
Improving SSE Parallel Code with
Grow and Graft Genetic Programming

William B. Langdon and Ronny Lorenz
Department of Computer Science, University College London, Gower Street, WC1E 6BT, UK.

Theoretical Biochemistry, Theoretical Chemistry, University of Vienna

ABSTRACT

RNAfold predicts the secondary structure of RNA molecules
from their base sequence. We apply a mixture of manual and
automated genetic improvements to its C source. GI gives a
1.6% improvement to parallel SSE4.1 code. The automatic
programming evolutionary system has access to Intel library
code and previous revisions. On 4 666 curated structures
from RNA STRAND, GGGP gives a combined speed up of
31.9%, with no loss of accuracy (GI code run 1.4 1011 times).

ACM Reference format:
William B. Langdon and Ronny Lorenz. 2017. Improving SSE
Parallel Code with Grow and Graft Genetic Programming. In

Proceedings of GECCO ’17 Companion, Berlin, Germany, July
15-19, 2017, 2 pages.
DOI: http://dx.doi.org/10.1145/3067695.3082524

1 INTRODUCTION

In contrast to proteins, RNA structures are mostly investi-
gated at the level of their secondary structure, i.e. their base
pairings. The most widely used computer programs that
predict secondary structures from sequence data are prob-
ably those within the ViennaRNA Package [1], principally
RNAfold. Unlike our earlier work with pknotsRG [2] there is
no pre-existing parallel version of RNAfold.

Excluding documentation, help files, examples and test
cases, version 2.3.0 of ViennaRNA package consists of about
400 C/C++ source files containing about 170 000 lines of
code. RNAfold itself, excluding include files, is made from
six C sources files (7 100 lines of code).

We use genetic improvement [3] as part of our Grow
and Graft GP (GGGP) [4] approach to optimising program
sources. Almost all the performance gain was found in the
(≈ 3 day) manual pre-evolution phase. We profiled RNAfold
using GNU gcov on a large real RNA molecule (CRW 01456
2 913 characters). The whole of RNA STRAND v2.0 [5] was
downloaded from http://www.rnasoft.ca/strand/download/
RNA STRAND data.tar.gz.) gcov indicated almost all the
execution time was taken by a small fraction of function
E ml stems fast in multibranch loops.c where 4 lines inside
nested for loops (Figure 2) were executed billions of times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082524

 0.01

 0.1

 1

 10

 0.01 0.1 1 10
G

I
(s

e
c
o
n

d
s
)

ViennaRNA-2.3.0 (seconds)

31.9% mean speed up
RNA STRAND v2.0

Figure 1: Elapsed time of GIed RNAfold v. original.
Data below 0.01 seconds not plotted. Note log scales.
The GI code always produced identical answers.

The original intention was to use GGGP to generate a
CUDA version of RNAfold but having determined that the
main computational bottle neck was quite small but inside
a heavily nested routine which might itself be called more
than four million times, it was decided to attempt something
new and use GGGP with Intel SIMD vector SSE operations.

1.1 Parallel SSE vector instructions

Towards the end of Moore’s law as commonly applied to
CPU clock speeds, Intel started to increase the parallelism of
its flagship 8080 series of processors. The most famous and
successful approach has been to put multiple CPU cores onto
single silicon chips. However at about the same time, Intel
extended the instruction set to support single instruction
multiple data (SIMD) vector operations. Many of these allow
four or more 32 bit operations to be performed in parallel.
The SSE instruction set has been progressively extended and
now accelerators, such as the Intel Xeon Phi, support vectors
of 512 bits.

It had been hoped to use GI to automatically extend
the manually written 128 bit SIMD version of the heavily
used code to 512 bit vectors. Although a grammar [6] was
successfully created from the Intel SSE documentation (rather
late in the day) it was realised we had no access to a Xeon Phi
and none of the available computers supported 256 or 512
bit vector operations. Hence GI was only applied to the new
128 bit code (Figure 3).

1537

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.tbi.univie.ac.at/~ronny/
http://www.tbi.univie.ac.at/RNA/
http://www.rnasoft.ca/strand/
http://www.rnasoft.ca/strand/download/RNA_STRAND_data.tar.gz
http://www.rnasoft.ca/strand/download/RNA_STRAND_data.tar.gz

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany William B. Langdon and Ronny Lorenz

Table 1: GGGP to improve SSE version of RNAfold

Representation: variable list of replacements, deletions and
insertions into BNF grammar (1030 rules)

Fitness: Compile (GCC 5.4.0) to modified object
code, run on 10 000 random test cases.

Population: 50, panmictic, non-elitist, generational.
Parameters: Initial population of random single mutants.

50% truncation selection. 50% two point
crossover, 50% mutation.

for (decomp=INF, k=i + 1 + turn; k<=stop; k++, k1j++){

if((fmi[k] != INF) && (fm[k1j] != INF)){

en = fmi[k] + fm[k1j];

decomp = MIN2(decomp, en);

}

} Figure 2: Original code, in E ml stems fast()

During the manual phase, intermediate versions of the
new manually written code were held in a revision control
system (RCS). The whole of the 128 bit SSE library and the
earlier manual revisions were available, via the automatically
created grammar, as an extended code base [7]. 789 rules
were derived from the SSE documentation. A further 168
were derived from RCS. Finally 141 came from the manually
written SSE code (i.e. the usual GI source seed code [6],
Figure 3). Of these 68 are fixed and provide the framework
within which GI operates on the remaining 73. Notice, the
manual SSE code (Figure 3) does not check for INFinity.

