
In L. Eshelman editor, ICGA95, pages 295-302, 15-19 July, Pittsburgh, PA, USA, 1995

Evolving Data Structures with Genetic Programming

William B. Langdon
Computer Science Dept.

University College London,
Gower Street, London, WC1E 6BT, UK

Email W.Langdon@cs.ucl.ac.uk

Abstract

Genetic programming (GP) is a subclass of
genetic algorithms (GAs), in which evolving
programs are directly represented in the chro-
mosome as trees. Recently it has been shown
that programs which explicitly use directly
addressable memory can be generated using
GP.

It is established good software engineering
practice to ensure that programs use memory
via abstract data structures such as stacks,
queues and lists. These provide an interface
between the program and memory, freeing
the program of memory management details
which are left to the data structures to im-
plement. The main result presented herein
is that GP can automatically generate stacks
and queues.

Typically abstract data structures support
multiple operations, such as put and get. We
show that GP can simultaneously evolve all
the operations of a data structure by imple-
menting each such operation with its own in-
dependent program tree. That is, the chro-
mosome consists of a fixed number of inde-
pendent program trees. Moreover, crossover
only mixes genetic material of program trees
that implement the same operation. Pro-
gram trees interact with each other only via
shared memory and shared “Automatically
Defined Functions” (ADFs).

ADFs, “pass by reference” when calling
them, Pareto selection, “good software engi-
neering practice” and partitioning the genetic
population into “demes” where also investi-
gated whilst evolving the queue in order to
improve the GP solutions.

1 INTRODUCTION

Recent work by Teller [Tel94a] shows genetic program-
ming can automatically create programs which explic-
itly use memory. He has shown that inclusion of read
and write primitives can make the GP language Turing
complete, i.e. any conventional program can be writ-
ten in the language [Tel94b]. However it is still an
open problem as to which subclass of programs can be
effectively evolved.

Human programmers have long recognised, that in
addition to Turing completeness, programming lan-
guages should encourage programs to be structured.
In particular, program production, maintenance and
testing are eased if the software is written so that it
be independent of memory access implementation de-
tails. This is achieved by using abstract data struc-
tures, such as stacks, queues and lists, in order to pro-
vide an interface between programs and memory.

We anticipate that if evolutionary computation is to
solve many difficult problems it must adopt a struc-
tured approach, particularly in its use of memory. We
demonstrate how GP can automatically generate two
abstract data structures, stacks and queues.

The GA we use is based on Koza’s GP [Koz92], but
each individual within the population comprises sev-
eral program trees, one for each operation (see Figures
2 and 3). These trees are independent, with crossover
occurring only between like trees. Each interacts with
the others via shared memory or shared “Automati-
cally Defined Functions” ADF [Koz94]. We show it is
possible for this GA to simultaneously evolve multiple
co-operating but independent functions.

In the following sections we describe our experiments
which show that both an integer stack (Section 2) and
a First-In First-Out (FIFO) integer queue (Section 3)
can be evolved. Section 4 discusses the results achieved
and possible further work.

“Pass by reference” (Section 3.7.1) is introduced to GP
in order to facilitate the evolution of primitives which

295

296 William B. Langdon

update variables. Pareto selection (Section 3.7.2) is
introduced as it provides a natural way of comparing
programs which perform multiple operations. We use
“good software engineering practice” within the fitness
function and syntax of the GP language to guide the
GA’s search (Section 3.7.3). Partitioning the genetic
population into “demes” appears to mitigate against
premature convergence (Section 3.7.4).

2 EVOLVING A STACK

2.1 PROBLEM STATEMENT

Our definition of a stack is given in Table 1. Whilst
based upon Aho et al [AHU87], it has been simplified
by removing the checks for stack underflow or overflow
and “pop” returns the current top of the stack as well
as removing it. Our problem only requires the solu-
tion to implement a stack of ten integers, however the
programs evolved scale up to stacks of any depth. In
fact the fitness function tests only as far as depths of
four items.

2.2 ARCHITECTURE

Each individual within the population is composed of
five trees, each of which implements a trial solution to
one of the five operations that form the complete stack
program (see Figure 1). Using this architecture it is
possible to evolve all five operations simultaneously
from randomly generated program trees.

