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Abstract
Recently, the low-cost Microsoft Kinect sensor,
which can capture real-time high-resolution RGB
and depth visual information, has attracted increas-
ing attentions for a wide range of applications
in computer vision. Existing techniques extract
hand-tuned features from the RGB and the depth
data separately and heuristically fuse them, which
would not fully exploit the complementarity of both
data sources. In this paper, we introduce an adap-
tive learning methodology to automatically extract
(holistic) spatio-temporal features, simultaneously
fusing the RGB and depth information, from RGB-
D video data for visual recognition tasks. We ad-
dress this as an optimization problem using our
proposed restricted graph-based genetic program-
ming (RGGP) approach, in which a group of prim-
itive 3D operators are first randomly assembled as
graph-based combinations and then evolved gener-
ation by generation by evaluating on a set of RGB-
D video samples. Finally the best-performed com-
bination is selected as the (near-)optimal represen-
tation for a pre-defined task.
The proposed method is systematically evaluated
on a new hand gesture dataset, SKIG, that we col-
lected ourselves and the public MSRDailyActiv-
ity3D dataset, respectively. Extensive experimen-
tal results show that our approach leads to sig-
nificant advantages compared with state-of-the-art
hand-crafted and machine-learned features.

1 Introduction
Since Kinect was invented as an RGB-D sensor success-
fully capturing synchronized color and depth information, it
has been widely applied with a large range of applications
such as: human activity recognition [Wang et al., 2012],
robot path planning [Paton and Kosecka, 2012], object detec-
tion [Spinello and Arras, 2012], and interactive gaming [Cruz
et al., 2012]. The complementary nature of the RGB and
depth information enables enhanced computer vision algo-
rithms. A recent survey on the use of Kinect for improving
various vision applications can be found in [Han et al., 2013]
. To make full use of the Kinect sensor, extracting distinctive

and discriminative features from the raw RGB-D data is an
imminent and challenging research topic.

Feature extraction from RGB video data is a well-explored
area. Methods such as: histogram of 3D oriented gradi-
ents (HOG3D) [Kläser et al., 2008], histogram of optical
flow (HOF) [Laptev et al., 2008], 3D speeded up robust fea-
tures (SURF3D) [Bay et al., 2008], 3D scale invariant fea-
ture transforms (3D-SIFT) [Scovanner et al., 2007] and vol-
ume local binary pattern (volume-LBP) [Ojala et al., 2002]
are used to extract the most salient features (edges, corners,
orientation, and motion), the choice of which would greatly
influence the performance of high-level vision tasks such as
recognition.

Since depth cameras are relatively new, feature extraction
from depth data is still in the early stage. Most of the current
approaches apply the same or slightly adapt extraction tech-
niques in the RGB domain. Obviously, the reliability of such
techniques for depth data is questionable due to the different
characteristics between RGB and depth data, e.g., texture and
color information on the depth data is much less than that on
the RGB data.

Thus, how to exploit RGB-D data and optimally combine
the sensory modalities so as to extract the discriminative in-
formation for further tasks is the topic addressed in this paper.

1.1 RGB-D information fusion
Several solutions have been introduced, at a high level, to per-
form information fusion of RGB -D data. An intuitive fu-
sion scheme was used for the Kinect gaming system [Cruz
et al., 2012], in which different algorithmic modules are se-
lected to extract the meaningful information from the RGB
and depth channels, respectively. Specifically, depth data
are always used to extract a player’s skeleton, while RGB
data are regarded as the inputs of facial feature based hu-
man identification algorithms. Another scheme simply feeds
all available information (visual features) into an optimiza-
tion algorithm. Such an example can be found in RGB-D
object detection and recognition [Spinello and Arras, 2012;
Lai et al., 2011]. In addition, some researchers [Spinello
and Arras, 2011] combined multiple modalities such as dense
depth data, optical flow maps, and color images to detect peo-
ple in urban environments. Ni et al. [Ni et al., 2011] devel-
oped two color-depth fusion techniques to extract the most
discriminative features for human action recognition.
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Although the above fusion schemes have been success-
fully applied to some vision problems, they are not sophisti-
cated and adaptive enough for different RGB-D data sources.
Sometimes a crude fusion algorithm would even degrade and
slow down a vision system. Therefore, it is highly desirable
to develop an adaptive and simultaneous RGB-D feature ex-
traction and fusion methodology.

