive code.

At this point many questions arise: Is it possible to mea-
sure the neutrality in the evolutive process? Does neutrality
play an important role during the evolutive process? If so,
how much neutrality do we need in our genotype? Which
are the effects of neutrality in the evolutive process? We
illustrate how we can investigate these research questions
with the approach proposed in this paper.

3. PREVIOUS WORK
EC systems are mostly inspired from the theories of ge-

netic inheritance and natural selection. However, neutrality
has interested many researchers who want to understand it
so that they can incorporate it in their EC systems to solve
complex problems.

As we will see in the next paragraphs, the neutrality the-
ory has been explored in Genetic Algorithms (GAs). How-
ever, neutrality could be easier to find in GP, due to its
representation. In the next paragraphs we will summarize
previous work related to neutrality.



Banzhaf proposed an approach where a Genotype-Phenotype
Mapping (GPM) [2] was used in the context of constrained
optimization problems. In constrained optimization, the so-
lution is not only judged according to its fitness or quality
but also has to obey certain restrictions. Banzhaf argued
that, very often, constraining the solution space leads to
local optima which are difficult to escape with traditional
methods. He used high variability of neutral variants to es-
cape from local optima on saddle surfaces. Banzhaf et al.
extended this previous work in [5].

Maley and Forrest analyzed neutral and selective muta-
tion in cancer [11]. They used an approach based on 2-
dimensional cellular automata in which they modeled the
evolution of pre-cancerous cells. According to their exper-
iments, one neutral and two selective mutations are neces-
sary and sufficient for the development of cancer. All of the
analyses suggest that neutral mutations are the bottleneck
in the development of cancer.

Yu and Miller [18] showed in their work how neutrality im-
proves the evolutionary search process for a Boolean bench-
mark problem. They used Miller’s approach called Carte-
sian GP [12] (CGP) to measure explicit neutrality in the
evolutionary process. In their work, Yu and Miller have ex-
plained that mutation on a genotype that has part of its
genes active and others inactive produces different effects.
They argued that mutation on active genes is adaptive be-
cause it exploits accumulated beneficial mutations. On the
other hand, mutation on inactive genes has neutral effect on
a genotype’s fitness, yet it provides exploratory power by
maintaining genetic diversity.

CGP uses an integer string graph representation. Neu-
trality between two genotypes with the same fitness is mea-
sured by their Hamming distance. Yu and Miller explained
in their work that Hamming distance 0 indicates that nei-
ther implicit nor explicit neutrality is allowed to be present
during evolution. When Hamming distances greater than 0
are allowed, neutrality is allowed to be present, i.e. evolu-
tion can proceed in the presence of genetic drift where no
fitness improvement occurs. The larger the permitted Ham-
ming distance range is, the larger the amount of neutral
mutation allowed during evolution is. The experimental re-
sults show that a larger amount of neutrality is better on a
Boolean benchmark problem. They argued that with more
freedom of genetic drift, evolution generates fitter offspring,
i.e. neutrality improves evolvability.

Yu and Miller extended this work in [20]. They formu-
lated the question: Can neutral mutations (those that are
neither advantageous nor disadvantageous) benefit evolu-
tionary search?. They answered this question by showing
that there is a relationship between neutral mutations and
success rate. (They have devised a GP system that utilizes
neutrality to search for problem solutions. When applied to
a Boolean function problem, the solutions were found with
a higher success rate.)

In their experiments reported in [20], the amount of neu-
tral mutations is measured in the selection step, which eval-
uates both the fitness and the number of neutral mutations
in the evolved entities. They conclude the following based
on their results: (a) neutrality does not impact on success
rates when the number of solutions in the search space is
large, (b) however, when the difficulty level is slightly in-
creased any amount of neutrality improves the success rates
for rates of 1% or 2%, (c) increasing mutation rates also

Figure 1: Example of an individual using p symbols
as functions. We have Pure Neutrality when a p
symbol is pointing to any node which is not part of
a p symbol’s subtree.

improves success rates, and (d) for more difficult problems
(even-12-parity), high neutrality and mutation rates are not
sufficient to find a solution.

