

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

08/05/2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and
ranking statements according to the predicted risk. Designing a risk evaluation formula is
often an intuitive process done by human software engineer. This paper presents a Genetic
Programming approach for evolving risk assessment formulæ. The empirical evaluation
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations
can consistently outperform many of the human-designed formulæ, such as Tarantula,
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2
(ITE2) structure, or even outperform it against other program structures.

1 The program spectra data used in the paper, as well as the complete empirical results, are available from:
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/14/02

Genetically Improved CUDA kernels for StereoCamera

20 February 2014

W. B. Langdon and M. Harman

Abstract

Genetic Programming (GP) may dramatically increase the performance of software written by
domain experts. GP and autotuning are used to optimise and refactor legacy GPGPU C code
for modern parallel graphics hardware and software. Speed ups of more than six times on
recent nVidia GPU cards are reported compared to the original kernel on the same hardware.1

Keywords: GI, GP, gismoe, SBSE, software optimisation, nVidia, GPU, GPGPU, Tesla,
GeForce GTX 580, evolutionary programming, software engineering

1To be published in part in EuroGP 2014 as “Genetically Improved CUDA C++ Software” [Langdon and Harman, 2014].
Technical Report RN/14/02 includes text, figures, etc., which were omitted from the LNCS version, partly to document the
evolved kernels and the released code ftp.cs.ucl.ac.uk file genetic/gp-code/StereoCamera 1 1.tar.gz and
StereoCamera v1 1c.zip, which replaces StereoCamera v1.0b for CUDA 5.0 and later.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

1 Introduction

Genetic Programming (GP) [Poli et al., 2008] is increasingly being used in Software Engineering
[Harman et al., 2013]. We are using GP to make software more adaptable [Harman et al., 2012] and
are particularly interested in GP to generate code for bug fixing and for improving existing code. With in-
creasing use of embedded and mobile devices there is a growing need to cheaply generate software which
meets multiple interacting performance constraints, such as memory limits, energy consumption and real-
time response [Tiwari et al., 1994; White et al., 2011]. Similarly there is increasing use of parallelism
both in conventional computing but also in mobile applications. At present the epitome of parallelism are
dedicated multi-core machines based on gaming graphics cards (GPUs). Although originally devised for
the consumer market, they are increasingly being used for general purpose computing on GPUs (GPGPU)
[Owens et al., 2008] with several of today’s fastest peta flop super computers being based on GPUs. How-
ever, although support tools are improving, programming parallel computers continues to be a challenge
and simply leaving code generation to parallel compilers is often insufficient. Instead experts, e.g. [Merrill
et al., 2012], have advocated writing highly parametrised parallel code which can then be automatically
tuned. Unfortunately this throws the load back on to the coder [Langdon, 2011]. Here we demonstrate
that genetic programming can work with an auto-tuner to adapt human written code to new circumstances
and different hardware. In total we consider six types of hardware of differing ages, architectures and very
different performance (Table 1). GP can give more than a six fold performance increase relative to the
original system on the same hardware (Table 4).

The next sections briefly gives the background to the GISMOE project and the StereoCamera CUDA code.
This is followed by descriptions of the stereo images (page 5), and the code tuning process (pages 5–12).

Figure 1: Top: left and right stereo images. Bottom: Discrepancy between images, which can be used to
infer distance to camera.

RN/14/02 Page 1

http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Table 1: GPU Hardware. Year each was announced by nVidia in column 2. Third column is CUDA
compute capability level. Each GPU chip contains a number of identical and more or less independent
multiprocessors (column 4). Each MP contains a number of stream processors (cores, column 5) whose
speed is given in column 7. Measured data rate (ECC on) between the GPU and its on board memory in
last column.

Name Announced Capability MP × cores Clock Caches Bandwidth
GHz L1 L2 GB/s

Quadro NVS 290 2007 1.1 2 × 8 = 16 0.92 none 4
GeForce GTX 295 2009 1.3 30 × 8 = 240 1.24 none 92
Tesla T10 2009 1.3 30 × 8 = 240 1.30 none 72
Tesla C2050 2010 2.0 14 × 32 = 448 1.15 16/48KB 0.75 MB 101
GeForce GTX 580 2010 2.0 16 × 32 = 512 1.54 16/48KB 0.75 MB 161
Tesla K20c 2012 3.5 13 × 192 = 2496 0.71 16/32/48KB 1.25 MB 140

The changes made specifically for the K20c Tesla are described in Section 11 (page 14) whilst the Appendix
(pages 20–23) holds the complete CUDA source code for the new stereoKernel tuned for compute level 3.5
devices, i.e. the K20c Tesla. The code is also available in StereoCamera v1 1c.zip.

2 Background

In order to document the new genetically improved release of Stereo Camera we have extended [Langdon
and Harman, 2014]. The UCL GISMOE project has taken a number of freely available non-trivial programs
and shown they can be improved. In some cases this improvement can be substantial for a particular
purpose [Langdon and Harman,] whilst the tailored code retained its general functionality [Langdon,
2013]. Stereo Camera has like wise been substantially improved on images like those it has been tailored
for but the new version still gives improvement on other examples.

Our approach uses genetic programming (GP) [Koza, 1992; Poli et al., 2008]. GP is increasingly being
used in Software Engineering. The GISMOE project uses GP to make software more adaptable [Harman
et al., 2012] [Harman et al.,] [Jia et al., 2013]. We are particularly interested in using GP to generate
code [Langdon and Harman, 2010; Archanjo and Von Zuben, 2012]. There has recently been an explosion
of interesting work on using GP for bug fixing [Le Goues et al., 2012] and for improving existing code
[Sitthi-amorn et al., 2011] [White et al., 2011] [Orlov and Sipper, 2011] [Langdon and Harman,] [Petke et
al., 2013] [Petke et al., 2014] [Cotillon et al., 2012] [Cody-Kenny and Barrett, 2013].

3 Source Code: StereoCamera

The StereoCamera system was written by nVidia’s stereo image processing expert Joe Stam [Stam, 2008]
to demonstrate their 2007 hardware and CUDA. It was the first to show GPUs could give real time per-
formance (> 30 frames per second) on stereo image processing. StereoCamera V1.0b is available from
SourceForge 2 but, despite Moore’s Law [Moore, 1965], and except for my bugfix, 3 it has not been updated
since 2008. In the six years since it was written, nVidia GPUs have been through three major hardware
architectures whilst their CUDA software has been through five major releases.

StereoCamera contains three GPU kernels plus associated host code, however we shall concentrate upon
one, stereoKernel. For each pixel in the left image, GPU code stereoKernel reports the number of pixels
the right image has to be shifted to get maximal local alignment (see Figure 2). [Stam, 2008] notes that
the parallel processing power of the GPU allows the local discrepancy between the left and right images
to be calculated using the sum of squares of the difference (SSD) between corresponding pixels and this

2 http://sourceforge.net/projects/openvidia/files/CUDA Stereo Camera/
3My bug report: http://sourceforge.net/p/openvidia/discussion/342805/thread/34958dd9/

RN/14/02 Page 2

http://sourceforge.net/projects/openvidia/files/CUDA%20Stereo%20Camera/
http://sourceforge.net/p/openvidia/discussion/342805/thread/34958dd9/

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Figure 2: Schematic of stereo disparity calculation. Top: left and right stereo images. Bottom: output.
Not to scale. For each pixel stereoKernel calculates the sum of squared differences (SSD) between 11× 11
regions centred on the pixel in the left image and the same pixel in the right hand image. This is the SSD
for zero disparity. The right hand 11× 11 region is moved one place to the left and new SSD is calculated
(SSD for 1 pixel of disparity). This is repeated 50 times. Each time a smaller SSD is found, it is saved.
Although the output pixel (bottom) may be updated many times, its final value is the distance moved by the
11 × 11 region which gives the smallest SSD. I.e. the distance between left and right images which gives
the maximum similarity between them (across an 11× 11 region). This all has to be done for every pixel.
Real time performance is obtained by parallel processing and reducing repeated calculations.

sum is taken over the relatively large 11 × 11 area. It does this by minimising the sum of squares of the
difference (SSD) between the left and right images in a 11×11 area around each pixel. Once SSD has been
calculated, the grid in the right hand image is displaced one pixel to the left and the calculation is repeated.
Although the code is written to allow arbitrary displacements, in practice the right hand grid is move a
pixel at a time. SSD is calculated for 0 to 50 displacements and the one with the smallest SSD is reported
for each pixel in the left hand image. In principle each pixel’s value can be calculated independently but
each is surrounded by a “halo” of five others in each direction.