1.2 Feature Learning and motivations
To overcome the deficiency of hand-designed features, re-
cently, some learning algorithms such as the deep belief net-
work (DBN) [Larochelle et al., 2007], the convolutional deep
belief network (CDBN) [Lee et al., 2009] and the convolu-
tional neural network (CNN) [Ranzato et al., 2007] have been
utilized to automatically learn multiple layers of non-linear
features from images and videos. In these architectures, the
features are extracted at different levels (e.g., edges, object
parts, and objects). These feature learning methods are very
powerful and the learned features can be used for various
high-level applications. However, they have not been applied
to learn the fusion procedure of RGB-D data. In this work,
we attempt to adopt another powerful learning approach, i.e.,
genetic programming, to learn feature extraction and fusion
from RGB-D data. We consider GP to be flexible and adap-
tive and can easily evolve features according to desired ob-
jectives.

Genetic programming (GP), as a prevailing evolutionary
computation method, has been gradually adopted in computer
vision applications [Trujillo and Olague, 2006; Torres et al.,
2009; Poli, 1996]. Usually a group of processing operators
are first randomly assembled into a variety of programs as the
initialized population and then GP evolves (hopefully) better-
performing individuals in the next generation. GP search is
an NP-hard problem, which can be solved by evolutionary
methods in a tractable amount of computer time compared to
the exhaustive enumerative search. After the training of GP
finishes, one best-so-far individual can be selected as the final
solution (i.e., the near-optimal solution).

Later, to drive GP to be a more natural procedure, Poli et
al. [Poli and others, 1997] introduced graph-based GP (GGP),
a form of GP that is suitable for the evolution of highly par-
allel programs which effectively reuse partial results. Pro-
grams are represented in GGP as graphs with nodes repre-
senting functions and terminals. Edges represent both con-
trol flow and data flow. Recently, some researchers have also
attempted to use GP for 3D vision tasks. For example, GP
has been applied to extract discriminative features for action
recognition [Liu et al., 2012] and gesture recognition [Liu
and Shao, 2013].

In this paper, inspired by previous successful applica-
tions, we aim to develop an effective learning methodology
to learn spatio-temporal features (representations), which si-
multaneously fuse the RGB and depth information, for high-
level recognition tasks. We address this issue as an opti-
mization problem using our proposed restricted graph-based
genetic programming (RGGP), in which some grammatical
constraints are added to restrict the graph-based programs
into a relatively fixed structure according to the problem do-
main knowledge. The features learned through the proposed

Figure 1: The main flowchart for our proposed method.

RGGP are proved to yield significantly superior recognition
accuracies compared with state-of-the-art hand-crafted and
machine-learned features.

1.3 Contributions
The main contributions of this paper lie in the following three
aspects:

(1) To the best of our knowledge, this is the first application
of GP to learn discriminative spatio-temporal features from
RGB-D data for high-level tasks.

(2) Our proposed RGGP leaning mechanism provides an
effective way to simultaneously extract and fuse the color and
depth information into one feature representation.

(3) We introduce a new dataset - Sheffield KInect Gesture
(SKIG) dataset for hand gesture recognition. The details of
this new dataset are described in Section 3.2.

The remainder of the paper is organized as follows: The
architecture of our methodology is detailed in Section 2. Ex-
periments and results are described in Section 3. In Section
4, we conclude this paper.