Yu and Miller also investigated neutrality using the sim-
ple OneMax problem [19, 21]. They attempted a theorical
approach in this work. With their experiments, they showed
that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

4. APPROACH
Our approach, which we denominate Multiple Outputs in

a Single Tree (MOST), will allows us to study the effects
of neutrality in Boolean benchmark problems. This new
approach was inspired by the EGP approach [4] which allows
reusing code and also evolving graph-like structures, which
could encode, for instance, combinational logic circuits.

In MOST, a program is represented as a tree as suggested
by Koza [7] with the main difference that a program has
as many outputs as the circuit to solve has. For example,
Figure 1 shows a typical MOST individual, which has 3
outputs represented by O1, O2 and O3. In this approach the
function set included Boolean functions {AND, OR, XOR,
NOT}, while the terminal set included letters {a, b, c, ...}
representing input wires. We also consider another set which
contain as many ouputs as the circuit to solve has. So, when
we create an individual, we choose randomly from the set of
outputs any of these and we eliminate it from this set. Once,
we have created an individual, we check if it contains all the
outputs, if not we repeat the process until we have created
a valid individual. It is worth mentioning that when we
create an individual we do not specify which output will be
in the root, so GP has the power to place the most complex
output in the root (results confirm this statment). Once an
individual has been created, we use a probability to replace



Figure 2: Example of an individual using p function
symbols. We have Impure Neutrality when a p sym-
bol points to a node which is contained inside a tree
rooted at p symbol.

a function with a p symbol which is a function of arity 2.
This p symbol will allow us specify explicit neutrality. The
p symbol will point to code somewhere else in the program.
So, when a p is executed, the subtree rooted at that node is
ignored, and so plays the role of inactive code.

In Figure 1 we show an individual with 22 nodes, 16
of which are active and 6 inactive. This is a case of Pure
Neutrality, that is defined as a p symbol pointing to any
node which is not part of the tree rooted at the p symbol
itself or another p symbol. As we have explained earlier,
the p symbol can point to any part of the individual, so the
p symbol could point to a node which is contained inside
the tree rooted at the p symbol. If this is the case, we
denominate this Impure Neutrality. In Figure 2 we can see
an example of impure neutrality. In this case, there are 18
active nodes and 4 inactive nodes. Of course, a combination
of pure and impure neutrality can be present in the same
individual.

The crossover operator used in MOST works as usual but
an important difference is that, if the sub-tree swapped con-
tained a p symbol, the p symbol’s pointer is not changed.1

Another difference is that once we have created our initial
population, we classify each node of each individual in order
to know which nodes can be used to apply crossover. With
this we assure that an individual will contain the number of
outputs that must contain to solve the circuit. This classi-
fication is only applied when the circuit to solve has more
than one output. The mutation operator is applied as usual
on a per node basis. The only restriction is that a p symbol
is not allowed to be mutated.

The fitness function that we used for circuit design works
in two stages: at the beginning of the search, the fitness of a

1There is an exception to this rule: we prevent a p symbol
from referring to a sub-tree that contains the same p since
this would lead to an infinite loop. We do this by reassigning
the position to which the p in question is pointing to.

Table 1: Truth table of the first example.
A B C D O1

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 2: Truth table of the second example.
A B C D O1

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

genotype is the number of correct output bits (raw fitness).
Once the fitness has reached the maximum number of correct
outputs bits, we try to optimize the circuits by giving a
higher fitness to individual with shorter encodings.

5. COMPARISON OF RESULTS
We used several evolvable hardware problem of different

complexity taken from the literature to test MOST. Our
results were compared with those obtained by MGA [3], by
EAPSO [17], by EBPSO [10], by BPSO [10], by EGP and
by traditional GP. For all the examples, we performed 20
independent runs using the following set of gates: {AND,
OR, XOR, NOT}. After a series of preliminary experiments
we have decided to use a crossover rate of 70%, a mutation
rate of 0.02% and p rate of 0.01 for all the experiments,
except for example 4 and 5, where the p rate is 0.08.