........................

..

..

..........................

..

........................

........................

..........................

..........................

pop
..

..

........................

..

..

..........................

...

push
..

..

..

..

..........................

top
..

..........................

..

..

..........................

..

.....................................
.............

..........................

makenull
..

..

........................

........................

..

..

........................

........................

empty

Figure 1: One Individual – Five Trees

...................
...................
.........

...........................
.........

.................

..................
...................
.........

...........................
.........

.................

................

..
..................
..

.................................

...

.....................

..

...

... ..
.........

...........................
...................
........

.........
...........................
................
.........

......................................
.........

...................
..................
.........

.....
.....................

.........
..................

...................

..................
...................
.........

...........................
........
...........................
.................
.........

...........................
.........

...................
..................
.........

.........
.........
..................

...................
......................................

.........

......................................
..................

..................
..................
..........

...........................
...................
........

........
...........................
.................
.........

......................................
.........

...................
..................
.........

.....
.....................

.........
..................

...................
...

..................

..........................
..........................
.............

.............

.............

...

.............................
.............

................

.............

................

.............

Crossover

Figure 2: Crossover in One Tree at a Time

This multiple tree architecture was chosen so that each
tree contains code which has evolved to implement
a single operation. It was felt that this would ease
the formation of “building blocks” of useful function-
ality and enable crossover, and other genetic opera-
tions, to assemble working implementations of the five
operations from them. Consequently, complete stack
programs could be formed whilst each of its trees im-
proved.

Each new individual is created either by copying all
five trees of the parent program (10%) or via crossover
between two parent programs (90%). When crossing
over, one type of tree is selected at random. The
trees of the other types are copied without modifica-
tion from the first parent to the offspring. The re-
maining tree is created by crossover between the trees
of the chosen type in each parent in the normal GP
way [Koz92]. The new tree has the same root as the
first parent. Each mating produces a single offspring,
most of whose genetic material comes from only one
of its parents. Crossover is limited to a single tree
at a time in the expectation that this will reduce the
extent to which it disrupts “building blocks” of use-
ful code. Crossing like trees with like trees is similar
to the crossover operator used by Koza in most of his
experiments involving ADFs [Koz94].

GP creates each tree from terminals (leafs) and func-
tions (branch nodes). Collectively these are called
primitives. Initially, for simplicity, the same primi-
tives were available to each tree. However “good soft-
ware engineering practice” suggests a number of rules
that might help the GP. For example, empty should
not have side effects and therefore primitives with side
effects (e.g. write) should not occur in empty’s tree.
From Section 3.6.2 onwards rules of this type are used
for the queue problem.

2.3 TERMINALS AND FUNCTIONS
USED TO EVOLVE STACK

We used primitives such as those a human programmer
might use. The terminals chosen were the constants
0, 1, max (10) and arg1, the variable aux and Inc Aux
and Dec Aux: a) max denotes the maximum size of
the stack, b) arg1 holds the input for push; it is zero if
used other than by push, c) aux is intended to be used
as a pointer by holding memory addresses, however
the GP may use it as it pleases, and d) Inc Aux and
Dec Aux update aux by ±1 and return its new value.

The functions chosen were +, −, Write Aux, read and
write: a) Write Aux sets aux to the value of its ar-
gument but returns aux’s previous value, and b) read
and write functions read the value in and/or update
the value stored in one of 63 integer memory cells.
They are based on Teller’s [Tel94a], however access
to memory outside the range -31. . . 31 aborts the pro-
gram. An aborted program fails the current test and is
not tested further but keeps its current score. In some
queue experiments (Section 3.6.2 onwards) programs
continue despite memory address errors (in which case
read and write return zero) and in Section 3.7.5 only
31 memory cells were used.

read(a): If a valid memory index then
read := store[a];

Else
Abort program;