Even on a parallel computer, considerable savings can be made by reducing the total number of calculations
by sharing intermediate calculations [Stam, 2008, Fig. 3]. Each SSD calculation (for a given discrepancy
between left and right images) involves summing 11 columns (each of 11 squared discrepancy values).
By saving the column sums in shared memory adjacent computational threads can calculate just their own
column and then read the remaining ten column values calculated by their neighbouring threads.

After one row of pixel SSDs have been calculated, when calculating the SSD of the pixels immediately
above, ten of the eleven rows of SSD values are identical. Given sufficient storage, the row values could
be saved and then 10 of them could be reused requiring only one row of new square differences to be
calculated. However fast storage was scare on GPUs and instead Stam compromised by saving the total
SSD (rather than the per row totals). The SSD for the pixel above is then the total SSD plus the contribution
for the new row minus the contribution from the lowest row (which is no longer included in the 11 × 11
area). Stam took care that the code avoids rounding errors. The more rows which share their partial results,
the more efficient is the calculation but then there is less scope for performing calculations in parallel. To
avoid re-reading data it is desirable that all the image data for both left and right images (including halos
and discrepancy offsets) should fit within the GPU’s texture caches. The macro ROWSperTHREAD (40)
determines how many rows are calculated together in series. The macro BLOCK W (64) determines how
the image is partitioned horizontally (see Figures 3 and 4). To fit the GPU architecture BLOCK W will often
be a multiple of 32. In practise all these factors interact in non-obvious (and sometimes undocumented)
hardware dependent ways.

RN/14/02 Page 3

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

STEREO_MAXD

ROWSperTHREAD

BLOCK_W

Figure 3: The left and right images (solid rectangle) are split into BLOCK W×ROWSperTHREAD tiles.
The dashed lines indicate the extra pixels outside the tile which must be read to calculate values for pixels
in the tile. The right hand image is progressively offset by between zero and STEREO MAXD pixels (50,
dotted lines).

STEREO_MAXD BLOCK_W

ROWSperTHREAD

Figure 4: Part of right hand stereo image pair processed by a single CUDA thread block. The area covered
in the right image is eventually shifted STEREO MAXD (50) pixels to the left. For most GPUs, the optimal
shape is greatly reduced vertically (ROWSperTHREAD reduced from 40 to 5) but width (BLOCK W) is
unchanged.

RN/14/02 Page 4

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

4 Example Stereo Pairs from Microsoft’s I2I Database

Microsoft have made available for image processing research thousands of images. Microsoft’s I2I database
contains 3010 stereo images. Figure 2 (top) is a typical example. Many of these are in the form of movies
taken in an office environment. Figure 1 shows the first pair from a typical example.

We downloaded i2idatabase.zip4 (1.3GB) and extracted all the stereo image pairs and converted them to
grey scale. Almost images all are 320×240 pixels. We took (up to) the first 200 pairs for training leaving
2810 for validation. Notice we are asking the GP to create a new version of the CUDA stereoKernel GPU
code which is tuned to pairs of images of this type. As we shall see (in Section 10) the improved GPU code
is indeed tuned to 320×240 images but still works well on the other I2I stereo pairs.

5 Host Code and Baseline Kernel Code

The supplied C++ code is designed to read stereo images from either stereo webcams or pairs of files and
using OpenGL, to display both the pair of input images and the calculated discrepancy between them on
the user’s monitor. (see Figure 1). This was adapted to both compare answers generated by the original
code with those given by the tuned GP modified code and to time execution of the modified GPU kernel
code. These data are logged to a file and the image display is disabled.

The original kernel code is in a separately compiled file to ensure it is not affected by GP specified
compiler options (particularly -Xptxas -dlcm, Table 2). For each pixel it generates a value in the range
0.0, 1.0, 2.0 . . . 50.0 being the minimum discrepancy between the left and right images. If a match between
the left and right images cannot be found (i.e. SSD ≥ 500000) then it returns -1.0.

6 Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes

In initial genetic programming runs, it became apparent that there are two parameters which have a large
impact on run time but whose default settings are not suitable for the GPUs now available. Since there are
few such parameters and they each have a small number of sensible values, it is feasible to run StereoCam-
era on all reasonable combinations and simply choose the best for each GPU. Hence the revised strategy
is to tune ROWSperTHREAD and BLOCK W before running the GP. (DPER, Section 7.2, is not initially
enabled.) Figure 5 shows the effect of tuning ROWSperTHREAD and BLOCK W for the GTX 295. As with
[Le Goues et al., 2012] and our GISMOE approach [Langdon and Harman,], after GP has run the best
GP individual from the last generation is cleaned up by a simple one-at-a-time hill climbing algorithm.
[Langdon and Harman,] (Section 6) and finally ROWSperTHREAD, BLOCK W and DPER are tuned again.
(Often no further changes were needed.)

For each combination of parameters, the kernel is compiled and run. By recompiling rather than using run
time argument passing, the nVidia nvcc C++ compiler is given the best chance of optimising the code (e.g.
loop unrolling) for these parameters and the particular GPU.

BLOCK W values were based on sizes of thread blocks used by nVidia in the examples supplied with CUDA
5.0. (They were 8, 32, 64, 128, 192, 256, 384 and 512.) All small ROWSperTHREAD values or values
which divide into the image height (240) were tested. (I.e., 1, . . . 18, 20, 21, 24, 26, 30, 34, 40, 48,
60, 80, 120 and 240.) Except for the NVS 290, which has only two multiprocessors, autotuning reduced
ROWSperTHREAD from 40 to 5 before the GP was run. In many cases this gave a big speed up (see
Figure 4 and middle and last columns of Table 4).

The best GP individual in the last generation is minimised by starting at its beginning and progressively
removing each individual mutation and comparing the performance of the new kernel with the evolved
one. For simplicity this is done on the last training stereo image pair. Unless the new kernel is worse the

4 http://research.microsoft.com/en-us/um/people/antcrim/data i2i/i2idatabase.zip

RN/14/02 Page 5

http://research.microsoft.com/en-us/um/people/antcrim/data_i2i/i2idatabase.zip

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

 512

 384

 256

 192

 128

 64
 32

 240
 120 80 60 48 30 20

 10 8 6 5 4 3 2
 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

GTX 295 stereoKernel (milliseconds)

BLOCK_W=64
ROWSperTHREAD= 5
ROWSperTHREAD=40

BLOCK_W

ROWSperTHREAD

GTX 295 stereoKernel (milliseconds)

Figure 5: Effect of changing work done per thread (ROWSperTHREAD) and block size (BLOCK W) and
CUDA kernel speed before it is optimised by GP. stereoKernel is fastest at 5,64 (default is 40,64).

mutation is excluded permanently. To encourage removal of mutations with little impact, those that make
less than 1% difference to the kernel timing are also removed.

In the after evolution tuning, if GP had enabled DPER (Section 7.2) then as well as tuning BLOCK W and
ROWSperTHREAD the autotuner tried values 1..4 for DPER. (In the two cases, GTX 580 and K20c, where
GP enabled DPER its default value, 2, was optimal, and hence unchanged by the post evolution autotuner.)