2 Spatio-Temporal Feature Learning
In this paper, a domain-adaptive machine learning method has
been developed by applying the restricted graph-based ge-
netic programming (RGGP) to automatically extract discrim-
inative spatio-temporal features from videos for high-level vi-
sion tasks. In our architecture, the Kinect captured RGB and
depth sequences are the inputs, and a group of 3D operators
are adopted to evolve individual programs, which can suc-
cessfully fuse the RGB and depth information, and finally a
discriminative feature representation is obtained. We learn
our proposed system over a training set, in which computed
features are evolved by minimizing the error rate of recogni-
tion through the defined fitness function, and then the selected
best-performing program (feature) is evaluated on a testing
set to demonstrate the effectiveness of our method. This sec-
tion describes the proposed program structure along with the
required terminal set, function set and fitness function. The
outline of our method is illustrated in Fig. 1.

2.1 Building Multi-layer Program Structure
To efficiently learn discriminative and meaningful features
from RGB-D sequences, here we propose the restricted
graph-based genetic programming (RGGP), in which cer-
tain syntactic constraints are defined according to the domain
knowledge of corresponding tasks. In our architecture, we
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Figure 2: The multi-layer program structure of an RGGP in-
dividual. This proposed structure can effectively extract and
fuse the RGB and depth information into one feature repre-
sentation through the filtering layer and the feature pooling
layer.

restrict our RGGP feature extraction programs into three lay-
ers: input layer, filtering layer and feature pooling layer. The
order of the layers is always fixed: the input layer is at the bot-
tom, the filtering layer is in the middle and the feature pooling
layer is on the top (including the root of the program). The
proposed architecture is consistent with the physical struc-
ture of the human visual cortex [Lee and Mumford, 2003]
illustrated in Fig. 2.

The input layer is a single-depth layer serving as the entry
of the programs. All the RGB and depth sequences are first
normalized into the identical size along the spatial and tempo-
ral dimensions and then fed to the RGGP programs. The fil-
tering layer is located above the input layer. In this layer, a set
of 3D operators are automatically assembled into a dynamic-
depth tree-structured chain to extract the features from the in-
put RGB-D data. To ensure the closure criterion [Poli et al.,
2008], inputs and outputs of the nodes (operators) in the filter-
ing layer must have the same size. After feature extraction in
the filtering layer, all the data are processed by the third layer:
feature pooling layer, in which two kinds of popular pool-
ing techniques, i.e., max pooling and average pooling, are
selected by RGGP to get the most robust and distinctive re-
sponse on different data resolutions. To generate a reasonable
and task-adaptive structure for feature representation, in this
layer, we further set a series of grammatical constraints (de-
tails in Section 2.3) to guarantee that the evolutionary search
process will better suit our task specifications. Thus, the de-
signed programs can be described by a restricted graph-based
structure, where only the feature pooling layer is allowed to
compose a graph map with a full-connection between the out-
put of the filtering layer and the pooling operators shown in
Fig. 2. The final output of a program (the value of the root

Table 1: Statement of terminal nodes
Terminal Type Description

Vrgb Sequence RGB information of the data
Vdepth Sequence Depth information of the data
αi double Always equal to 1
βi double Returns a random value between 0 and 1

node) is the learned feature vector which is concatenated by
the representations computed from all the pooling operators
in the RGGP architecture. Our proposed RGGP architecture
can simultaneously learn useful features from the input data
and fuse the RGB and depth information for further applica-
tions.

2.2 Terminal Set
To simulate the human visual cognition system, which makes
decisions relying on both color and distance information of
the surfaces of scene objects from a viewpoint, we expect to
extract informative spatio-temporal features by fusing RGB
and depth information. Therefore, in our task, we consider
extracting features from the RGB-D data (i.e., RGB chan-
nel and depth channel) captured by Kinect synchronously.
In addition, the terminal of the RGGP structure is data in-
dependent, which means that each video sequence Vi from
the training set has a corresponding Ti defined by: Ti={Vrgb
and Vdepth}. All the sequences in the terminal set are located
as the bottom leaves of the entire restricted graph structure
and connected with the higher function nodes directly.

Additionally, we define a group of graph link parameters
Ci={αi and βi} in our terminal set for constructing a more
flexible feature representation. In our RGGP architecture, αi
is always set to be 1, while values of parameter βi ∈ (0, 1)
are randomly distributed through RGGP evolving. Conse-
quently, a weighted linear concatenation of pooling outputs
is computed as the final feature representation. We term our
complete terminal set: Ti

⋃
Ci as listed in Table 1.