As we will see in the next subsections, in all the exper-
iments we improve the percentage of feasible region2 com-
pared against the other techniques.

5.1 Example 1
For our first example we have used the truth table shown

in Table 1. The parameters used in this example are the

2The feasible region is the area of the search space contain-
ing circuits that match all the outputs of the problem’s truth
table.



Table 3: Truth table of the third example.
A B C D E O1

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 1 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

Table 4: Truth table of the fourth example.
A B C D O1 O2

0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1
1 1 1 1 0 1

Table 5: Truth table of the fifth example.
A B C D E O1 O2 O3

0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 0
0 0 1 0 0 1 1 1
0 0 1 0 1 1 0 1
0 0 1 1 0 1 1 0
0 0 1 1 1 1 1 0
0 1 0 0 0 1 1 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 1 0
0 1 0 1 1 1 0 0
0 1 1 0 0 1 1 1
0 1 1 0 1 1 0 1
0 1 1 1 0 1 1 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0
1 0 0 1 1 0 0 0
1 0 1 0 0 0 1 1
1 0 1 0 1 0 0 1
1 0 1 1 0 0 1 0
1 0 1 1 1 0 1 0
1 1 0 0 0 0 1 0
1 1 0 0 1 0 0 0
1 1 0 1 0 0 1 0
1 1 0 1 1 0 0 0
1 1 1 0 0 1 1 1
1 1 1 0 1 1 0 1
1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 0

Table 6: Comparison of results between BPSO,
EAPSO, EBPSO, MGA, GP, EGP and MOST on
the first example.

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 100% 6.75 -

EAPSO 95% 7.3 -
EBPSO 100% 6.15 -
MGA 90% 9.3 -
GP 90% 11.05 56.05

EGP - - -
MOST 100% 10.4 35.61

following: Population Size (PS) = 190 and the Maximum
Number of Generations (MNG) = 525 (i.e., a total of 99,750
fitness function evaluations). The same values parameters
were used by GP. BPSO, EAPSO and EBPSO performed
100,000 fitness function evaluations, while MGA performed
102,000. As we can see in Table 6, the only algorithms
able to converge to a feasible region in 100% of the runs
performed were BPSO, EBPSO and MOST. Moreover, in
MOST the average of generations at which it solved the
circuit was 35.61, while in GP the average of generations
was 56.05. However, the average number of gates in MOST
was 10.4, while the average number of gates in EBPSO was
6.15.

5.2 Example 2
For our second example we have used the truth table

shown in Table 2. The parameters used in this example
are the following: PS = 240 and the MNG = 415 (i.e., a to-



Table 7: Comparison of results between BPSO,
EAPSO, EBPSO, MGA, GP, EGP and MOST on
the second example.

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 85% 10.4 -

EAPSO 90% 8.25 -
EBPSO 100% 5.9 -
MGA 70% 13.7 -
GP 90% 9.22 49.23

EGP - - -
MOST 100% 8.6 28.88

Table 8: Comparison of results between BPSO,
EAPSO, EBPSO, MGA, GP, EGP and MOST on
the third example.

Feasible circuits Avg. # of gates Avg. of gen.
BPSO - - -

EAPSO 50% 13.8 -
EBPSO 55% 12.15 -
MGA 25% 21.4 -
GP 5% 90 791

EGP - - -
MOST 70% 32.28 156.57

Table 9: Comparison of results between BPSO,
EAPSO, EBPSO, MGA, GP, EGP and MOST on
the fourth example.

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 95% 10.05 -

EAPSO 70% 13.45 -
EBPSO 100% 7.75 -
MGA 75% 13.4 -
GP - - -

EGP 55% 9.7 122.9
MOST 100% 12.9 109.55

Table 10: Comparison of results between BPSO,
EAPSO, EBPSO, MGA, GP, EGP and MOST on
the fifth example.