7 Alternative Implementations

7.1 Avoiding Reusing Threads: XHALO

As mentioned in Section 3 each row of pixels is extended by five pixels at both ends. The original code
reused the first ten threads of each block to calculate these ten halo values. Much of the kernel code
is duplicated to deal with the horizontal halo. GPUs use SIMD parallel architectures, which means many
identical operations can be run in parallel but if the code branches in different directions part of the hardware
becomes idle. (This is known as thread divergence.) Thus diverting ten threads to deal with the halo causes
all the remaining threads in the warp (32 threads) to become idle. Option XHALO allows GP to use ten
additional threads which are dedicated to the halo. Thus each thread only deals with one pixel. In practise
the net effect of XHALO is to disable the duplicated code so that instead of each block processing vertical
stripes of 64 pixels, each block only writes stripes 54 pixels wide.

7.2 Parallel of Discrepancy offsets: DPER

The original code (Section 3) steps through sequentially 51 displacements of the right image with respect to
the left. Modern GPUs allow many more threads and often it is best to use more threads as it allows greater
parallelism and may improve throughput by increasing the overlap between computation and I/O. Instead

RN/14/02 Page 6

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Table 2: Evolvable configuration macros and constants
Name Default Options Purpose
Cache preference None None, Shared, L1, Equal L1 v. shared memory
-Xptxas -dlcm ‘ ’, ca, cg, cs, cv nvcc cache options
OUT TYPE float float, int, short int,

unsigned char
C type of output

STORE disparityPixel GLOBAL GLOBAL, SHARED, LOCAL
STORE disparityMinSSD GLOBAL GLOBAL, SHARED, LOCAL
DPER disabled Section 7.2
XHALO disabled Section 7.1

mul24(a,b) mul24 mul24, * fast 24-bit multiply
GPtexturereadmode Normalized

Float
NormalizedFloat,
ElementType, no Tex-
tures

Section 8.1.4

texturefilterMode Linear Linear, Point
textureaddressMode Clamp, Mirror, Wrap
texturenormalized 0, 1

of stepping sequentially one at a time through the for loop controlling the displacement, the DPER option
allows SSD values for multiple (e.g. 2, 3 or 4) displacements to be calculated in parallel. So instead of
increasing the for loop control variable by one, it is incremented by the same amount (e.g. 2, 3 or 4). As
well as increasing the number of threads, the amount of shared memory needed is also increased by the
same factor. Nevertheless only one (the smallest) SSD value need be compared with the current smallest, so
potentially saving some I/O. Although the volume of calculations is little changed, there are also potential
saving since each DPER block uses almost the same data.

8 Parameters Accessible to Evolution

The GISMOE GP system [Langdon and Harman,] was extended to allow not only code changes but also
changes to C macro #defines. The GP puts the evolved values in a C #include .h file, which is
complied along with the GP modified kernel code and the associated (fixed) host source code.

Table 2 shows the twelve configuration parameters. Every GP individual chromosome starts with these 12
which are then followed by zero or more changes to the code.

8.1 Fixed Configuration Parameters

8.1.1 OUT TYPE

The return value should be in the range -1 to 50 (Section 5). Originally this is coded as a float.
OUT TYPE gives GP the option of trying other types. Notice we do not use the fact that the smaller
data types take less time to transfer between GPU and host, since the data will probably be used on the
GPU. (I.e. all fitness times, Section 9.5.2, are on the GPU.)

8.1.2 STORE disparityPixel and STORE disparityMinSSD

disparityPixel and disparityMinSSD are major arrays in the kernel. Stam coded them to lie in the GPU’s
slow off chip global memory. These configuration options give evolution the possibility of trying to place
them in either shared memory or in local memory. Where the compiler can resolve local array indexes, e.g.
as a result of unrolling loops, it can use fast registers in place of local memory.

RN/14/02 Page 7

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Fitness

Improved system

Test
cases

Population of modifications

Select

Mutation and Crossover

BNF
Grammar

Population of modifications

Original

Modified

code

kernel

Figure 6: Genetic Improvement of stereoKernel

8.1.3 mul24

For addressing purposes, older GPU’s included a fast 24 bit multiply instruction, which is heavily used in
the original code. It appears that in the newer GPUs mul24 may actually be slower than ordinary (32 bit)
integer multiply. Hence we give GP the option of replacing mul24.

8.1.4 Textures

CUDA textures are intimately linked with the GPU’s hardware and provide a wide range of data manip-
ulation facilities (normalisation, default values, control of boundary effects and interpolation) which the
original code does not need but is obliged to use. The left and right image textures are principally used
because they provide caching (which was not otherwise available on early generation GPUs.) We allowed
the GP to investigate other texture options. Including not using textures. Some combinations are illegal but
the host code gives sensible defaults in these cases.

Whilst we investigated the use of textures in the code examples supplied with CUDA 5.0, we decided to
allow GP access to all the various options for setting up textures and indeed to avoid textures and access
the image data directly. There is a 1

2 pixel discrepancy between direct access (which treats the images as
2D arrays) and textures where reference point is the centre of the pixel. This leads to small differences
between direct access and the original code. Whilst such slight differences make little difference to the
outputs appearance even so they are penalised by the fitness function (Section 9.5).

9 Evolvable Code

Following the standard GISMOE approach [Langdon and Harman,], cf. Figure 6, a grammar describing
the legal changes to the kernel source code was automatically created from the human written source code.
Due to the way Stam wrote his kernel (with all variables declared at the start) no mutation moves variables
out of scope. Thus almost all GP created kernels compile, link and run. The only exception being two cases
where GP created legal source code which provoked bugs in the nvcc 5.0 compiler. It is believed these bugs
have been fixed in 5.5. Although legal, in both cases, even if the kernels did compile, they would have had
low fitness. (To allow the GP run to continue, they are given a very poor fitness. This ensures they will not
be selected to be parents of the next generation.)

RN/14/02 Page 8

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Table 3: Genetic programming parameters for improving stereoKernel
Representation: Fixed list of 12 parameter values (Table 2) followed by variable list of replacements,

deletions and insertions into BNF grammar
Fitness: Run on a randomly chosen 320×240 monochrome stereo image pair. Compare answer

& run time with original code and time its execution. See Sections 9.5 and 9.6.
Population: Panmictic, non-elitist, generational. 100 members. New randomly chosen training

sample each generation.
Parameters: Initial population of random single mutants heavily weighted towards the kernel header

and shared variables. 50% truncation selection. 50% crossover (uniform for fixed part,
2pt for variable). 50% mutation 25% mutation random change to fixed part. 25% add
code mutation (one of: delete, replace, insert, each equally likely). No size limit. Stop
after 50 generations.

As with [Langdon and Harman,], the source code, including XHALO and DPER (Sections 7.1 and 7.2),
is automatically translated line by line into a BNF grammar (see Figure 7). Notice the grammar is not
generic, it represents only one program, stereoKernel, and variants of it. The grammar contains 424 rules,
277 represent fixed lines of C++ source code. There are 55 variable lines, 27 IF and 10 of each of the three
parts of C for loops. (The kernel grammar does not contain any WHILE or ELSE rules.) In addition to
these standard types we introduce five CUDA specific types:

pragma allows GP to control the nvcc compiler’s loop unrolling. pragma rules are automatically inserted
before each for loop but rely on GP to enable and set their values. Using the type constraints GP
can either: remove it, set it to #pragma unroll, or set it to #pragma unroll n (where n is
1 to 11).

optvolatile CUDA allows shared data types to be marked as volatilewhich influences the compiler’s optimi-
sation. As required by the CUDA compiler, the grammar automatically ensures all shared variables
are either flagged as volatile or none are.

