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A flexible symbolic regression method for constructing
interpretable clinical prediction models
William G. La Cava1,5, Paul C. Lee 2,5, Imran Ajmal2, Xiruo Ding 2, Priyanka Solanki2, Jordana B. Cohen 3,4, Jason H. Moore4 and
Daniel S. Herman 2✉

Machine learning (ML) models trained for triggering clinical decision support (CDS) are typically either accurate or interpretable but
not both. Scaling CDS to the panoply of clinical use cases while mitigating risks to patients will require many ML models be
intuitively interpretable for clinicians. To this end, we adapted a symbolic regression method, coined the feature engineering
automation tool (FEAT), to train concise and accurate models from high-dimensional electronic health record (EHR) data. We first
present an in-depth application of FEAT to classify hypertension, hypertension with unexplained hypokalemia, and apparent
treatment-resistant hypertension (aTRH) using EHR data for 1200 subjects receiving longitudinal care in a large healthcare system.
FEAT models trained to predict phenotypes adjudicated by chart review had equivalent or higher discriminative performance
(p < 0.001) and were at least three times smaller (p < 1 × 10−6) than other potentially interpretable models. For aTRH, FEAT
generated a six-feature, highly discriminative (positive predictive value= 0.70, sensitivity= 0.62), and clinically intuitive model. To
assess the generalizability of the approach, we tested FEAT on 25 benchmark clinical phenotyping tasks using the MIMIC-III critical
care database. Under comparable dimensionality constraints, FEAT’s models exhibited higher area under the receiver-operating
curve scores than penalized linear models across tasks (p < 6 × 10−6). In summary, FEAT can train EHR prediction models that are
both intuitively interpretable and accurate, which should facilitate safe and effective scaling of ML-triggered CDS to the panoply of
potential clinical use cases and healthcare practices.
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INTRODUCTION
Interpretable machine learning (ML) models are essential to
realizing the potential for systematic, targeted clinical decision
support (CDS) to radically transform the practice of medicine. Most
CDS is currently triggered based on manually curated rules or
heuristics that identify patient cohorts with certain characteristics
of interest1–3. Such approaches can achieve high accuracy, but in
the setting of complex, imprecise, and heterogeneous clinical
phenotypes and high-dimensional electronic health record (EHR)
data, curating such rules requires considerable time and
expertise4–9. The effort needed for such approaches impedes
their scalability to widespread, effective CDS.
Recent advances in ML and the ever-improving availability of

EHR data herald the use of ML for systematic, targeted CDS4,5.
While the potential gains are massive, the challenges are also
considerable. Realizing systematic CDS requires learning and
deploying highly accurate clinical prediction models for a myriad
of clinical phenotypes in the setting of considerable variability in
clinical practice and documentation across providers and health
systems. Because of these challenges, and particularly because of
the novelty of the tools and approaches, it is essential to
comprehensively assess and balance the potential benefits and
risks of each model-triggered CDS intervention.
One major determinant of the risk of a model-triggered

intervention is the model’s interpretability10–13. Interpretability,
which is related to explainability, is a somewhat subjective
concept that we will use to describe whether the user, here a
clinical practitioner, can understand how and why the model is

calling an individual patient positive or negative13,14. Interpretable
models are more naturally incorporated within existing decision-
making frameworks whereby clinicians can corroborate or second-
guess predictions, ultimately leading to trust and yielding overall
higher quality decisions. For these reasons, the FDA’s proposed
regulatory framework for the evaluation of automated clinical
decision support systems incorporates interpretability as part of its
risk stratification, described as whether clinicians can “indepen-
dently review the basis for [a model’s] recommendations”15. There
is much debate about the importance of model interpretability for
deploying safe and effective ML-based CDS16–18. While all models
need not be interpretable19, interpretable models are preferable if
they have comparable performance or if a modest cost to
performance is outweighed by lower risk or better incorporation
into clinical practice that ultimately yields greater overall clinical
utility.
Expert-curated heuristics are inherently interpretable, but the