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 25% 23.95 -

EAPSO 50% 18.65 -
EBPSO 45% 20.1 -
MGA 65% 17.05 -
GP - - -

EGP 60% 9.66 149.5
MOST 75% 11.6 104.67

tal of 99,600 fitness function evaluations). The same values
parameters were used by GP. BPSO, EAPSO and EBPSO
performed 100,000 fitness function evaluations, while MGA
performed 102,000. As we can see in Table 7, the only al-
gorithms able to converge to a feasible region in 100% of
the runs performed were EBPSO and MOST. Moreover,
in MOST the average of generations required to solve the
circuit was 28.88, while in GP the average of generations
was 49.23. However, the average number of gates in MOST
was 8.6, while the average number of gates in EBPSO was
slightly smaller (5.9).

5.3 Example 3
For our third example we have used the truth table shown

in Table 3. The parameters used in this example are the
following: PS = 550 and the MNG = 900 (i.e., a total
of 495,000 fitness function evaluations). The same values
parameters were used by GP. BPSO, EAPSO and EBPSO
performed 500,000 fitness function evaluations, while MGA
performed 528,000. As we can see in Table 8, MOST is the
algorithm with the highest percentage of feasible solutions
reached (70%). Moreover, in MOST the average of genera-
tion at which it solved the circuit was 156.57, while in GP
it was 791. However, the average number of gates in MOST
was 32.28, while the average number of gates in EBPSO was
much smaller (12.15).

5.4 Example 4
For our fourth example we have used the truth table

shown in Table 4. The parameters used in this example
are the following: PS = 380 and the MNG = 525 (i.e., a to-
tal of 199,500 fitness function evaluations). The same values
parameters were used by EGP. BPSO, EAPSO and EBPSO
performed 200,000 fitness function evaluations, while MGA
performed 201,300. As we can see in Table 9, the only algo-
rithms able to converge to the feasible region in 100% of the
runs were EBPSO and MOST. Moreover, in MOST the aver-
age of generations at which it solved the circuit was 109.55,
while in EGP it was 122.9. However, the average number of
gates in MOST was 12.1, while the average number of gates
in EBPSO was 7.75 gates.

5.5 Example 5
For our fifth and last example we have used the truth ta-

ble shown in Table 5. The parameters used in this example
are the following: PS = 1,200 and the MNG = 832 (i.e.,
a total of 998,400 fitness function evaluations). The same
values parameters were used by EGP. BPSO, EAPSO and
EBPSO performed 1,000,000 fitness function evaluations,
while MGA performed 1,101,040. As we can see in Table
10, MOST is the algorithm which has the highest percent-
age of feasible solutions reached (75%). Moreover, in MOST
the average of generations at which it solved the circuit was
104.67, while in EGP it was 149.5. Surprising, MOST is one
of the algorithms with lowest average number of gates with
11.6, only behind EGP with 9.66 gates.

6. ANALYSIS AND DISCUSSION OF RE-
SULTS

In the previous section we have shown results of several
circuits of different degrees of complexity. We will analyze
only the last 3, which are the most difficult, due to space



limitations. However, it is worth mentioning that all results
show a similar behavior.

On the left of Figure 3, we can see the average of active
and inactive nodes (over all runs) and on the right we can
see the average fitness. As we can observe on the left of the
figure, at the beginning the number of inactive nodes tends
to increase and after in few generations it tends to decrease.
The same behavior can be seen with active nodes. If we
analize the fitness plot, we can see how the search does not
get stuck in a local optimum. In other words, fitness tends to
increase constantly. For instance, the first 193 generations
show this tendency it can be seen that inactive nodes are
present during these generations. This fact gives us the idea
that neutrality favors the evolutionary process to reach the
feasible region. In other words, neutrality seems to smooth
the landscape.