The remaining three CUDA types apply to the kernel’s header.

optconst Each of kernel’s scalar inputs can be separately marked as const.

optrestrict All of the kernel’s array arguments can be marked with restrict . This potentially helps
the compiler to optimise the code. On the newest GPUs (SM 3.5) optrestrict allows the compiler
to access read only arrays via a read only cache. Since both only apply if all arrays are marked
restrict , the grammar ensures they all are or none are.

launchbounds is again a CUDA specific aid to code optimisation. By default the compiler must generate code that
can be run with any numbers of threads. Since GP knows how many threads will be used, specifying
it via launch bounds gives the compiler the potential of optimising the code. launch
bounds takes an optional second argument which refers to the number of blocks that are active
per MP. How it is used is again convoluted, but the grammar allows GP to omit it, or set it to 1, 2, 3,
4 or 5.

9.1 Initial Population

Each member of the initial population is unique. They are each created by selecting at random one of
the 12 configuration constants (Table 2) and setting it at random to one of its non-default values. As the
population is created it becomes harder to find unique mutations and so random code changes are included
as well as the configuration change. Table 3 summarises the GP parameters.

RN/14/02 Page 9

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

RN/14/02

<KStereo.cuh_52> ::= "__attribute__((global)) " <launchbounds_KStereo.cuh_52>
" void KERNEL(\n"

#kernel
<launchbounds_KStereo.cuh_52> ::= ""
<launchbounds_K0> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock)\n"

"#else\n" "__launch_bounds__(BLOCK_W)\n" "#endif /*DPER*/\n"
...

<launchbounds_K5> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock,5)\n"
"#else\n" "__launch_bounds__(BLOCK_W,5)\n" "#endif /*DPER*/\n"

<optrestrict_KStereo.cuh_52> ::= " __restrict__ "
#kernelarg
<KStereo.cuh_53> ::= "OUTYPE *" <optrestrict_KStereo.cuh_52> "disparityPixel,\n"
<KStereo.cuh_54> ::= <optconst_KStereo.cuh_54> "size_t out_Pitch,\n"
<optconst_KStereo.cuh_54> ::= "const "
<KStereo.cuh_55> ::= "#ifdef GLOBAL_disparityMinSSD\n"
<KStereo.cuh_56> ::= "int *" <optrestrict_KStereo.cuh_52> "disparityMinSSD,\n"
<KStereo.cuh_57> ::= "#if OUT_TYPE != float_ && OUT_TYPE != int_\n"
<KStereo.cuh_58> ::= <optconst_KStereo.cuh_58> "size_t out_pitch,\n"
<optconst_KStereo.cuh_58> ::= "const "
<KStereo.cuh_59> ::= "#endif\n"
<KStereo.cuh_60> ::= "#endif /*GLOBAL_disparityMinSSD*/\n"

...
<KStereo.cuh_72> ::= ")\n"

...
<KStereo.cuh_141> ::= " if" <IF_KStereo.cuh_141> " extra_read_val = BLOCK_W+threadIdx.x;\n"
#"if
<IF_KStereo.cuh_141> ::= "(threadIdx.x < (2*RADIUS_H))"

...
<KStereo.cuh_158> ::= <pragma_KStereo.cuh_158> "for(" <for1_KStereo.cuh_158> ";" "OK()&&"

<for2_KStereo.cuh_158> ";" <for3_KStereo.cuh_158> ") \n"
#for
<pragma_KStereo.cuh_158> ::= ""
#pragma
<pragma_K0> ::= "#pragma unroll \n"
<pragma_K1> ::= "#pragma unroll 1\n"

...
<pragma_K11> ::= "#pragma unroll 11\n"
<for1_KStereo.cuh_158> ::= "i = 0"
<for2_KStereo.cuh_158> ::= "i<ROWSperTHREAD && Y+i < height"
<for3_KStereo.cuh_158> ::= "i++"
<KStereo.cuh_159> ::= "{\n"
<KStereo.cuh_160> ::= "" <_KStereo.cuh_160> "\n"
#other
<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"
<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"
<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"
<KStereo.cuh_162> ::= "}\n"

Figure 7: Fragments of BNF grammar used by GP. Most rules are fixed but rules starting with < , <IF ,
<for1 , <pragma , etc. can be manipulated using rules of the same type to produce variants of stereo
Kernel. Lines beginning with # are comments.

RN/14/02 Page 10

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

9.2 Weights

Since most lines of kernel code are always used we do not use the Obins part of the GISMOE framework,
instead each line of code is equally likely to be modified. However, only as part of creating a diverse initial
population, the small number of rules in the kernel header (i.e. launchbounds, optrestrict, optconst and
optvolatile) are 1000 times more likely to be changed than the other grammar rules. (Forcing each member
of the GP population to be unique is only done in the initial population.) In future, it might be worthwhile
ensuring GP does not waste effort changing CUDA code which can have no effect by setting the weights
of lines excluded by conditional compilation to zero.

9.3 Mutation

Half of mutations are made to the configuration parameters (Table 2). In which case one of the 12 is
chosen uniformly at random and its current value is replaced by another of its possible values again chosen
uniformly at random. For the code, we use the three GISMOE mutations: delete a line of code, replace a
line and insert a line [Langdon and Harman,]. The additional lines of code are not random but are copied
from stereoKernel itself. This is like [Le Goues et al., 2012] except we use the grammar.

9.4 Crossover

As in the GISMOE frame work [Langdon and Harman,], crossover creates a new GP individual from
two different members of the better half (Section 9.6) of the current population. The child inherits each
of the 12 fixed parameters (Table 2) at random from either parent (uniform crossover [Syswerda, 1989]).
Whereas in [Langdon and Harman,] we used append crossover, which deliberately increases the size of the
offspring, here, on the variable length part of the genome, we use an analogue of Koza’s tree GP crossover
[Koza, 1992]. Two crossover points are chosen uniformly at random. The part between the 2 crossover
points of the first parent is replaced by the mutations between the two crossover points of the second parent
to give a single child. On average, this gives no net change in length.

9.5 Fitness

To avoid over fitting and to keep run times manageable, each generation one of the two hundred training
images pairs is chosen [Langdon, 2010]. Each GP modified kernel in the population is tested on that image
pair.

9.5.1 CUDA memcheck and Loop Overruns

Normally each GP modified kernel is run twice. The first time it is run with CUDA memcheck and with
loop over run checks enabled. If no problems are reported by CUDA memcheck and the kernel terminates
normally (i.e. without exceeding the limit on loop iterations) it is run a second time without these debug
aids. Both memcheck and counting loop iterations impose high overheads which make timing information
unusable. Only in the second run are the timing and error information used as part of fitness. If the GP
kernel fails in either run, it is given such a large penalty, that it will not be a parent for the next generation.

When loop timeouts are enabled, the GP grammar ensures that each time a C++ for loop iterates a per
thread global counter is incremented. If the counter exceeds the limit, the loop is aborted and the kernel
quickly terminates. If any thread reaches its limit, the whole kernel is treated as if it had timed out. The
limit is set to 100× the maximum reasonable value for a correctly operating good kernel.

9.5.2 Timing

Each of the Multiprocessors (MPs) within the GPU chip has its own independent clock. On some GPUs
cudaDeviceReset() also resets all the clocks, this is not the case with the C2050. To get a robust
timing scheme, which applies to all GPUs, each kernel block records both its own start and end times and

RN/14/02 Page 11

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Table 4: Mean speed across all 2516 I2I 320×240 stereo image pairs. ± is standard deviation. Times in
microseconds. In all cases tuning leaves BLOCK W as 64. Tuning NVS 290 increases ROWSperTHREAD
from 40 to 120, otherwise pretuning reduces it to 5. Post GP tuning leaves ROWSperTHREAD as 5, except
C2050 (14) and GTX 580 (15).