297

Table 1: Pseudo Code Definition of the Five Stack Operations

makenull sp := maxlength + 1; initialise stack
empty empty := (sp > maxlength); is stack empty or not?
top top := stack[sp]; top of the stack
pop pop := stack[sp]; return top of stack

sp := sp + 1; and remove it
push(x) sp := sp − 1; place x on top of stack

stack[sp] := x;

write(a,x): If a valid memory index then
write := store[a];
store[a] := x;

Else
Abort program;

2.4 FITNESS FUNCTION

The fitness of each individual program is the number
of tests it passes (i.e. returns the correct answer) when
each of its constituent operations are called in a series
of four fixed test sequences, each containing 40 calls.
These were chosen to test correct operation of stack
programs, up to a depth of four. Each sequence starts
with makenull, never causes stack overflow or under-
flow and top is never called when the stack is empty.
The 47 values pushed on to the stack were also fixed.
They were selected at random from the range -1000
and 999.

The answers returned by makenull and push are ig-
nored; they are tested indirectly by seeing if the other
operations work correctly when called after them.
They are both scored as if they had returned the cor-
rect result. The integer value returned by empty is
converted to a boolean by treating all values > 0 as
true.

All storage, i.e. the indexed memory and aux, is ini-
tialized to zero before each test sequence is started.
Nb. no information about the program’s internal be-
haviour is used.

2.5 PARAMETERS

The parameters used where those those established
by Koza [Koz94, page 655] except GP-QUICK [Sin94]
uses: a steady state GA; a single offspring per
crossover. The default tournament size of 4 appears to
give sufficient selection pressure, however the default
program size limit was increased five fold, to 250, in
order to allow ready growth of all five trees. A popu-
lation of 1,000 proved sufficient for the stack.

2.6 RESULTS

With the above parameters in a group of 60 runs, four
produced correct programs. In three the stack grows
down memory and in the other it grows up; all use

memory cell zero first. Whilst each program is differ-
ent, examination shows they all correctly implement
a general stack, i.e. a stack of any depth rather than
just ten (subject to the available memory). Figure 3
shows the simplest correct program, its essential code
is shown within the boxes.

.............................

..........................

push

write

dec auxarg1

top

read

write Aux

aux

..........................

..........................
..........................
..........................

pop

write

aux ADD

1 inc aux

.............................

..........................

makenull

SUB

write Aux

1

0

empty

aux

Figure 3: Evolved Stack Program (1)

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000 120000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean
Min

Best of Generation
Solutions

Figure 4: No. Trial Stacks Created v. Fitness, Means
of 60 runs

Once the runs have completed it is possible to esti-
mate, using Figure 4, the probability of a stack be-
ing evolve at generation i when using a population of
size M , P (M, i). From P (M, i) the number of runs
required to obtain at least one stack can be calcu-
lated. Using the formula in [Koz92, page 194], esti-
mating P (1000, 14) at 4/60 (i.e. 4 successes in 60 tri-
als) and requiring the chance of not finding any stacks
to be less than 1% gives 67 runs. I.e. 67 independent
runs, each running for up to 14 generations, will en-
sure that the chance of producing at least one stack is
better than 99%. This would require a total of up to
14×1, 000×67 = 938, 000 trial programs to be tested.

For the sake of comparison, a large number of random
programs were generated, using the same mechanisms
as the GP, and tested against the same fitness tests. A

298 William B. Langdon

0

50

100

150

200

250

0 20000 40000 60000 80000 100000 120000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Stack 1

Max
Min

Mean
Solutions

Figure 5: No. Trial Stacks Created v. Program Size,
Means of 60 runs

total of 49,000,000 randomly produced programs were
tested, none passed all of the tests.

3 EVOLVING A QUEUE

This Section describes a series of experiments aimed
at repeating the success with evolving a stack, but this
time evolving a FIFO queue. The design choices for
the queue, were based on those used with the stack.
These produced initial partial solutions (Section 3.6),
which were followed by design changes. Section 3.6.2
shows that queues can readily be evolved if powerful
primitives are available. Section 3.7 shows that such
primitives need not be given but can be evolved by
the GP whilst it solves the queue problem, however
considerably more trial solutions needed to be tested.