2.3 Function Set
The function set plays a key role in the GP structure, which
constitutes the internal nodes of the tree and is typically
driven by the nature of the problem. In our approach, we
divide the function set into two layers: the filtering layer (bot-
tom part) and the feature pooling layer (top part). The order
of the structure is always fixed. Note that not all the operators
listed in the function set have to be used in a given struc-
ture and the same operator can be used more than once. The
topology of our RGGP structure is essentially unrestricted.

Functions for the Filtering Layer
In this layer, we adopt 15 unary operators and 3 binary op-
erators to extract the meaningful features from RGB-D data
including: 3D Gaussian filter series, 3D Laplacian filter, 3D
wavelet filter, 3D Gabor filters and other effective filtering
operators. Besides, some basic arithmetic functions are also
chosen here. Table 2 lists the corresponding operators used
in this layer. We adopt 3D Gaussian and Gaussian deriva-
tive filters due to their remarkable ability of reducing image
noise and enhancing details. They have been widely used
for denoising and smoothing target image information and
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Table 2: Functions for the Filtering Layer
Function Name Input Function Description Operator Type

Gau1 1 sequence 3D Gaussian smooth filter with σ = 1 Filter
Gau2 1 sequence 3D Gaussian smooth filter with σ = 2 Filter
LoG1 1 sequence 3D Laplacian of Gaussian filter with σ = 1 Filter
LoG2 1 sequence 3D Laplacian of Gaussian filter with σ = 2 Filter
Lap 1 sequence 3D Laplacian filter Filter

GBO-0 1 sequence 3D Multi-scale-max Gabor filter with orientation of 0 degree Filter
GBO-45 1 sequence 3D Multi-scale-max Gabor filter with orientation of 45 degrees Filter
GBO-90 1 sequence 3D Multi-scale-max Gabor filter with orientation of 90 degrees Filter

GBO-135 1 sequence 3D Multi-scale-max Gabor filter with orientation of 135 degrees Filter
Wavelet 1 sequence 3D CDF ’9/7’ wavelet filter Filter
EHIS 1 sequence Histogram equalization Enhancement
Aver 1 sequence 3D Averaging filter with 5 × 5 × 5 sampling window Filter
Med 1 sequence 3D Median filter with 5 × 5 × 5 sampling window Filter
ABS 1 sequence Take the absolute value pixel by pixel Arithmetic
DoF 1 sequence Subtract between adjacent frames of the input sequence Arithmetic
ADD 2 sequences Add two input sequences pixel by pixel Arithmetic
SUB 2 sequences Subtract two input sequences pixel by pixel Arithmetic

ABSsub 2 sequences Absolute subtract two input sequences pixel by pixel Arithmetic

enhancing image structures. 3D Laplacian filters are often
used for separating signals into different spectral sub-bands
and capturing intensity features for high-level classification
tasks. Furthermore, wavelet filters can capture relatively pre-
cise contour information of the targets in sequences, such as
gestures and actions, and also be utilized for multi-resolution
analysis. Gabor filters can provide an effective mechanism
to extract features from targets with different frequencies and
orientations. In this paper, we present a comprehensive Gabor
operator in our function set named: 3D multi-scale-max Ga-
bor filter. Following Riesenhuber and Poggio’s work [Riesen-
huber and Poggio, 1999], we first convolve an input data
sequence with 3D Gabor filters at six different scales (i.e.,
7×7×7, 9×9×9, 11×11×11, 13×13×13, 15×15×15
and 17 × 17 × 17) with a certain orientation ( i.e., 0, 45, 90,
or 135 degrees), and then apply the max operation to pick
the maximum value across all six convolved sequences for
that particular orientation. The mathematical definition of our
multi-scale-max Gabor filter is as follows:
GBO-θs = max

(x,y,z)
[V7×7×7(x, y, z, θs), V9×9×9(x, y, z, θs),

..., V15×15×15(x, y, z, θs), V17×17×17(x, y, z, θs)]
(1)

where GBO-θs is the output of the multi-scale-max Gabor
filter and Vi×i×i(x, y, z, θs) denotes the convolved sequences
with the scale i× i× i and the orientation θs.