On the left of Figure 4, we can see the average of active
and inactive nodes (overall runs) and on the right, we can
see the average fitness. As we can observe, on the left of the
figure, at the beginning the number of inactive nodes tends
to increase and after in few generations tends to decrease.
The same behavior can be seen with active nodes. If we
analize the right figure, we can see how the search does not
get stuck in a local optimum. For instance, the first 113
generations show this tendency it can be seen that inactive
nodes are present during these generations.

On the left of Figure 5, we can see the average of active
and inactive nodes (over all runs)in the right, we can see
the average fitness. As we can observe, on the left of the
figure, at the beginning the number of inactive nodes tends
to increase and after in few generations it tends to decrease.
The same behavior can be seen with active nodes. If we
analize the fitness plot, we can see how the search does not
get stuck in a local optimum. For instance, the first 79
generations show this tendency it can be seen that inactive
nodes are present during these generations.

7. CONCLUSIONS
Neutrality is an important research subject. Neutrality is

identified with redundancy and introns. However, it is dif-
ficult to measure these since they emerge and vary during
the evolutionary process. With the use of the approach de-
scribed in this paper, we have allowed explicit neutrality in
the evolutionary process. This has allowed us to study the
effects of neutrality during the evolutionary process.

Our results indicate that our proposed approach has a
better overall performance in terms of consistency in reach-
ing feasible solutions. However, our approach was not able
to improve previously published results in terms of number
of gates. This is due two main factors: (a) our approach is
not an optimization technique and, (b) our approach has the
restriction that one or more outputs depend on the solution
of one or more outputs. This can be seen easily analyzing
figure 1.

The results reported in Section 6 are an illustration of the
power of this technique. From these we can conclude that
for the benchmark Boolean problems we studied:

• Neutrality has beneficial effects when it is present with
low probability, as for example, p= 0.01 for easier
problems and p = 0.08 for harder problems.

• Neutrality does not allow to get stuck in a local opti-
mum.

• Neutrality helps the evolutionary process reach the fea-
sible region. In other words, it smoothes the land-
scape.

Acknowledgments
The first author acknowledges computing facilities at IIMAS-
UNAM. The second author gratefully acknowledges support
from CONACyT through project 40602-A.

8. REFERENCES
[1] P. J. Angeline. Genetic programming and emergent

intelligence. In K. E. Kinnear, Jr., editor, Advances in
Genetic Programming, chapter 4, pages 75–98. MIT
Press, 1994.

[2] W. Banzhaf. Genotype-phenotype-mapping and
neutral variation – A case study in genetic
programming. In Y. Davidor, H.-P. Schwefel, and
R. Männer, editors, Parallel Problem Solving from
Nature III, volume 866 of LNCS, pages 322–332,
Jerusalem, 9-14 Oct. 1994. Springer-Verlag.

[3] C. A. C. Coello and A. H. Aguirre. Design of
combinational logic circuits through and evolutionary
multiobjective optimization approach. In Artificial
Intelligence for Engineering, Design, Analysis and
Manufacture, volume 16, pages 39–53, January. 2002.

[4] E. Galvan Lopez, R. Poli, and C. C. Coello. Reusing
code in genetic programming. In M. Keijzer, U.-M.
O’Reilly, S. M. Lucas, E. Costa, and T. Soule, editors,
Genetic Programming 7th European Conference,
EuroGP 2004, Proceedings, volume 3003 of LNCS,
pages 359–368, Coimbra, Portugal, 5-7 Apr. 2004.
Springer-Verlag.

[5] R. E. Keller and W. Banzhaf. Genetic programming
using genotype-phenotype mapping from linear
genomes into linear phenotypes. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 116–122, Stanford
University, CA, USA, 28–31 July 1996. MIT Press.

[6] M. Kimura. Evolutionary rate at the molecular level.
In Nature, volume 217, pages 624–626, 1968.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge, Massachusetts,
1992.

[8] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer, 2002.

[9] S. Luke. Code growth is not caused by introns. In
D. Whitley, editor, Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference,
pages 228–235, Las Vegas, Nevada, USA, 8 July 2000.