3.1 PROBLEM STATEMENT

Our definition of a queue is again based upon that
given by Aho et al [AHU87]. As with the stack there
are five operations: makenull, front, dequeue, enqueue
and empty. We simplify the problem as before, so
the queue problem is very close to the stack with the
replacement of front for top, dequeue for pop and en-
queue for push.

As Aho et al show, implementing a queue as a circular
buffer can be done by allowing a gap between the old-
est and newest items in the queue. This gap takes at
least one cell, therefore our problem restricts the num-
ber of items in the queue to nine, rather than ten used
for the stack. As we will show it is possible to evolve
programs that will scale up to any queue length. How-
ever GP also evolved programs specific to the length
of queue and so care had to be taken in the fitness
function to test the full range of queue lengths.

3.2 ARCHITECTURE

The five trees used with the stack were augmented by a
sixth: adf1, an ADF which may be called from any tree
(to avoid infinite loops, recursive calls abort the pro-
gram). In later experiments (Section 3.6.2 onwards)
dequeue may call front and in the final experiments
(Section 3.7) the ADF concept was extended to allow
ADFs to modify their arguments by using a form of
passing data by reference.

3.3 TERMINALS AND FUNCTIONS
USED TO EVOLVE QUEUE

The details of terminals and functions are given in
Tables 2 and 3. They are essentially those for the
stack problem except: a) two auxiliary variables, aux1
and aux2, rather than one, b) Write Auxn replaced by
Set Auxn, which yield the new value of auxn rather
than its original value, and adding c) adf1 and d) mod.
mod is a “protected” modulus operator: mod(a,b) =
remainder of a/|b|, unless b = 0 when mod returns a.

In later experiments (Section 3.6.2 onwards) we re-
strict the primitives that can be used in which trees
and add the two argument functions PROG2 and
QROG2. a) PROG2 yields the value of its second ar-
gument and b) QROG2 that of its first. They were
added so that they could be used to link together sub-
trees without transforming their values as other binary
functions do (e.g. +).

3.4 FITNESS FUNCTION

The fitness function is based upon that used with the
stack. Test sequences always start with makenull,
never enqueue more than nine items, and never call
dequeue or front on an empty queue. All storage is
initialized to zero before each test sequence.

Initially the test sequences were identical to that used
for the stack, with the replacement of enqueue for push
and dequeue for pop. Also, only when empty returns
zero, is its answer treated as true. However the GP
was unable to generalize from these limited tests and
programs evolved which passed all the tests but did not
correctly implement a queue. As these were produced
the fitness function was changed.

After the discovery of memory hungry solutions (Sec-
tion 3.6) the test sequences where changed by adding
a long sequence (160 tests) and to ensure the whole
range of queue lengths were tested. The fifth test
sequence contains makenull only once and so ensures
memory hungry solutions are penalized by exhausting
the available memory.

Initially the fitness function was the same as the stack,
except makenull and enqueue test passes where re-
duced in weight by dividing them by 20.0 before adding
them to the other scores. This was modified to reward

299

“good software engineering practice”. Initially (Sec-
tion 3.6.1) by subtracting 2.0 per memory cell above
15 used. 2.0 was chosen to ensure caterpillar like
programs which use more memory and so pass more
tests actually have lower fitness. Later (Section 3.6.2
onwards) the single fitness value was replaced with
Pareto scoring (Section 3.7.2) and excessive memory
usage was a factor in the Pareto fitness.

With a uniform distribution of data values, partial so-
lutions were produced which exploited the fact that the
value zero was never enqueued. From Section 3.6.1, a
tangent distribution was used to bias the distribution
of test data towards zero, so that it contains small val-
ues, like zero, but still contains large values. With a
tangent distribution approximately 50% of values lie
in -F. . . F. The scaling factor, F, was initially 31.4,
which covers the range of legal memory address, but
it was progressively reduced.

3.5 PARAMETERS

The parameters used are as for the stack except, the
population size was increased to 10,000 and the last
series of experiments split the population into demes
(3.7.4).