In addition, the other 3D operators we choose in this layer
also show their merit for data enhancement and transforma-
tion and extract effective features in different ways. Further-
more, we use basic arithmetic functions to increase the variety
of the selection for composing individuals during the RGGP
running and make the whole evolution procedure more natu-
ral.

Functions for the Feature Pooling Layer
We build this layer using two popular feature pooling tech-
niques: max pooling and average pooling. Max pooling is
regarded as a key mechanism for object recognition in the
visual cortex system. It provides a robust response, tolerat-
ing shift and scaling, in the case of recognition in clutter or
with multiple stimuli in the receptive field [Riesenhuber and
Poggio, 1999]. And, average pooling, essentially a low-pass
filter, is widely used as an effective way to reduce noise in

Table 3: Functions for the Feature Pooling Layer
Function Name Input Description

fAver
1×1×1

fAver
2×2×2

...
fAver
10×10×10

1 sequence
10 average pooling functions

with various pooling grids
from 1 × 1 × 1 to 10 × 10 × 10

fMax
1×1×1

fMax
2×2×2

...
fMax
10×10×10

1 sequence
10 max-pooling functions
with various pooling grids

from 1 × 1 × 1 to 10 × 10 × 10

target data, decreasing the amount of intensity variation be-
tween the central pixel and the surrounding ones and present-
ing general features of the inputs. In this layer, we define 20
pooling functions which have been divided into two groups
with pooling grids (resolutions) varying from 1 × 1 × 1 to
10 × 10 × 10 as listed in Table 3. For each pooling func-
tion, an input sequence is first divided by the pooling grid,
the local max/average pixel values from all sub-blocks are
obtained and then flattened into a 1D representation as the
pooling function’s output. The two pooling functions are de-
fined in Eq. (2) and Eq. (3):

f
Aver
n×n×n(V ) = [

1

m
Σ

i=m
i=1 p1 i,

1

m
Σ

i=m
i=1 p2 i, . . . ,

1

m
Σ

i=m
i=1 pj i, . . .] (2)

f
Max
n×n×n(V ) = [max

i=m
i=1 p1 i,max

i=m
i=1 p2 i, . . . ,max

i=m
i=1 pj i, . . .] (3)

where V is the input sequence for pooling functions. The
right side of both equations is represented as a n × n × n
dimensional vector. pj i indicates the i-th pixel in the j-th
sub-block and 1

mΣi=mi=1 pj i/max
i=m
i=1 pj i denotes the elements

in vectors, respectively. Note that which pooling functions
will be used and their order in the final learned feature repre-
sentation are automatically selected in the GP evolution.

An implicit assumption underlying this approach is that all
combinations of operators are equally likely to be useful. In
many cases, however, we know in advance that there are con-
straints on the structure of the solution, or we have a strong
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Figure 3: An illustration of a possible learned structure. All
the 3D operators and pooling functions used in structure are
randomly selected through the RGGP evolving.

belief about the likely form that the solutions will take [Poli
et al., 2008].

Therefore, to make our solution more task-adaptive, we de-
fine some grammatical constraints for this layer as follows:

Output = Concatenate(β1P1, β2P2, ..., βiPi) (4)

Pi = fn×n×n(xi) ∈ {poolingfunctions} (5)

xi = α× Subtreeout. (6)

where Output is the final learned feature vector, fn×n×n is
the pooling function with the resolution of n×n×n selected
from the pooling layer, αi and βi indicate the graph connec-
tion parameters (αi=1, βi ∈ (0, 1)) and Subtreeout denotes
the output of the filtering layer.

Consequently, in the structure of our evolved programs,
each selected pooling function works as an internal node shar-
ing the same output of the filtering layer (see in Fig. 3). We
consider this as a restricted graph-base program, which re-
stricts the GP evolving in a specific form of the graph-based
architecture.