majority of ML models learned for CDS have limited interpret-
ability20–27. Post-hoc approaches typically estimate the impact of
individual features for particular samples or sets of samples, but
these approximations do not yield complete interpretability or
accuracy, particularly when a model’s components are intricate or
high-dimensional16,28–31. We believe this lack of interpretability
significantly delays the deployment of ML-based CDS. To achieve
trustworthy explanations, researchers may turn to well-
understood and transparent ML approaches such as (penalized)
linear models, but often do so at the expense of discriminative
performance.
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In an effort to train EHR prediction models that are both
accurate and interpretable, we adapted and further developed the
feature engineering automation tool (FEAT)32–34. FEAT is a
symbolic regression method35 that searches for simple, inter-
pretable feature representations in tandem with fitting a
classification model (Fig. 1). The representations are trained using
a population-based Pareto optimization algorithm that jointly
optimizes model discrimination and complexity36,37. To our
knowledge, this is the first work to explore the application of
symbolic regression with Pareto optimization to EHR prediction
modeling.
We applied FEAT to EHR data targeting screening for primary

aldosteronism (PA), the most frequent cause of secondary
hypertension38. PA appears to affect up to ~1% of US adults
and it is highly treatable; unfortunately, it is under-screened for
and under-diagnosed39–44. Multiple specialty society guidelines
recommend PA screening for patients with hypertension with
unexplained hypokalemia (HTN-hk) or apparent treatment-
resistant hypertension (aTRH) as PA is thought to be responsible
for these phenotypes in up to 20% of affected patients39–41,45. We
have applied FEAT to learn EHR prediction models for identifying
patients who should be screened for PA. For this clinical goal,
interpretable models are highly advantageous because these
clinical phenotypes are complex and there is considerable
variability in diagnosis and management across practitioners.
Using an interpretable prediction, clinicians should be able to
evaluate the models’ results and then make their own model
prediction-informed decision. We expect that identifying patients
that meet PA screening guidelines in such a manner will help
providers improve their management of these patients, leading to
better blood pressure control and ultimately decreased cardio-
vascular morbidity and mortality.
We evaluated FEAT’s ability to generate interpretable and

accurate models in comparison to other potentially “white-box” or
“glass-box” approaches, including penalized logistic regression, as
well as in comparison to commonly used “black-box” methods
random forests and neural networks. FEAT-trained models were
first compared for three increasingly complex phenotypes that are
components of PA screening criteria, adjudicated by chart review.
To explore the generalizability of the method, we then applied

FEAT to a panel of 25 open, previously studied clinical prediction
tasks in MIMIC-III46. We found that FEAT was able to generate
considerably simpler models than traditional “white-box”
approaches and achieved equivalent or better accuracy. FEAT’s
models were also much smaller than black-box approaches
(random forest and long-short-term memory networks (LSTMs)),
which demonstrated only slightly higher discrimination for several
but not all of the phenotypes. These results demonstrate the
promise of symbolic regression for generating clinical prediction
models that are both accurate and interpretable.

RESULTS
Development of a symbolic regression method FEAT for
constructing accurate and interpretable EHR prediction
models
To train EHR prediction models whose outputs are intuitively
interpretable by clinicians, we adapted and further developed the
ML tool FEAT (Fig. 1) to better implement Boolean logic, added
procedures to encourage model parsimony, and developed
approaches for improving training robustness. We evaluated the
modifications to FEAT (listed in Supplementary Table 1) on 20
benchmark classification problems from the Penn Machine
Learning Benchmark (PMLB)47 that were similar in shape to our
PA screening EHR data (Supplementary Table 2). Unless otherwise
noted, the statistical tests reported below are based on Wilcoxon
rank-sum tests.
We found that restricting operators and simplifying models