3.6 INITIAL RESULTS

A number of runs were made which yielded partial
solutions to the queue problem. One group of these are
known as “caterpillars” (Figure 6). The two auxiliary
registers are used as pointers to the queue’s head and
tail and are incremented by each enqueue or dequeue.
However they are not reset so the queue crawls its way
across memory, like a caterpillar. Except for requiring
indefinite amount of memory, entirely correct solutions
were automatically evolved.

........
........
......................

aux1

.

........
........
........................

..........

............
..
..........
............

.

.

.

qq
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Head Tail

aux2aux2 aux1

Figure 6: Queue works up memory like a Caterpillar.
Nb. data does not move.

3.6.1 Shuffler

In a group of 379 runs one solution which passes all 320
tests was found. This is known as the “Shuffler” (Fig-
ures 7 and 8). Several more solutions of this type have
been found in runs with slightly different parameters
or primitives. Many partial solutions of the shuffler
type have also been found.

As Figure 7 shows, this solution correctly implements
a FIFO queue of up to nine items. Unexpectedly it
does this by moving the contents of the memory cells.

I.e. as each item is removed from the queue, all the re-
maining items are moved (or shuffled) one place down.
Thus the front of the queue is always stored in a par-
ticular location. One of the auxiliary variables is used
to denote the newest item in the queue. The other
variable is used by dequeue as a temporary pointer.

Figure 8 gives the impression that dequeue was built
up of code fragments, write(Inc Aux2,). This program
seems to have evolved because as crossover inserted an-
other write(Inc Aux2,) into dequeue, the whole pro-
gram was able to process longer queues and so pass
more tests. I.e. its fitness increased and so the propor-
tion of write(Inc Aux2,) code fragments increased in
the population making further similar crossovers more
likely.

pp .
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pp
...

....... ...
....... ...

....... ...
....... ...

....... ...
....... ...

....... ...
.......

....... ...
.......

..
..

0 1 2 3 4 5 6 7 8 9 10 11 12 13

front

dequeue

aux1

0 00 00

enqueue

Figure 7: Execution of “Shuffler” Program
3.6.2 Problem Specific Primitives

To demonstrate that it is possible to evolve the
desired circular queue a series of runs were made
which included “modulus increment” (MIncn) termi-
nals. MIncn perform the actions required to imple-
ment a circular data structure. Specifically, add one to
auxn, reduce modulo max, store the answer back into
auxn (and return it). In addition “good software en-
gineering practice” was enforced by restricting which
primitives could be used by which operation (see Table
2 for details).

In one set of runs, of the 11 that completed, five pro-
duced solutions which passed all the fitness tests and
correctly implement circular queues. I.e. with power-
ful primitives the queue problem can be readily solved
by GP.

Estimating the probability of a successful run
P (104, 42) at 5/11 (i.e. 5 successes in 11), the number
of runs required to be assured (to within probability
1%) of obtaining at least one solution is 8. This re-
quires 8 × 10, 000 × 42 = 3, 360, 000 individuals to be
processed.

3.7 RESULTS WITHOUT MINC

3.7.1 Pass by Reference

In order to allow a modulus increment primitive (cf.
MIncn) subroutine to evolve, adf1 was changed so that
it changes the argument it is passed. E.g. if adf1 im-
plements MInc and aux2 has the value 8, adf1(aux2)

300 William B. Langdon

..........................
..........................
..........................

..........................

front

mod

mod

read

1

aux2

0

....................................

....................................
write

Inc Aux2
....................................

write

Inc Aux2
....................................

write

Inc Aux2

....................................

....................................
write

Inc Aux2

....................................

....................................
write

Inc Aux2
....................................

write

Inc Aux2
....................................

write

Inc Aux2
....................................

write

Inc Aux2

..........................
mod....................................

....................................
write

Inc Aux2
....................................

write

Inc Aux2
....................................

write

Inc Aux2
....................................

write

Inc Aux2

....................................

....................................
write

Inc Aux2

...............................

...............................
write

Inc Aux1arg1

enqueue empty

read

aux1

Set Aux2

Set Aux2

arg1

adf1

.....................

...............................

...

..
...

..........

..........

....................
..
...........
......

........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
...

...

....................................

...