GPU name Original Pretuned Ratio GP Speedup
Quadro NVS 290 27402±116 26019±152 1.053±0.01
GeForce GTX 295 5448± 14 1518± 4 3.589±0.01
Tesla T10 5256± 12 1436± 3 3.661±0.01 1359±38 3.861±0.11
Tesla C2050 4632± 25 3017± 15 1.535±0.01 1130± 5 4.099±0.02
GeForce GTX 580 3077± 21 1650± 6 1.865±0.01 722±29 4.248±0.17
Tesla K20c 4362± 21 1839± 18 2.373±0.03 638± 1 6.837±0.04

the MP unit it is running on. (This cannot be modified by the GP.) After the kernel has finished, for each
MP, the end time of the last block to use it and the start time of the first block to use it are subtracted to give
the accurate duration of usage for each MP. (Note to take care of overflow unsigned int arithmetic
is used.) Whilst we do not compare values taken from clocks on different MPs, it turns out to be safe to
assume that the total duration of the kernel is the longest time taken by any of the MPs used. (As a sanity
check this GPU kernel time is compared to the, less accurate, duration measured on the host CPU.) The
total duration taken by the GP kernel (expressed as GPU clock tics divided by 1000) is the first component
of its fitness.

9.5.3 Error

For each pixel in the left image the value returned by the GP modified kernel is compared with that given
by the un-modified kernel. If they are different a per pixel penalty is added to the total error which becomes
the second part of the GP individual’s fitness.

If the unmodified kernel did not return a value (i.e. it was -1.0, cf. Section 5) the value returned by the GP
kernel is also ignored. Otherwise, if the GP failed to set a value for a pixel, it gets a penalty of 200. If the
GP value is infinite or otherwise outside the range of expected values (0..50) it attracts a penalty of 100.
Otherwise the per pixel penalty is the absolute difference between the original value and the GP’s value.

For efficiency, previously [Langdon and Harman, 2010] we batched up many GP generated kernels into
one file to be compiled in one go. For simplicity, since we are using a more advanced version of nVidia’s
nvcc compiler, and GP individuals in the same population may need different compiler options, we did not
attempt this. Typically it takes about 3.3 seconds to compile each GP generated kernel. Whereas to run the
resulting StereoCamera program (twice see Section 9.5) takes about 2.0 seconds,

9.6 Selection

As with the GISMOE framework [Langdon and Harman,] at the end of each generation we compare each
mutant with the original kernel’s performance on the same test case and only allow it to be a parent if it
does well. In detail, it must be both faster and be, on average, not more than 6.0 per pixel different from the
original code’s answer. However mostly the evolved code passes both tests. At the end of each generation
the population is sorted first by their error and then by their speed. The top 50% are selected to be parents
of the next generation. Each selected parent creates one child by mutation (Section 9.3) and another by
crossover with another selected parent (Section 9.4). The complete GP parameters are summarised in
Table 3.

RN/14/02 Page 12

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 500 1000 1500 2000 2500 3000

S
pe

ed
 u

p
of

 C
U

D
A

 5
 k

er
ne

l K
20

c
T

es
la

I2I Database

Training

 240x320

 Chairs 640x480

Toys 500x140

Plant

 Book 506x380

320x240
240x320
640x480

Figure 8: Performance of GP improved K20c Tesla kernel on all 3010 stereo pairs in Microsoft’s I2I
database relative to original kernel on the same image pair on the same GPU. Fifty of first 200 pairs used
in training. The evolved kernel is always much better, especially on images of the same size and shape as
it was trained on.

10 Results

Table 4 gives the speed up for six types of GPUs. By reducing ROWSperTHREAD from the original 40 to 5,
pretuning (Section 6) itself gave considerable speed ups (columns 4-5 in Table 4). However for NVS 290,
tuning ROWSperTHREAD increased it from 40 to 120 but only gave a modest improvement (last columns
in Table 4). In all cases the original value of BLOCK W (64) was optimal.

Unfortunately with CUDA 5.0 memcheck (Section 9.5.1), it proved impossible to keep the NVS 290 and
GTX 295 operational for a complete GP run. Despite hardware monitoring, the problem remained non-
reproducible. It is thought with more recent hardware, memcheck is able to catch and prevent problems
caused by incorrect array indexes but on the NVS 290 and GTX 295 GPUs (with nVidia driver 310.40)
incorrect program operation eventually lead to hardware lock up. This is at odds with our earlier successful
use of GP on the GTX 295, where we had explicitly caught out-of-range indexes [Langdon and Harman,
2010]. We had expected that a more modern version of memcheck would provide this facility at lower
overhead. However both memcheck and catching indefinite loops (Section 9.5.1) interfere with timing
to such and extent that during fitness testing it is necessary to run correctly operating kernels a second
time without either memcheck or loop checking to get accurate timings. Hence it might have been better
to provide our own array bounds index checking. In Table 4 the “GP” columns for the NVS 290 and
GTX 295 rows are blank and the last column refers to the speed up achieved by tuning ROWSperTHREAD
and BLOCK W.

With the four more modern GPUs, the best individual from the last generation (50) was minimised to
remove unneeded mutations which contributed little to its overall performance and retuned (Section 6).
This resulted in reductions in length: T10 31→14, C2050 17→10, GTX580 26→13 and K20c 29→10.
The speeds of the re-tuned kernels are given in Table 4 under heading “GP”. In each case this gave a
significant speed up (last column of Table 4) compared to both the original kernel and the original kernel
with the best ROWSperTHREAD setting. The speedup of the improved K20c kernel on all of the I2I stereo
images is given in Figure 8. The speed up for the other five GPUs varies in a similar way to the K20c.
Finally, notice typically there is very little difference in performance across the images of the same size
and shape as the training data (see ± columns in Table 4).

RN/14/02 Page 13

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Table 5: Numbers of most popular of each of the evolvable configuration macros and constants (Table 2)
in the last breeding population.

Fixed mutation Tesla T10 Tesla C2050 GTX 580 Tesla K20c
Cache None 62 L1 52 L1 66 None 48
-Xptxas -dlcm ca 84 not used 50 cg 42 not used 32
OUT TYPE float 100 float 74 float 76 float 48
STORE Pixel LOCAL 100 LOCAL 100 LOCAL 76 GLOBAL 70
STORE MinSSD SHARED 100 SHARED 100 SHARED 56 SHARED 76
DPER disabled 100 disabled 100 used 100 used 100
XHALO disabled 100 used 100 used 100 used 100

mul24(a,b) mul24 100 * 100 * 70 mul24 98
GPtexturereadmode Normalized 100 Normalized 100 Normalized 100 Normalized 100
texturefilterMode Linear 100 Linear 100 Linear 100 Linear 100
texturenormalized default 82 default 80 default 72 default 72
textureaddressMode Wrap 40 Clamp 66 Mirror 42 Mirror 48

DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED

<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>

< KStereo.cuh 348> <optvolatile KStereo.cuh 86> <pragma KStereo.cuh 262><pragma K11>

<IF KStereo.cuh 326><IF KStereo.cuh 154>

Figure 9: Best GP individual in generation 50 of K20c Tesla run after minimising, Section 6, removed less
useful components. (Auto-tuning made no further improvements.)

10.1 GP better than Random Search

In the case of the K20c Tesla, the GP was run again for the same number of evaluations, the same population
size, the same number of generations but with random selection of parents. The best in the whole run of 50
generations of random search is exceeded by the best in the third and subsequent GP generations.