2.4 Fitness Function
As a significant part in GP evolving, fitness function evalu-
ates how well a program is able to solve the problem. Since
the basic principle of the evolutionary method is to maximize
the performance of individual solutions, we design our fitness
function by using the classification error rate computed by a
linear support-vector-machine (SVM) classifier on the train-
ing set. In the evaluation procedure, features learned from
the candidate graph-based structures are first reduced in di-
mensionality via principle component analysis (PCA) keep-
ing the 98% principal components, and then fed as the in-
puts of the SVM classifier. To obtain a more reliable and
fair fitness evaluation, for each candidate RGGP program, a
five-fold cross-validation is applied to estimate the classifica-
tion error rate. Specifically, we randomly divide the training

Table 4: Parameter settings for RGGP running
Population Size 800
Generation Size 70
Crossover Rate 85%
Mutation Rate 8%
Elitism Rate 2%

Selection for Reproduction ’lexictour’
Stop Condition Er ≤ 2%

set into five sub-sets with the identical size and repeatedly
train the SVM on 4/5-ths of the set and test on the remain-
ing fifth. We further calculate the average error rate of the
five-fold cross-validation as the final fitness value. The corre-
sponding fitness function is defined as follows:

Er = (1− (

n∑
i=1

(SVM [acui])/n))× 100% (7)

where SVM[acui] denotes the classification accuracy of fold i
by the SVM and n indicates the total number of folds executed
with cross-validation. Here n is equal to 5.

3 Experiments and Results
In this section, we describe the implementation details of
RGGP, the datasets used and the relevant experimental re-
sults.

3.1 RGGP Implementation
We implemented our proposed system using Matlab 2011a on
a server with a 12-core processor and 54GB of RAM running
the Linux operating system. Table 4 shows some significant
parameters used in this implementation. A high population
size is used to prevent early convergence, and a lexicographic
parsimony pressure selection [Luke et al., 2002], in which the
best-performing individual with the least structure complex-
ity (number of nodes) will be chosen, is adopted to maintain
population diversity and control the bloat [Poli et al., 2008].
In addition, we set the GP termination as Er ≤ 2%, which
means if the value calculated by the fitness function is equal
to or lower than 2%, our GP running will be stopped and re-
turn the best-so-far individual to users.

3.2 Datasets
In this paper, we systematically evaluate our proposed RGGP
approach on two RGB-D datasets: the SKIG dataset1,
which is collected by us, and the MSRDailyActivity3D
dataset [Wang et al., 2012]. Fig. 4 shows some example
frames of these two datasets. Details of the datasets are pro-
vided below.

SKIG: This new dataset contains 2160 hand gesture sequences (1080 RGB se-

quences and 1080 depth sequences) collected from 6 subjects. All these sequences

are synchronously captured with a Kinect sensor (including a RGB camera and a depth

camera). This dataset collects 10 categories of hand gestures in total: circle (clockwise),

triangle (anti-clockwise), up-down, right-left, wave, ”Z”, cross, comehere, turnaround

and pat. In the collection process, all these ten categories are performed with three hand

postures: fist, index and flat. To increase the diversity, we recorded the sequences under

1This new dataset can be downloaded from our website:
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
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Figure 4: Some example frames of two datasets. Samples
in the top black-box are from the SKIG dataset and samples
in the bottom black-box are from the MSRDailyActivity3D
dataset.

Table 5: Comparison results of classification accuracies (%)
on the SKIG dataset.

Method RGB
channel

Depth
channel

RGB-D
concatenation

RGB-D
fusion

RGGP 84.6 76.1 86.2 88.7
HOG3D 83.8 75.4 85.2 -

HOG/HOF 81.7 72.1 83.4 -
HOF 81.5 67.9 82.0 -

HMHI 79.4 66.3 80.5 -
SURF3D 77.8 55.1 79.3 -
3D-SIFT 76.4 61.3 77.6 -

3D-Gabor-bank 74.0 50.3 75.2 -
Volume-LBP 64.2 44.5 67.1 -

CNN 81.7 72.6 82.9 83.8
DBN 83.1 73.8 84.7 85.9

3 different backgrounds (i.e., wooden board, white plain paper and paper with charac-

ters) and 2 illumination conditions (i.e., strong light and poor light). Consequently, for

each subject, we recorded 10(categories) × 3(poses) × 3(backgrounds) ×
2(illumination) × 2(RGBanddepth) = 360 gesture sequences.

