
Stress-based Crossover Operator for Structure Topology
Optimization using Small Population Size and Variable

Length Chromosome

Cuinin Li
Graduate School of

Engineering, Doshisha Univ.,
Kyoto, Japan

licuimin@mikilab.doshisha.ac.jp

Tomoyuki Hiroyasu
Department of Life and

Medical Sciences,
Doshisha Univ., Kyoto, Japan

tomo@is.doshisha.ac.jp

Mitsunori Miki
Department of Sciences and
Engineering, Doshisha Univ.,

Kyoto, Japan
mmiki@mail.doshisha.ac.jp

ABSTRACT
This paper talks about genetic algorithm (GA) with a stress-
based crossover operator (SX) to multi-constrained struc-
tural topology optimization. By bitstring chromosome rep-
resentation, the design variables are very large that result
in long computation time. Population size, as the key to
cut computation time, is discussed through a number of
small population sized experiments. Moreover, we intro-
duce a variable length chromosome to further optimize the
topology hierarchically.

Categories and Subject Descriptors: G.2.3 Applica-
tions: Genetic Algorithms

General Terms: Algorithms.

Keywords: genetic algorithm, stress-based crossover, vari-
able length chromosome, structure topology optimization.

1. INTRODUCTION
Main approaches to structural topology optimization(STO)

include homogenization[1], solid isotropic microstructure with
penalization(SIMP)[2], evolutionary structural optimization
(ESO)[3], bi-directional evolutionary structural optimization
(BESO)[4] and evolution computation methods, such as, ge-
netic algorithm (GA), multi-objective GA, etc.

This paper presents a stress-based crossover operator (SX)[5],
by which neighboring elements connectivity are considered
during the procedure. Population size, as the key factor
to this problem, is discussed in this paper. Moreover, re-
searches demonstrate SX can find out the general shape even
using coarse meshes. Therefore, a variable length chromo-
some is introduced to optimize the structure hierarchically.

2. STRESS-BASED CROSSOVER OPERATOR
In this section, the procedures of stress-based crossover

operator are introduced in detail. Firstly, the nomenclatures
used in this operator are explained.

• P (t)={pi (t)|i ∈ {1 . . . n}} is population of generation
t, n is the population size.

• pi(t) is one individual.

• pi(t).weight is number of ”1” in chromosome.

• pi(t).code[k]∈{0, 1} is one gene, where k∈{1 . . . N}, N
is chromosome length.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

• pi(t).stress[k] is stress of element k.

• p′

i(t).ability[k] is ability of gene k of child individual
p′

i(t).

Procedures of SX:

(1) Randomly select two individuals, pi, pj from P (t).

(2) Add up the element stress on each gene of pi and pj by
formula (1). Naming this value as the ability of each
gene of child individual p′

i(t).

p′

i(t).ability[k] =pi(t).stress[k] + pj .stress[k]

, k = 1 . . . N (1)

(3) Sort the p′

i(t).ability[k], k = 1...N from big to small.

(4) According to the ability value of each gene, the bigger
ability valued genes will be set ”1”. Namingly, divide
the genes into two groups, U1 and U0. U1 is group of
the front m genes. U0 is group of the last N−m genes.
In this study, m is defined by formula (2). Generate a
child individual by formula (3).

p′

i(t).weight =
pi(t).weight + pj(t).weight

2
(2)

p′

i(t).code[k] =

(

1, if p′

i(t).ability[k] ∈ U1
0, if p′

i(t).ability[k] ∈ U0
(3)

Applying these four steps on population P (t) to generate
new individuals. After SX operation, uniform mutation op-
erator is applied to each gene of each individual on a small
rate.

3. OBJECTIVE FUNCITON
The numerical example is the mbb-beam problem as shown

in Figure 1. The objective function is defined to minimize
the weight as maximal stress Stressmax < Stresslim =
3.3 × 109(N/mm2) and maximal displacement Dispmax <
Displim = 0.33(mm).

2000mm

400mm

F=5.12e+09N

Figure 1: MBB beam problem

The following material properties are assumed: Young’s
modulus E = 206GPa for ”1” and E = 103MPa for ”0”,
Poisson’s ratio υ = 0.3.
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4. POPULATION SIZE DISCUSSION
In this section we will discuss these questions. Which is

the best population size for SX to structure topology opti-
mization? How does the population size affect to the so-
lution for SX to structure topology optimization problem?
Does the population size relate to mesh size (in other word,
design variable number)?

Population sizes of 2, 4, 6 and 8 are experimented, respec-
tively. Two mesh sizes, (100, 100) mm and (50, 50) mm, are
adopted.

4.1 Experiments Results and Discussion
For each experiment we run four trials on same parame-

ters. The best solutions for each experiment are showed in
Figure 2 and Figure 3. Where, Psize represents population
size. The fitness evolution histories are compared in Figure
4 and Figure 5.

Psize=2

Psize=6 Psize=8

Psize=4

Figure 2: Solutions by Mesh size (100, 100) mm
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Psize=6 Psize=8

Psize=4

Figure 3: Solutions by Mesh size (50, 50) mm
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Figure 4: Fitness Evolution Histories Comparison
on Mesh size (100, 100) mm
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Figure 5: Fitness Evolution Histories Comparison
on Mesh Size (50, 50) mm

The geometric results demonstrate SX can search out a
solution on population size 2. Fitness evolution histories
comparisons in Figure 4 and Figure 5 show final solution’s
weight on population size 8 is smaller, which indicates big
population drives to more optimal solution.

5. VARIABLE LENGTH CHROMOSOME
To further smooth the solution obtained on coarse mesh,

each mesh is quadrupled by subdividing each element into
four smaller elements like Figure 6. After that, the outside
boundary elements are appended to solid element as shown
in Figure 6 (b). This structure is named mask structure -
pmask. The new initial population is generated randomly.
After that, a logic ”and” operator is applied on each individ-
ual and the mask individual - pmask that aims to eliminate
the elements outside the mask structure.
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Figure 6: Variable Length Chromosome (a) before
and (b) after subdivision

5.1 Experiment Results and Discussion
At this section we experiment on the same constraints de-

fined in section 3. Mesh size (100, 100) mm is used in the
internal genetic procedures. Mesh size (50, 50) mm is used
in the external procedures. The elite solution of internal pro-
cedures is shown in Figure 7. The elite solution of external
procedures is shown in Figure 8. The numerical properties
of both solutions are listed in Table 1.

Figure 7: Elite Solution
of Internal GA

Figure 8: Elite Solution
of External GA

Table 1: Numerical Reulsts of Figure 7, 8
Index Weight(%) Stressmax Dispmax

Figure 7 55.0% 1.644e+07 0.322
Figure 8 52.2% 2.861e+07 0.319

Experiment presents the boundary becomes smooth and
the numerical results are also more optimal.

6. CONCLUSION
Small population is effective for SX to STO. However,

big design domain problem needs big population for a good
solution. Experiment of hierarchical coded GA shows the
solution, which is obtained by a coarse mesh, can be fur-
ther optimized. Moreover, the computation time can also
be reduced.
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