The best individual evolved over night (generation 147)
contains five mutations to the hand written code. Two of
them involved importing from the RCS code base. (None
used the Intel documentation code base.) As is usual in GI
practise [6], only the critical changes were retained (shown
in blue in Figure 3). In fact, the change imported from RCS,
which changes the first for loop’s upper bound, is all that is
needed. It means the first loop may be execute once more
(during which it will process 4 array indexes in parallel). This
allows the compiler -O2 optimisation to remove entirely the
second loop containing non-parallel instructions. The GI
code never accesses data outside the bounds of the arrays.
In real usage, it gives exactly the same answers.

2 EXPERIMENT

In the GP run (see Table 1) each mutant is compiled and
run on 10 000 of the available 4 232 596 test cases. Each of its
answers is compared with that of the original code and how
long it took is recorded. To reduce noise, this is repeated 103
times and the 1st quartile time is taken. To give a spread of
easy to hard tests, each generation the 4 232 596 test cases
are divided equally into 5 and a sequence of 2 000 is chosen
at random from each fifth. Every mutant in that generation
is tested on the same 5× 2 000 examples.

To avoid infinite loops, a CPU limit of 15 seconds was im-
posed (on our 3.20GHz i5 CPU). Each generation the mutants
which were run and terminated ok are sorted by the number
of tests they passed and their runtime (minimised). The top
half the population (25) are selected to have 2 children each
in the next generation.

#include <smmintrin.h>

int horizontal_min_Vec4i(__m128i x) {

__m128i min1=_mm_shuffle_epi32(x,SH..(0,0,3,2));

__m128i min2=_mm_min_epi32(x,min1);

__m128i min3=_mm_shuffle_epi32(min2,SH..(0,0,0,1))

__m128i min4=_mm_min_epi32(min2,min3);

return _mm_cvtsi128_si32(min4);

}

int modular_decomposition(int i, int ij, int j,

int turn, int* fmi, int* fm) {

int k = i + turn + 1;

int k1j = ij + turn + 2;

const int stop = j - 2 - turn;

int decomp = INF;

{const int end = 1 + stop - k;

int i;
for(i=0;i<end;i+=4){ //was for(i=0;i<end-3;i+=4) {
//if((a[i] != INF) && (b[i] != INF)){

__m128i a =_mm_loadu_si128((__m128i*)&fmi[k +i]);

__m128i b =_mm_loadu_si128((__m128i*)&fm[k1j+i]);

__m128i c =_mm_add_epi32(a,b);

const int en = horizontal_min_Vec4i(c);

decomp = MIN2(decomp, en);

}
for(;i<end;i++) {
const int en = fmi[k +i]+fm[k1j+i];

decomp = MIN2(decomp, en);

}
} return decomp;

}

Figure 3: Hand coded GGGP replacement code.
Evolution (blue) gives 1.6% speedup.

During evolution 10% of mutants fail to compile, 1% com-
pile ok but their object code is identical to the seed code’s,
3% fail at runtime (e.g. segfault or CPU time limit exceeded)
and 86% run all ten thousand tests.

3 CONCLUSIONS
We have demonstrated that evolution can optimise C code
primarily composed of hand written SSE instructions. Our
original plan to allow GGGP to expand it from 128 bit to
256 or 512 bit instructions was frustrated by the available
hardware. Nonetheless GI found a small unexpected optimi-
sation on top of handwritten code, using a standard desktop
PC under a standard operating system (Ubuntu 16.04.1 LTS)
without specialised customisation to either.

Acknowledgements
I am grateful for the assistance of Bobby R. Bruce and
stackoverflow’s Paul R. GP code in rnafoldGI.tar.gz

References
[1] Lorenz, R., et al.: ViennaRNA package 2.0. Alg Mol Biol 6(1)
[2] Langdon, W.B., Harman, M.: Grow and graft a better CUDA

pknotsRG for RNA pseudoknot free energy calculation. GI-2015
[3] Petke, J., et al., Genetic improvement of software: a survey. TEVC
[4] Langdon, W.B. et al., Improving CUDA DNA analysis software

with genetic programming. In GECCO ’15, Madrid, 1063–1070
[5] Andronescu, M., et al.: RNA STRAND. BMC Bioinf 9(1) 340
[6] Langdon, W.B., Harman, M.: Optimising existing software with

genetic programming. TEVC 19(1) (2015) 118–135
[7] Petke, J., et al., Specialising software for different downstream

applications using GI and code transplantation. TSE (accepted).

1538

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.tbi.univie.ac.at/~ronny/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/rnafoldGI.tar.gz
http://dx.doi.org/doi:10.1186/1748-7188-6-26
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_gisurvey.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://dx.doi.org/10.1186/1471-2105-9-340
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2017_ieeeTSE.html

	Abstract
	1 Introduction
	1.1 Parallel SSE vector instructions

	2 Experiment
	3 Conclusions