In our experiments, each sequence in the SKIG dataset is
first normalized to 96 × 72 × 50 pixels by linear interpo-
lation. We further use all the sequences collected from the
first four subjects as the training set for our RGGP evolving
and then evaluate the learned features by adopting three-fold
cross-validation with linear SVM on the remaining data (six
subjects).

MSRDailyActivity3D: This is an action dataset captured with the RGB channel and

the depth channel using the Kinect sensor. The total sequence number is 640 (i.e., 320

sequences for each channel) with 16 activities: drink, eat, read book, call cellphone,

write on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play

game, lie down on sofa, walk, play guitar, stand up, sit down. There are 10 subjects in

the dataset and each subject performs each activity twice, once in standing position, and

once in sitting position.

In the pre-processing stage, each sequence is resized to
60× 80× 40 pixels. Later, the sequences performed by sub-
ject 1 to subject 6 are adopted as the training set to evolve our
RGGP programs and the rest of the dataset is used for eval-
uation. Here, the same three-fold cross-validation scheme is
applied.

Figure 5: Comparison of action recognition accuracies (%)
on the MSRDailyActivity3D dataset.

Figure 6: The final graph-based program for RGB-D feature
extraction and fusion via RGGP on the SKIG dataset.

3.3 Results
For the SKIG dataset, we train our proposed RGGP architec-
ture on RGB data, depth data and the combined RGB-D data,
respectively, to extract the discriminative features for gesture
recognition. The corresponding results can be seen in Ta-
ble 5. It is obvious that only using RGB sequences (84.6%)
to learn features can lead to 8.5% higher classification rate
than just adopting depth sequences (76.1%), and the accu-
racy obtained with the direct concatenation (86.2%) of fea-
tures separately learned from RGB and depth data is better
than that of both individual data channels. In addition, the
result (88.7%) is further improved when we use our RGGP
approach to extract and fuse the RGB and depth features si-
multaneously. The corresponding RGGP program is visual-
ized in Fig. 6, in which 3D Gaussian, 3D Laplacian and 3D
Gabor operators can be automatically selected by GP at the
filtering layer to extract the orientation and intensity features,
and several scales of pooling operators can get the most robust
and distinctive responses to different data resolutions on the
top layer. The whole learned architecture is indeed consistent
with the physical structure of the human visual cortex. Fig. 7
shows the decreasing error rates of the best-so-far programs
during the genetic evolution.

To demonstrate generalizability, we further evaluate the
proposed method on the MSRDailyActivity3D dataset, for
which the results we obtained are a little lower due to its
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Figure 7: Evolved best-so-far values of fitness on two datasets
by using RGB channel only, depth channel only and RGB-D
data fusion, repectively.

Figure 8: The LISP format of the RGGP-generated program
for RGB-D fusion on the MSRDailyActivity3D dataset.

more complex backgrounds and large intra-class variations
as shown in Fig. 5. Consequently, the final (near-)optimal
program selected by RGGP achieves the classification ac-
curacy of 85.6% through RGB and depth data fusion. We
have also included the recognition rates respectively com-
puted by adopting only RGB (81.3%) and depth (72.1%) se-
quences for our RGGP evolving. The concatenated feature
from separately-evolved programs can lead to an accuracy of
82.4%. Fig. 7 shows the evolved best-so-far values of the fit-
ness, and the LISP expression of the (near-)optimal program
obtained by RGGP evolving for RGB-D fusion is visualized
in Fig. 8.

Since our proposed RGGP approach can effectively fuse
the RGB-D data and extract discriminative features, it
achieves outstanding results for high-level recognition tasks.