11 Evolved Tesla K20c CUDA Code

For brevity we describe in detail only one of the evolved CUDA stereo kernels. The best of generation
50 individual changes 6 of the 12 fixed configuration parameters (Table 2) and includes 23 grammar rule
changes. After removing less useful components (Section 6) four configuration parameters were changed
and there were six code changes. See Figures 9 and 10. The complete code is given in the appendix
(pages 20–23).

int * restrict disparityMinSSD, //Global disparityMinSSD not kernel argument
volatile extern __attribute__((shared)) int col_ssd[];
volatile int* const reduce_ssd = &col_ssd[(64)*2 -64];
#pragma unroll 11
if(X < width && Y < height) replaced by if(dblockIdx==0)

syncthreads();
#pragma unroll 3

Figure 10: Evolved changes to K20c Tesla StereoKernel. (Produced by GP grammar changes in Figure 9).
Highlighted code is inserted. Code in italics is removed. For brevity, except for the kernel’s arguments,
disparityPixel and disparityMinSSD changes from global to shared memory are omitted. The appendix,
pages 20–23, gives the complete source code.

RN/14/02 Page 14

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

DPER is enabled and the new kernel calculates two disparity values in parallel, Section 7.2. disparityPixel
and disparityMinSSD are stored in shared memory, Section 8.1.2 and XHALO is enabled, Section 7.1.

The final code changes, Figure 10, are:

• disable volatile, Section 9.

• insert #pragma unroll 11 before the for loop that steps through the
ROWSperTHREAD - 1 other rows (Section 3).

• insert #pragma unroll 3 before the for loop that writes each of the ROWSperTHREAD rows
of disparityPixel from shared to global memory. Its not clear why evolution chose to ask the nvcc
compiler to unroll this loop (which is always executed 5 times) only 3 times. But then when nvcc
decides to do loop unrolling is obscure anyway.

• Mutation < KStereo.cuh 161>+< KStereo.cuh 224> causes line 224 to be inserted before
line 161. Line 224 potentially updates local variable ssd, however ssd is not used before the code
which initialises it. It is possible that compiler spots that the mutated code cannot affect anything
outside the kernel and simply optimises it away. During minimisation removing this mutation gave
a kernel whose run time was exactly on the removal threshold.

• Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces
X < width && Y < height by dblockIdx==0. This replace a complicated expression by
a simpler (and so presumably faster) expression, which itself has no effect on the logic since both are
always true. In fact, given the way if(dblockIdx==0) is nested inside another if, the compiler
may optimise it away entirely. I.e. GP has found a way of improving the GPU kernel by removing a
redundant expression.

The original purposed of if(X < width && Y < height) was to guard against reading
outside array bounds when calculating SSD. However the array index is also guarded by
i < blockDim.x

• delete syncthreads() on line 348. syncthreads() forces all threads to stop and wait
until all reach it. Line 348 is at the end of code which may update (with the smaller of two disparities
values) shared variables disparityPixel and disparityMinSSD. In effect GP has discovered it is safe
to let other threads proceed since they will not use the same shared variables before meeting other
syncthreads(). elsewhere in the code. Removing synchronisation calls potentially allows

greater overlapping of computation and I/O leading to an overall saving.

12 Discussion

In some cases modern hardware readily gives on line access to other important non-functional properties
(such as power or current consumption, temperature and actual clock speeds) of software as it runs. Poten-
tially these might also be optimised by GP. ([White et al., 2008] showed it can be possible to use GP with a
cycle-level power level simulator to optimise small programs for embedded systems.) Here we work with
the real hardware, rather than simulators, however real power measurements are not readily available with
all our GTX and Tesla cards.

Many computers, including GPUs, especially in mobile devices, now have variable power consumption.
Thus reducing execution time can lead to a proportionate reduction in energy consumption and hence
increase in battery life, since as soon as the computation is done the computer can revert to its low power
idle hibernating state.

Another promising extension is the combined optimisation for multiple functional and non-functional prop-
erties [Colmenar et al., 2011]. Initial experiments hinted that NSGA-II [Deb et al., 2002; Langdon et al.,
2010] finds it hard to maintain a complete Pareto front when one objective is much easier than the others.

RN/14/02 Page 15

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Thus a population may evolve to contain many fast programs which have lost important functionality while
slower functional program are lost from the population.

The latest version of CUDA (5.5) includes additional tools (e.g. CUDA race check) which might be in-
cluded as part of fitness testing.

The supplied kernel code contains several hundred lines of code. It may be that this only just contains
enough variation for GP’s cut-and-past operations (Section 9.3). With this in mind we had intended to
allow GP to also use code taken from the copious examples supplied by nVidia with CUDA 5.0 (see [Petke
et al., 2014]) but in the end the only use made of these samples was in the tuning operations (Section 6)
where BLOCK W was tested as all the block size values used by nVidia’s experts in these CUDA samples.

nVidia and other manufactures are continuing to increase the performance, economy and functionality of
their parallel hardware. There are also other highly parallel (e.g. Intel) and low power chips with diverse
architectures. These trends suggest the need for software to be ported [Langdon and Harman, 2010] to or
adapt to new parallel architectures will continue to increase.

Although one of the great success for modular system design has been the ability to keep software running
whilst the underlying hardware platforms have gone through several generations of upgrades. This has
been achieved by freezing the software, even to the extent of preserving binaries for years. In practise this
is not sufficient and software that is in use is under continual and very expensive maintenance. There is a
universal need for software to adapt.

13 Conclusions

Up to Intel’s Pentium, Moore’s Law [Moore, 1965] had applied not only to the doubling of number of
transistors but also to exponential rises in clock speeds. Since 2005 mainstream processor clock speeds
have remained fairly much unchanged. However Moore’s Law continues to apply to the exponential rise
in the number of available logic circuits. This has driven the continuing rise of parallel multi-core com-
puting. In mainstream computing, GPU computing continues to lead in terms of price v. performance.
However GPGPU computing (and parallel computing in general) is still held back by the difficulty of
high-performance parallel programming [Langdon, 2011; Merrill et al., 2012].

We have shown genetic programming can be of assistance by splitting the highly skilled tasks of devising
algorithms and coding them from coding and tuning high performance applications to perpetually novel
hardware. We expect the approach can also be applied to re-configuring software as requirements change
as well as adapting it for use with new hardware, unknown when the original code was written.

Correctly tuning one (originally hard coded) constant immediately gave speed ups of between 5% and a
factor or 3.6 (median 2.1) (see Table 4). In all cases, where genetic programming was able to run, it was
able to build on this. Not only are the newer GPUs faster in themselves but the speed up achieved by
GP was also larger on the newer GPUs. With final speed up varying from 5% for the oldest (which was
contemporary with the original code) to a factor of more than 6.8 for the newest (median 4.0).

Future new requirements of StereoCamera might be dealing with: colour, moving images (perhaps with
time skew), larger images, greater frame rates and running on mobile robots, 3D telephones, virtual reality
gamesets or other low energy portable devices. We can hope our GP system could be used to automatically
create new versions tailored to new demands and new hardware.

The grammar based genetic programming system is available via ftp.cs.ucl.ac.uk file genetic/
gp-code/StereoCamera 1 1.tar.gz and training images are in StereoImages.tar.gz The im-
proved version of StereoCamera supports CUDA 5 and later. It can be run on nVidia Tesla devices (which
lack a graphical interface) by sending graphical output to a file. Earlier versions were only able to display
graphical output immediately. The new code is available in StereoCamera v1 1c.zip.

RN/14/02 Page 16

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoImages.tar.gz

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

Acknowledgements

I am grateful for the assistance of njuffa, Istvan Reguly, vyas of nVidia, Ted Baker, and Allan MacKinnon.

GPUs were given by nVidia. Funded by EPSRC grant EP/I033688/1.

References

[Archanjo and Von Zuben, 2012] Gabriel A. Archanjo and Fernando J. Von Zuben. Genetic programming
for automating the development of data management algorithms in information technology systems.
Advances in Software Engineering, 2012.