[10] E. H. Luna, C. C. Coello, and A. H. Aguirre. On the
use of a population-based particle swarm optimizer to
design combinational logic circuits. In R. S. Zebulum,
D. Gwaltney, G. Hornby, D. Keymeulen, J. Lohn, and
A. Stoica, editors, Proceedings of the 2004
NASA/DoD Conference on Evolvable Hardware, pages
183–190, Los Alamitos, California, June 2004. IEEE
Computer Society.

[11] C. C. Maley and S. Forrest. Modeling the role of
neutral and selective mutations in cancer. In Artificial



Figure 3: Average of the number of active and inactive nodes per generation of all runs, with 0.01 p rate
(left) and average of fitness of all runs (right) on example 3.

Figure 4: Average of the number of active and inactive nodes per generation of all runs, with 0.08 p rate
(left) and average of fitness of all runs (right) on example 4.

Figure 5: Average of the number of active and inactive nodes per generation of all runs, with 0.08 p rate
(left) and average of fitness of all runs (right) on example 5.

Life VII: Proceedings of the Seventh International
Conference, pages 395–404. MIT press, 2000.

[12] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, W. B.
Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty,
editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 121–132,
Edinburgh, 15-16 Apr. 2000. Springer-Verlag.

[13] P. Nordin and W. Banzhaf. Complexity compression
and evolution. In L. Eshelman, editor, Genetic
Algorithms: Proceedings of the Sixth International
Conference (ICGA95), pages 310–317, Pittsburgh,
PA, USA, 15-19 July 1995. Morgan Kaufmann.

[14] P. Nordin, W. Banzhaf, and F. D. Francone. Introns
in nature and in simulated structure evolution. In
D. Lundh, B. Olsson, and A. Narayanan, editors,
Bio-Computation and Emergent Computation, Skovde,
Sweden, 1-2 Sept. 1997. World Scientific Publishing.

[15] P. Nordin, F. Francone, and W. Banzhaf. Explicitly

defined introns and destructive crossover in genetic
programming. In J. P. Rosca, editor, Proceedings of
the Workshop on Genetic Programming: From Theory
to Real-World Applications, pages 6–22, Tahoe City,
California, USA, 9 July 1995.

[16] T. Soule. Exons and code growth in genetic
programming. In J. A. Foster, E. Lutton, J. Miller,
C. Ryan, and A. G. B. Tettamanzi, editors, Genetic
Programming, Proceedings of the 5th European
Conference, EuroGP 2002, volume 2278 of LNCS,
pages 142–151, Kinsale, Ireland, 3-5 Apr. 2002.
Springer-Verlag.

[17] X. Xu, R. C. Eberhart, and Y. Shi. Swarm intelligence
for permutation optimization: A case study on
n-queens problem. In Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), pages
243–246, Indianapolis, Indiana, USA, . 2003.

[18] T. Yu and J. Miller. Neutrality and the evolvability of
boolean function landscape. In Fourth European



Conference on Genetic Programming, pages 204–211.
Springer-Verlag, 2001.

[19] T. Yu and J. Miller. Climbing unimodal landscapes
with neutrality: A case study of the one-max problem.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska,
editors, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, page 704, New
York, 9-13 July 2002. Morgan Kaufmann Publishers.

[20] T. Yu and J. F. Miller. Needles in haystacks are not
hard to find with neutrality. In J. A. Foster,
E. Lutton, J. Miller, C. Ryan, and A. G. B.
Tettamanzi, editors, Genetic Programming,
Proceedings of the 5th European Conference, EuroGP
2002, volume 2278 of LNCS, pages 13–25, Kinsale,
Ireland, 3-5 Apr. 2002. Springer-Verlag.

[21] T. Yu and J. F. Miller. The role of neutral and
adaptive mutation in an evolutionary search on the
onemax problem. In E. Cantú-Paz, editor, Late
Breaking Papers at the Genetic and Evolutionary
Computation Conference (GECCO-2002), pages
512–519, New York, NY, July 2002. AAAI.