...

aux2

write

max arg1

mod

dequeuemakenull

Adf1

Set Aux1

Adf1

Set Aux1

arg1

Inc Aux2

mod

Set Aux1

Set Aux2

arg1

Dec Aux1

Adf1

mod

Figure 8: “Shuffler” Program

Table 2: Primitives Used by Each Operation & GP Parameters

Arithmetic Read only Update Initialise
+, −, 0, 1, max, mod,
PROG2, QROG2

aux1, aux2,
aux3, read

Inc Aux1, MInc1, Inc Aux2, MInc2,
Inc Aux3, MInc3, Dec Aux3, write

Set Aux1, Set Aux2,
Set Aux3

Used by all trees all but adf1 makenull, dequeue, enqueue makenull
Others Adf1 by all trees but itself Arg1 by enqueue and adf1 Front by Dequeue
Panmixia Pop = 10,000, G = 50, Pareto, memory penalty >15, 50% of test data within ±15.7, No aborts

would set aux2 to 9. In traditional programming lan-
guages this is done by passing to the subroutine a ref-
erence (pointer) to its argument. In our example, adf1
would be passed a reference to aux2.

In the following experiments pass by reference is im-
plemented by making adf1 set the variable (whose ref-
erence has been passed to it) to the value adf1 has cal-
culated. The ADF adf1 continues to return the value
as before.

3.7.2 Pareto Fitness Comparison

There was some evidence that the fitness function fa-
vored evolution of one operation (empty) above the
others. Various ways of weighting the fitness where
considered, but Pareto optimality [Gol89, page 197]
offered a way of comparing programs without intro-
ducing an arbitrary means of combining all their op-
erations into a single fitness. Therefore it was decided
to use Pareto fitness rather than explore increasingly
complex fitness scoring schemes.

Six criterion were used: the number of tests passed by
each of the five operations and the number of mem-
ory cells used (above 12). Pareto optimality was com-
bined with tournament selection by using multiple cri-
terion to select the best individual from the tourna-
ment group. Where the group contains two or more
individuals which dominate the rest of the group (are
best on all criterion) but not each other, one of them
is chosen at random to be the winner.

Tournaments are still used to decide which individu-
als are removed from the (steady state) population.
However there can now be multiple individuals with
different scores which are the best or elite (on differ-

ent criterion) and so elite individuals may be lost from
the population as a result of a tournament with other
elite individuals. I.e. the population is not elitist.

3.7.3 Good Software Engineering Practice

Various measures to encourage evolving genetic pro-
grams to follow “good software engineering practice”
such as penalizing excessive memory usage and re-
stricting which primitives are used where, have been
sketched (see also Table 3). In the final experiment,
the adf1 was forced to be “sensible”. In particular,
it could not yield a constant and it had to transform
its input so that its output would not be equal to its
input.

These rules are enforced by testing the adf1 part of
each program independently of the rest of the program.
The adf1 is rejected if any value returned by adf1 is
the same as its input or all the answers returned by
adf1 are the same. adf1 is tested with the values 0, 1,
. . . 9 and each answer given by adf1 with these values.
I.e. if adf1(9) = 10, then adf1 will be also be tested
with a value of 10.

3.7.4 Demic Populations

In the hope of reducing premature convergence, the
whole population was treated as a 100 × 100 square
torodial grid. Each grid point contains a single indi-
vidual and is the center of a 3×3 square deme [Col92].
When a new individual is created, its parent(s) are se-
lected from the same deme as the individual it replaces.
Tournament selection is used, as before, however the
four candidates are chosen (at random with reselec-
tion) from the same deme rather than from the whole
population.

301

Table 3: Low Level Primitives Used by Each Operation & GP Parameters

Arithmetic Read only Update Initialise
+, −, 0, 1, max, mod,
PROG2, QROG2

aux1, aux2,
read

write Set Aux1, Set Aux2

Used by all trees all but adf1 makenull, dequeue, enqueue makenull
Others Adf1 by dequeue and enqueue Arg1 by enqueue and adf1 Front by Dequeue
Pop = 10,000, G = 100, deme = 3× 3, Pareto, Memory penalty >12, 50% test data within ±5.0, No aborts

The failure of runs without demes and without MIncn
primitives to evolve circular queues suggests that small
demes are required. However only a limited number of
fitness functions and parameters have been tried.