[Cody-Kenny and Barrett, 2013] Brendan Cody-Kenny and Stephen Barrett. The emergence of useful
bias in self-focusing genetic programming for software optimisation. In Guenther Ruhe and Yuanyuan
Zhang, editors, Symposium on Search-Based Software Engineering, volume 8084 of Lecture Notes in
Computer Science, pages 306–311, Leningrad, August 24-26 2013. Springer. Graduate Student Track.

[Colmenar et al., 2011] J. Manuel Colmenar, Jose L. Risco-Martin, David Atienza, and J. Ignacio Hi-
dalgo. Multi-objective optimization of dynamic memory managers using grammatical evolution. In
Natalio Krasnogor, Pier Luca Lanzi, Andries Engelbrecht, David Pelta, Carlos Gershenson, Giovanni
Squillero, Alex Freitas, Marylyn Ritchie, Mike Preuss, Christian Gagne, Yew Soon Ong, Guenther
Raidl, Marcus Gallager, Jose Lozano, Carlos Coello-Coello, Dario Landa Silva, Nikolaus Hansen, Silja
Meyer-Nieberg, Jim Smith, Gus Eiben, Ester Bernado-Mansilla, Will Browne, Lee Spector, Tina Yu,
Jeff Clune, Greg Hornby, Man-Leung Wong, Pierre Collet, Steve Gustafson, Jean-Paul Watson, Moshe
Sipper, Simon Poulding, Gabriela Ochoa, Marc Schoenauer, Carsten Witt, and Anne Auger, editors,
GECCO ’11: Proceedings of the 13th annual conference on Genetic and evolutionary computation,
pages 1819–1826, Dublin, Ireland, 12-16 July 2011. ACM.

[Cotillon et al., 2012] Alban Cotillon, Philip Valencia, and Raja Jurdak. Android genetic programming
framework. In Alberto Moraglio, Sara Silva, Krzysztof Krawiec, Penousal Machado, and Carlos Cotta,
editors, Proceedings of the 15th European Conference on Genetic Programming, EuroGP 2012, volume
7244 of LNCS, pages 13–24, Malaga, Spain, 11-13 April 2012. Springer Verlag.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, Apr
2002.

[Harman et al.,] Mark Harman, Yue Jia, William B. Langdon, Tim Menzies, and Shin Yoo. ALERTI:
adaptive learning to evolve radical tuning iteratively. International Journal on Software Tools for Tech-
nology Transfer. Invited opinion corner.

[Harman et al., 2012] Mark Harman, William B. Langdon, Yue Jia, David R. White, Andrea Arcuri, and
John A. Clark. The GISMOE challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs. In The 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 12), pages 1–14, Essen, Germany, September 3-7 2012. ACM.

[Harman et al., 2013] Mark Harman, William B. Langdon, and Westley Weimer. Genetic programming
for reverse engineering. In Rocco Oliveto and Romain Robbes, editors, 20th Working Conference on
Reverse Engineering (WCRE 2013), Koblenz, Germany, 14-17 October 2013. IEEE. Invited Keynote.

[Jia et al., 2013] Yue Jia, Mark Harman, and Bill Langdon. The GISMOE architecture. In Yan Hu, Xi-
aochen Lai, Zhilei Ren, and Jifeng Xuan, editors, 2nd Chinese Search Based Software Engineering
workshop, Dalian, China, 8-9 June 2013. Invited keynote.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers by Natural Selec-
tion. MIT press, 1992.

RN/14/02 Page 17

http://www.cs.fsu.edu/~baker/
https://gist.github.com/allanmac
http://www.nvidia.com
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I033688/1
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Archanjo_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Colmenar_2011_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/cotillon_2012_EuroGP.html
http://dx.doi.org/10.1109/4235.996017
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2013_WCRE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Jia_2013_CSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

[Langdon and Harman,] William B. Langdon and Mark Harman. Optimising existing software with ge-
netic programming. IEEE Transactions on Evolutionary Computation. Accepted.

[Langdon and Harman, 2010] W. B. Langdon and M. Harman. Evolving a CUDA kernel from an nVidia
template. In Pilar Sobrevilla, editor, 2010 IEEE World Congress on Computational Intelligence, pages
2376–2383, Barcelona, 18-23 July 2010. IEEE.

[Langdon and Harman, 2014] W. B. Langdon and M. Harman. Genetically improved CUDA C++ soft-
ware. In Miguel Nicolau, Krzysztof Krawiec, and Malcolm Heywood, editors, Proceedings of the
17th European Conference on Genetic Programming, EuroGP 2014, LNCS, Spain, 23-25 April 2014.
Springer Verlag. Forthcoming.

[Langdon et al., 2010] William B. Langdon, Mark Harman, and Yue Jia. Efficient multi-objective higher
order mutation testing with genetic programming. Journal of Systems and Software, 83(12):2416–2430,
December 2010.

[Langdon, 2010] W. B. Langdon. A many threaded CUDA interpreter for genetic programming. In
Anna Isabel Esparcia-Alcazar, Aniko Ekart, Sara Silva, Stephen Dignum, and A. Sima Uyar, editors,
Proceedings of the 13th European Conference on Genetic Programming, EuroGP 2010, volume 6021
of LNCS, pages 146–158, Istanbul, 7-9 April 2010. Springer.

[Langdon, 2011] W. B. Langdon. Graphics processing units and genetic programming: An overview. Soft
Computing, 15:1657–1669, August 2011.

[Langdon, 2013] W. B. Langdon. Which is faster: Bowtie2GP > Bowtie > Bowtie2 > BWA. In Francisco
Luna, editor, GECCO 2013 Late breaking abstracts workshop, pages 1741–1742, Amsterdam, The
Netherlands, 6-10 July 2013. ACM.

[Le Goues et al., 2012] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
Prog: A generic method for automatic software repair. IEEE Transactions on Software Engineering,
38(1):54–72, January-February 2012.

[Merrill et al., 2012] Duane Merrill, Michael Garland, and Andrew Grimshaw. Policy-based tuning for
performance portability and library co-optimization. In Innovative Parallel Computing (InPar), 2012.
IEEE, May 2012.

[Moore, 1965] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, April 19 1965.

[Orlov and Sipper, 2011] Michael Orlov and Moshe Sipper. Flight of the FINCH through the Java wilder-
ness. IEEE Transactions on Evolutionary Computation, 15(2):166–182, April 2011.

[Owens et al., 2008] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and
James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, May 2008. Invited paper.

[Petke et al., 2013] Justyna Petke, William B. Langdon, and Mark Harman. Applying genetic improve-
ment to MiniSAT. In Guenther Ruhe and Yuanyuan Zhang, editors, Symposium on Search-Based Soft-
ware Engineering, volume 8084 of Lecture Notes in Computer Science, pages 257–262, Leningrad,
August 24-26 2013. Springer. Short Papers.

[Petke et al., 2014] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. Using ge-
netic improvement & code transplants to specialise a C++ program to a problem class. In Miguel Nico-
lau, Krzysztof Krawiec, and Malcolm Heywood, editors, Proceedings of the 17th European Conference
on Genetic Programming, EuroGP 2014, Spain, 23-25 April 2014. Accepted.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

RN/14/02 Page 18

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2011_SC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_GECCOlb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tse_GouesNFW12.html
http://dx.doi.org/10.1109/InPar.2012.6339597
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

[Sitthi-amorn et al., 2011] Pitchaya Sitthi-amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence.
Genetic programming for shader simplification. ACM Transactions on Graphics, 30(6):article:152,
December 2011. Proceedings of ACM SIGGRAPH Asia 2011.

[Stam, 2008] Joe Stam. Stereo imaging with CUDA. Technical report, nVidia, V 0.2 3 Jan 2008.

[Syswerda, 1989] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Schaffer, editor,
Proceedings of the third international conference on Genetic Algorithms, pages 2–9, George Mason
University, 4-7 June 1989. Morgan Kaufmann.