For comparison, we also list the recognition rates calcu-
lated on both datasets by some prevalent hand-crafted 3D
descriptors including: HOG3D, HOG/HOF [Laptev et al.,
2008], HOF, HMHI [Davis, 2001], SURF3D, 3D-SIFT, 3D
Gabor bank and volume-LBP. We use the hierarchical mo-
tion history image (HMHI) as a holistic 3D descriptor to ex-
tract the motion information for later recognition. 3D-Gabor-
bank, which is considered as an effective and efficient way
to obtain the orientation information, simulates the biologi-
cal mechanism of the human visual cortex by applying 3D
Gabor filtering with 4 orientations at 6 different scales. The
output of each filter is then averaged on a 10×10×10 grid to
form a vector. As the other six 3D descriptors (i.e., HOG3D,
HOG/HOF, HOF, SURF3D, 3D-SIFT and volume-LBP) are
usually used as local descriptors, dense sampling is first ap-
plied on each sequence in a dense grid with the block size of
10 × 10 × 10 pixels and an overlap of 5 pixels in each di-
mension, and the final representation vector is the concatena-
tion of the descriptor calculated on all blocks. Following the
same experimental setting, we first adopt PCA for dimension

reduction and then apply the linear SVM with ’three -fold’
cross-validation to compute the recognition accuracies.

In addition, we have also used two popular deep learning
methods: DBN and CNN for feature learning. For DBN, we
train a hierarchical architecture on the training sets with neu-
ron numbers in the hidden layers: 500-500-2000 with back-
propagation fine-tuning and then utilize the learned architec-
ture (with associated parameters) to extract features on the
test sets combined with the linear SVM classifier for recogni-
tion. Similarly, a 5-layer feature extraction structure has been
trained using the CNN and further adopt the same classifica-
tion mechanism to compute the final accuracy.

To make the comparisons clear and fair, Table 5 and Fig. 5
show the final results computed by using all the above tech-
niques on RGB data only, depth data only and RGB-D feature
concatenation, respectively. For DBN and CNN, we can also
use the combined RGB and depth data as the architecture in-
puts to learn features for RGB-D fusion. From the listed re-
sults, it is observed that our RGGP method significantly out-
performs the state-of-the-art hand-crafted and deep learning
techniques on both datasets, thanks to the superior perfor-
mance of the simultaneous description and fusion of RGB
and depth channels through the proposed methodology. The
implicit supervised nature of the feature learning mechanism
also contributes to the discriminative power of the RGGP-
built features.

Even though the above comparison is sensible and fair,
to further demonstrate the superiority of our method, we
can deliberately compare with the whole system described
in [Wang et al., 2012] on the MSRDailyActivity3D dataset.
We apply our RGGP-learned descriptor to the whole dataset
and train the SVM classifier on half of the data and test on the
rest using exactly the same setting as in [Wang et al., 2012].
Our simple system can achieve 90.4% recognition accuracy,
which is 2.2% higher than the result reported in [Wang et
al., 2012]. Considering that their system is much more com-
plex and employs the sophisticated body joints and skeleton
model, the performance gain obtained by our method simply
on raw video data is significant.

4 Conclusion
In this paper, we have developed an adaptive learning
methodology using our proposed restricted graph-based ge-
netic programming (RGGP) to evolve discriminative spatio-
temporal representations, which simultaneously fuse the
RGB and depth information, for high-level recognition tasks.
Our method addresses feature learning as an optimization
problem, and allows a computer to automatically assemble
holistic feature extraction by using a pool of primitive op-
erators, which are devised according to the general knowl-
edge of feature extraction. We have systematically evaluated
our method on our new SKIG dataset and the public MSR-
DailyActivity3D dataset with final recognition accuracies of
88.7% and 85.6% for RGB-D fusion, respectively. In both
datasets, experimental results manifest that our RGGP fea-
ture learning approach achieves significantly higher recogni-
tion accuracies compared with state-of-the-art hand-crafted
and machine-learned techniques.
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