3.7.5 Solutions Produced

In one set of 57 runs (using the primitives given in
Table 3), six produced solutions which passed all 320
tests. All six solutions use adf1 to implement some
kind of MInc. The adf1s evolved are complex; three of
them reduce modulo 11 rather than 10.

Subsequent analysis shows that three of the solutions
are entirely general solutions to the queue problem.
I.e. will pass any legal test sequence. Further, given
suitable redefinition of max and sufficient memory, all
three could implement an integer queue of any rea-
sonable length (after they were evolved, each passed
32,000 tests with queues of up to 757 items in length).
Figure 9 shows how one of the correct programs im-
plements a circular queue of up to nine integers, the
code is show in Figure 10.

Analyzing the other three programs shows that whilst
they pass all 320 tests, they are not general, i.e. test se-
quences could be devised which they would fail. This
may be a result of reducing the range of values en-
queued by too much (50% lie in -5. . . 5).

From the data plotted in figure 11 we estimate
P (104, 100) at 3/57 (i.e. 3 good solutions in 57 runs).
As before we calculate the number of independent runs
required to be assured (to within 1%) of obtaining at
least one good solution from P (104, 100) which yields
86. 86 runs would require up to 100 × 10, 000 × 86 =
86, 000, 000 trial programs to be tested.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.........

............ pp..
..
.........
............ ppp

..........

..........

..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..

pp
ppp ppp

Tail Head

-2-3-4-5-6-7-8-9-10

aux2aux2aux1aux1

-1

head

dequeueenqueue front

0

Figure 9: Execution of Evolved Queue Program (2)

0

50

100

150

200

250

300

200000 400000 600000 800000 1e+06

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

 Solutions

Mean
Min

Best of Generation
Solutions (general)

Solutions (not general)

Figure 11: Total tests passed, Means of 57 Queue runs

0

50

100

150

200

250

200000 400000 600000 800000 1e+06

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Queue 2

Max
Min

Mean
Solutions (general)

Solutions (not general)

Figure 12: Program Size, Means of 57 Queue runs

4 CONCLUSIONS

The experiments reported herein show that genetic
programming, plus indexed (i.e. directly addressable)
memory, can evolve programs which implement sim-
ple abstract data structures, namely a stack and a
queue. Each data structure was implemented by five
co-operating but independent procedures. To simulta-
neously evolve all the procedures, each is represented
as an independent tree within the same chromosome.

As anticipated, the stack proved to be easier to evolve
than the queue when each had access to problem spe-
cific primitives, i.e. the appropriate increment and

302 William B. Langdon

..........................

..........................
SUB

0 1

...

...
..........................

..........................
..........................

..........................
..........................

..

..........................

..........................

..........................

..........................

..........................

..........................

..........................
SUB

0 SUB

1 SUB

0 SUB

1 SUB

0 Set Aux1

Set Aux2

SUB

1 1

SUB

aux1

QROG2

max 0

Adf1

read

aux2

..........................
....................................

..........................

..........................

..........................

.................
.........
...............................

...

PROG2

write

QROG2

0

read

aux2 read

aux2

...............................

...............................
aux1

SUB

aux2

empty

....................................
..........................
..........................

....................................
QROG2

aux1 max 0

PROG2

Adf1

..........................

..........................

..

..........................
..........................
..........................

........

..

..........
..........

...........
..........
..

enqueue

read

Adf1

QROG2

aux1 Adf1

Adf1

QROG2

write

aux1 arg1

aux1

..........................
..........................

..........................
..........................
..........................

..........................

..
....................................

..
..

..
..

...
..

..
..

...

....................................

...

...

..........
..........
..........
..........
..........
...

..

........

..

........

..

........

..

........

..

.
..........................
..........................

...

...
..........................
..........................

..........................

..........................

...

...

..
..

..........................

..........................
..........................
..........................

..........................

..........................
..........................
..........................