[Tiwari et al., 1994] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded soft-
ware: A first step towards software power minimization. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 2(4):437–445, Dec 1994.

[White et al., 2008] David R. White, John Clark, Jeremy Jacob, and Simon M. Poulding. Searching for
resource-efficient programs: low-power pseudorandom number generators. In Maarten Keijzer, Giu-
liano Antoniol, Clare Bates Congdon, Kalyanmoy Deb, Benjamin Doerr, Nikolaus Hansen, John H.
Holmes, Gregory S. Hornby, Daniel Howard, James Kennedy, Sanjeev Kumar, Fernando G. Lobo, Ju-
lian Francis Miller, Jason Moore, Frank Neumann, Martin Pelikan, Jordan Pollack, Kumara Sastry,
Kenneth Stanley, Adrian Stoica, El-Ghazali Talbi, and Ingo Wegener, editors, GECCO ’08: Proceed-
ings of the 10th annual conference on Genetic and evolutionary computation, pages 1775–1782, Atlanta,
GA, USA, 12-16 July 2008. ACM.

[White et al., 2011] David R. White, Andrea Arcuri, and John A. Clark. Evolutionary improvement of
programs. IEEE Transactions on Evolutionary Computation, 15(4):515–538, August 2011.

RN/14/02 Page 19

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://dx.doi.org/10.1109/92.335012
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White2_2008_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

A StereoKernel tuned for K20c Tesla

StereoCamera v1 1c.zip contains the following CUDA kernel, in addition to the complete Stereo
Camera system.

/*******
stereoKernel
Now for the main stereo kernel: There are four parameters:
disparityPixel points to memory containing the disparity value (d)
for each pixel.
width & height are the image width & height, and out_pitch specifies
the pitch of the output data in words (i.e. the number of floats
between the start of one row and the start of the next.).
disparityMinSSD removed by GP

*********/

__attribute__((global)) void stereoKernel(
// pointer to the output memory for the disparity map
float * __restrict__ disparityPixel,
// the pitch (in pixels) of the output memory for the disparity map
const size_t out_pitch,
const int width,
const int height,
unsigned int * __restrict__ timer, //For GP timing only
int * __restrict__ sm_id //For GP timing only

)
{
FIXED_init_timings(timer,sm_id); //For GP timing only
extern __attribute__((shared)) float disparityPixel_S[];

int* const disparityMinSSD = (int*)&disparityPixel_S[ROWSperTHREAD*BLOCK_W];
// column squared difference functions
int* const col_ssd = &disparityMinSSD[ROWSperTHREAD*BLOCK_W];
float d; // disparity value
float d0,d1;
float dmin;

int diff; // difference temporary value
int ssd; // total SSD for a kernel
float x_tex; // texture coordinates for image lookup
float y_tex;
int row; // the current row in the rolling window
int i; // for index variable
const int dthreadIdx = threadIdx.x % BLOCK_W;
const int dblockIdx = threadIdx.x / BLOCK_W;

//bugfix force subsequent calculations to be signed
const int X = (__mul24(blockIdx.x,(BLOCK_W-2*RADIUS_H)) + dthreadIdx);
const int ssdIdx = threadIdx.x;
int* const reduce_ssd = &col_ssd[(BLOCK_W)*dperblock-BLOCK_W];
const int Y = (__mul24(blockIdx.y,ROWSperTHREAD));

RN/14/02 Page 20

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

//int extra_read_val = 0; no longer used
//if(dthreadIdx < (2*RADIUS_H)) extra_read_val = BLOCK_W + ssdIdx;

// initialize the memory used for the disparity and the disparity difference
//Uses first group of threads to initialise shared memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X<width)
{
for(i = 0;i<ROWSperTHREAD && Y+i < height;i++)
{
// initialize to -1 indicating no match
disparityPixel_S[i*BLOCK_W +threadIdx.x] = -1.0f;
//ssd += col_ssd[i+threadIdx.x];
disparityMinSSD[i*BLOCK_W +threadIdx.x] = MIN_SSD;

}
}
__syncthreads();

x_tex = X - RADIUS_H;
for(d0 = STEREO_MIND;d0 <= STEREO_MAXD;d0 += STEREO_DISP_STEP*dperblock)
{
d = d0 + STEREO_DISP_STEP*dblockIdx;
col_ssd[ssdIdx] = 0;

// do the first row
y_tex = Y - RADIUS_V;
for(i = 0;i <= 2*RADIUS_V;i++)
{
diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;

}
__syncthreads();

// now accumulate the total
if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{
ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{
ssd += col_ssd[i+ssdIdx];

}
}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use first group of threads to set ssd to smallest SSD for d1<d0+dperblock
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{

RN/14/02 Page 21

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

dmin = d;
d1 = d + STEREO_DISP_STEP;
for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {
if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
dmin = d1;

}
d1 += STEREO_DISP_STEP;

}
//if ssd is smaller update both shared data arrays
if(ssd < disparityMinSSD[0*BLOCK_W +threadIdx.x])
{
disparityPixel_S[0*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[0*BLOCK_W +threadIdx.x] = ssd;

}
}
__syncthreads();

// now do the remaining rows
y_tex = Y - RADIUS_V; // this is the row we will remove
#pragma unroll 11
for(row = 1;row < ROWSperTHREAD && (row+Y < (height+RADIUS_V));row++)
{
// subtract the value of the first row from column sums
diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] -= SQ(diff);

// add in the value from the next row down
diff = readLeft(x_tex, y_tex + (float)(2*RADIUS_V)+1.0f) -

readRight(x_tex-d,y_tex + (float)(2*RADIUS_V)+1.0f);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;
__syncthreads();

if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X<width && (Y+row) < height)
{
ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{
ssd += col_ssd[i+ssdIdx];

}
}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use 1st group threads to set ssd/dmin to smallest SSD for d1<d0+dperblock
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
{
dmin = d;
d1 = d + STEREO_DISP_STEP;

RN/14/02 Page 22

Genetically Improved CUDA kernels for StereoCamera W. B. Langdon and M. Harman

for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {
if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
dmin = d1;

}
d1 += STEREO_DISP_STEP;

}
//if smaller SSD found update shared memory
if(ssd < disparityMinSSD[row*BLOCK_W +threadIdx.x])
{
disparityPixel_S[row*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[row*BLOCK_W +threadIdx.x] = ssd;

}
}//endif first group of thread

}// for row loop
}// for d0 loop

//Write answer in shared memory to global memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X < width) {
#pragma unroll 3
for(row = 0;row < ROWSperTHREAD && (row+Y < height);row++)
{
disparityPixel[__mul24((Y+row),out_pitch)+X] =

disparityPixel_S[row*BLOCK_W +threadIdx.x];
}

}
FIXED_report_timings(timer,sm_id); //For GP timing only
}

Comments added by hand. Modifications to the openVidia CUDA Stereo Camera code distributed by
SourceForge are described in Section 11 (page 14) etc.

RN/14/02 Page 23

	Introduction
	Background
	Source Code: StereoCamera
	Example Stereo Pairs from Microsoft's I2I Database
	Host Code and Baseline Kernel Code
	Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes
	Alternative Implementations
	Avoiding Reusing Threads: XHALO
	Parallel of Discrepancy offsets: DPER

	Parameters Accessible to Evolution
	Fixed Configuration Parameters
	OUT_TYPE
	STORE_disparityPixel and STORE_disparityMinSSD
	__mul24
	Textures

	Evolvable Code
	Initial Population
	Weights
	Mutation
	Crossover
	Fitness
	CUDA memcheck and Loop Overruns
	Timing
	Error

	Selection

	Results
	GP better than Random Search

	Evolved Tesla K20c CUDA Code
	Discussion
	Conclusions
	StereoKernel tuned for K20c Tesla

