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ABSTRACT

Several forms of computer program (or representation) have
been proposed for Genetic Programming (GP) systems to
evolve, such as linear, tree based or graph based. Typically,
GP representations are highly effective during the initial
search phases of evolution but stagnate before deep levels
of complexity are acquired. A new representation, TREAD,
is proposed to combine aspects of flow of execution and flow
of data systems. The distinguishing features of TREAD are
designed for researching improvements to the long term ac-
quisition of novel features in GP (at the expense of the speed
of the initial search if necessary). TREAD is validated on a
symbolic regression problem and is found to be capable of
successfully developing solutions through artificial evolution.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms

Algorithms, Design, Experimentation

Keywords
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tions

1. INTRODUCTION
The prospect of solving complex problems by artificially

evolving highly complex computer programs for many gener-
ations appears more attainable recently with the advances in
CPU and GPU technologies. An obstacle, however, appears
to be that although GP systems tend to be powerful in the
initial search stages they tend to stagnate before developing
significant complexity [1].

This work is concerned with the role of representation on a
GP system’s ability to continue acquiring useful features and
proposes a new representation which is designed to facilitate
research of these issues.

The term “representation” is used in this paper in a strict
fashion to refer only to the architecture and its interpreta-
tion. Techniques such as indexed memory (which is used
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to achieve Turing completeness in the PADO system [3]),
grammar guiding, and strong typing are not included under
the term.

Representations in the GP literature are often classified
into linear, tree and graph representations [1]. A common
feature of most representation designs is that they allow the
language (the set of functions and terminals used in the rep-
resentation) to be varied according to the problem domain.

2. A NEW REPRESENTATION: TREAD
Tangle Representing Execution And Data (TREAD) is a

new representation which is designed for research into tack-
ling highly complex problems. The architecture of TREAD
is a directed, possibly cyclic graph. In a strict sense, the
graph represents the flow of data but it also determines the
flow of execution. Its similarity to standard methods means
that it is amenable to mutation and modularity using similar
mechanisms.

The key priorities in the design of the representation are
that it should be powerful, associated with a smooth fitness
landscape and programmable and extendable by humans.
It is hard to imagine manually adding successive layers of
useful complexity to a tree. It seems reasonable to wonder
if this task is similarly difficult for artificial evolution. It is
the intention that a TREAD program is easier to continue
developing.

2.1 TREAD’s Features
A TREAD program consists of a potentially cyclic graph

of nodes which is evaluated in an iterated fashion. This
makes it similar to Neural Programming, CGP [2] (with cy-
cles permitted) and PDGP (with cycles permitted). TREAD’s
key additions, which bear some similarity to aspects of an
artificial neural network (ANN), are:

• A state of execution. In contrast to other archi-
tectures, TREAD’s graph represents both the flow of
data and the flow of execution. This is achieved by
each (non-terminal) node having a state of execution
which can be either of two values: executing, mean-
ing the node continues to compute updated outputs
for each iteration or not executing meaning the node
simply repeats the previous output. The state of exe-
cution is determined by an extra input to the node -
the trigger socket. A non-negative input to the trigger
socket causes the node to enter the executing state and
a negative value causes it to enter the not executing
state. Any type of output socket may be connected to
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any type of input socket and each node has an output
activated socket indicating its state of execution. The
activated socket outputs a value of one if the node is
executing or zero otherwise. The input trigger socket
can be conveniently depicted on the top of a node and
the activated socket on the bottom. A terminal node
does not have a trigger socket and its activated socket
always outputs a value of one.

On the one hand, TREAD aims to exploit the power
of flow of execution representations; on the other hand
it aims for a smoother fitness landscape through the
redundancy of having many parts of the graph execut-
ing simultaneously rather than having a single path of
execution. To further encourage a powerful represen-
tation with a smooth fitness landscape, the mutation
operator is allowed to add and remove function nodes.

• Multiple connections per input socket. In the
TREAD architecture, each input socket (including the
trigger socket) is allowed more than one input connec-
tion. The value used by the input socket is the sum
of the values coming from each input connection. This
means that the graph structure is particularly unre-
stricted as any socket (input or output) can have many
connections (and any output socket may be connected
to any input socket). The aim of this feature is to
encourage useful additions to developing TREAD pro-
grams by allowing new parts of the graph to be added
to the input of a node.

• Weighted connections. The TREAD architecture
allows for each connection to have an associated (pos-
sibly negative) weight. The mutation operator may
make quantitative changes to a TREAD program via
the weights of the connections (in addition to quali-
tative changes to the structure of the program). The
value supplied by a connection to the relevant input
socket is calculated as the value it receives from the
relevant output socket multiplied by the connection’s
weight. Hence if a particular input socket has n con-
nections with weights w1, w2, . . . , wn, which are re-
ceiving output values o1, o2, . . . , on respectively, then
the value at the input socket will be calculated as
P

n

i=1
wioi. This feature encourages a smooth fitness

landscape: the intuition is that a new part of a TREAD
graph with a low weight contribution might have enough
evolutionary feedback to improve without completely
destroying the reproduction potential of the whole pro-
gram and that the contribution from a part can be
increased when it has become advantageous.

3. EXPERIMENTAL VALIDATION
The aim of this preliminary experiment is to establish that

TREAD is amenable to improvement through artificial evo-
lution and that it can begin to tackle a typical GP problem.
To this end, a GP system has been set up to evolve TREAD
programs to tackle a symbolic regression problem using the
same formula as was used to first test CGP [2]: x

6−2x
4+x

2.
The terminal set is {x, 1} and the function set is {+,−, ∗, %}
(where % represents protected division which operates like a
normal division except that the result is 0 if the denomina-
tor is 0). The fitness cases are the 50 uniformly distributed
numbers between -1.0 and 1.0 inclusive. The fitness of an
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Figure 1: Best fitness evolution for the symbolic re-

gression problem. Thin lines denote different runs,

while the bold line represents the average over those

runs.

individual is calculated as the negative of the sum of the
absolute differences between the prediction and the correct
answer given by the formula. The negation in this fitness
definition is so that higher fitness values are better.

As can be seen from Figure 1, the experiment demon-
strates that TREAD is indeed amenable to improvement
through artificial evolution and able to begin to tackle a
typical GP problem.

4. CONCLUSIONS AND FUTURE WORK
TREAD is a new representation that combines informa-

tion about the program data and the program execution in
an attempt to construct a representation for research into
long term complexity growth in GP. It has been demon-
strated that TREAD can be evolved successfully (albeit
slowly) to tackle symbolic regression - a typical GP prob-
lem.

It is hoped that future research will allow TREAD to make
new progress into problems that other representations find
difficult. However, the version of TREAD presented here is
expected to be less efficient at finding correct solutions to
problems that other representations can solve. For example,
CGP has already proved itself to be an effective represen-
tation at solving problems such as this instance of symbolic
regression.

It is hoped that it will be possible to accelerate TREAD’s
evaluations through the use of GPU computation.
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