..........
..........
..........
..

..

........

..

........

..

........

..

makenull front

read

aux2

read

read

write

QROG2

PROG2

QROG2

0

aux1

dequeue

PROG2

Front

PROG2

QROG2

max

read

aux2

Adf1

aux2 QROG2

QROG2

write

0

Adf1

adf1

mod

max max

mod

max

PROG2

arg1 arg1

PROG2

QROG2

SUB

SUB

SUB

max 1

arg1

SUB

SUB

max 1

arg1

Figure 10: Evolved Queue Program (2)

decrement operations. However such primitives need
not be essential. GP still evolved a circular queue (n.b.
the more difficult problem) even without the prob-
lem specific primitives (take Modulus and Increment,
MInc). It was able to do this by evolving them using
an evolvable subroutine (an ADF) which used “pass by
reference” to update its argument. Not surprisingly,
this required considerably more effort than when the
primitives were given.

Pareto optimality is a natural way to judge fitness
when evolving multiple procedures simultaneously and
can be readily incorporated into GP using tournament
selection. However further work is required to deter-
mine the best way to use it within GP.

“Good software engineering practice” measures where
used to encourage the evolutionary process. In par-
ticular we restricted which primitives could be used
in which tree, penalized excessive memory usage and
forcing the ADF to be “sensible”.

In these experiments the GP showed a marked ten-
dency to converge to non-optimal solutions. Thus
these problems would appear to be “GP deceptive”.
Partitioning the populations, using demes, was bene-
ficial in this case.

Having solved the stack and queue problems, we intend
to study more complex data types, such as lists. Real
world problems are more readily solved using abstract
data types; we intend to investigate, using a real world
scheduling problem, how evolving abstract data types
within GP extends the range of problems it can solve.

Acknowledgments

W. B. Langdon is funded by the EPSRC and National
Grid Plc. I would like to thank my supervisors (M.
Levene and P. C. Treleaven), Tom Westerdale, and
Mauro Manela for their critisims and ideas; Andy Sin-
gleton for GP-QUICK; and Adam Fraser for GPC++.

References

[AHU87] A V Aho, J E Hopcroft, and J D Ullman.
Data Structures and Algorithms. Addison-
Wesley, 1987.

[Col92] Robert J. Collins. Studies in Artificial Evo-
lution. PhD thesis, Artificial Life Labo-
ratory, Department of Computer Science,
UCLA, 1992.

[Gol89] David E. Goldberg. Genetic Algorithms in
Search Optimization and Machine Learning.
Addison Wesley, 1989.

[Koz92] John R. Koza. Genetic Programming: On
the Programming of Computers by Natural
Selection. MIT press, 1992.

[Koz94] John R. Koza. Genetic Programming II
Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May
1994.

[Sin94] Andy Singleton. Genetic Programming with
C++. BYTE, February 1994.

[Tel94a] Astro Teller. The evolution of mental mod-
els. In Kenneth E. Kinnear, Jr., editor, Ad-
vances in Genetic Programming, chapter 9.
MIT Press, 1994.

[Tel94b] Astro Teller. Turing completeness in the lan-
guage of genetic programming with indexed
memory. IEEE World Congress on Compu-
tational Intelligence, 1994.

http://www.byte.com/art/9402/sec10/art1.htm
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/MentalModels.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps

	INTRODUCTION
	EVOLVING A STACK
	PROBLEM STATEMENT
	ARCHITECTURE
	TERMINALS AND FUNCTIONS USED TO EVOLVE STACK
	FITNESS FUNCTION
	PARAMETERS
	RESULTS

	EVOLVING A QUEUE
	PROBLEM STATEMENT
	ARCHITECTURE
	TERMINALS AND FUNCTIONS USED TO EVOLVE QUEUE
	FITNESS FUNCTION
	PARAMETERS
	INITIAL RESULTS
	Shuffler
	Problem Specific Primitives

	RESULTS WITHOUT MINC
	Pass by Reference
	Pareto Fitness Comparison
	Good Software Engineering Practice
	Demic Populations
	Solutions Produced

	CONCLUSIONS