decreased the size of resulting models by more than two-fold
(p= 7.2 × 10−9) without substantially impairing classification
performance (Supplementary Fig. 1). We considered restricting
FEAT to produce models with only a single derived feature (i.e.
Feat_1dim). While this constraint further decreased median model
size by 71% (p= 1.4 × 10−18), these models demonstrated
markedly lower AUPRC (p= 1.5 × 10−4). Therefore, in this work
we used the version of FEAT that included feature representation
simplification components and a restricted operator set but
allowed multiple derived features (i.e., FEAT_boolean_simplify).
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Fig. 1 How FEAT works. a Steps in the genetic programming process. Candidate models are initialized in a population; the best models
(parents) are selected via epsilon-lexicase selection; offspring are created by applying variation operations to the parents; and then parents
and offspring compete in a survival step using NSGA-II [22]. The process then repeats. b The evaluation of a candidate models’ complexity and
performance in Pareto Optimization framework in the Survival step. c Example model in which input features are transformed by logical
functions with or without threshold operators.
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Automated learning of EHR prediction models
We next applied our optimized FEAT method to a training dataset
of 899 subjects to learn to replicate heuristics that were expert-
curated to identify patients with hypertension, HTN-hk, and aTRH.
We compared the constructed models to those trained by other
ML methods that have the potential to build interpretable models:
LASSO-penalized logistic regression (LR L1), ridge-penalized
logistic regression (LR L2), decision trees (DT), and Gaussian Naïve
Bayes (GNB). Across all three heuristics, FEAT models achieved
higher area under the precision-recall curve (AUPRC) (range: +0.01
to +0.52; p < 0.001) than all other models and were smaller than
all other models (range: 3-fold to 40-fold; p < 1 × 10−6) except DT
models (Supplementary Figs. 2 & 3, Supplementary Table 3).
Next, we compared these methods’ abilities to train models to

predict more complicated realizations of these phenotypes as
assessed by chart review, which were present in 423 (47%), 93
(10%), and 103 (11%) subjects, respectively. Across all phenotypes,
FEAT models achieved higher AUPRC scores than GNB (range:
+0.05 to +0.44; p < 0.001), DT (range: +0.07 to +0.28; p < 0.001),
and LR L2 (range: +0.00 to +0.09; p < 0.001) models and similar
AUPRC to LR L1 (range: 0.00 to +0.02) models (Fig. 2; Supple-
mentary Fig. 3 and Table 4). At the same time, FEAT models were
considerably smaller (range: 1.7-fold to 34-fold; p < 1e–6) than all
other models including DT models. We next explored the trade-off
between model performance and complexity for heuristic and
chart-review trained models (Fig. 3). The FEAT models clustered
near the high-AUPRC, low-complexity region (top left) of this
tradeoff space, indicating that relative to the other methods they
consistently achieved an efficient trade-off between these two
performance objectives. Focusing on the most complex pheno-
type, aTRH by chart review, FEAT models achieved a median
AUPRC of 0.69 (interquartile range [IQR]: 0.05) with a median size
of 9.8 (IQR: 1.8). This model showed reasonable discrimination
across a broad range of potential decision thresholds, as depicted
by AUPRC and area under the receiver-operating curve (AUROC) in
Fig. 4.

We next compared FEAT models to random forests (RF) models,
a representative black-box method. As expected, FEAT models
were orders of magnitude smaller than the RF-trained models
(Figs. 2 & 3, Supplementary Tables 3 & 4). FEAT models showed
similar AUPRC for all heuristics as well as for hypertension and
HTN-hk by chart-review and a slightly lower AUPRC (0.69+/− 0.05
versus 0.75+/− 0.02) for aTRH by chart review.

Final model training and evaluation
Next, we applied the methods refined by cross-validation to train
models on the entire training set and assessed their performance
on a held-out test set of 300 subjects, including 185 (61%), 79
(26%), and 73 (24%) subjects positive for each chart-review
phenotype. Model performance and size (Table 1) were largely
consistent with cross-validation estimates, although most
appeared to have slightly better AUPRC likely due in part to the
greater enrichment for heuristic-ascertained cases in the testing
cohort. For chart-review hypertension, HTN-hk, and aTRH, the
FEAT models demonstrated AUPRC scores of 0.99 (95% CI: ±0.01),
0.96 ( ± 0.04), and 0.78 ( ± 0.08), and AUROC scores of 0.99 ( ± 0.01),
0.98 ( ± 0.015), and 0.93 ( ± 0.03), respectively. Across phenotypes,
the FEAT models were considerably smaller than those produced
by the other potentially interpretable modeling methods and their
AUPRC and AUROC scores were comparable to that of the most
discriminative model (Table 1).
To provide further insight into the model construction process,

we inspected the full Pareto-optimal set of models FEAT trained to
predict aTRH by chart review (Fig. 5a). In the training set, as model
complexity increased model performance similarly increased.
However, as expected, in both the validation and held-out test
data, there was an inflection point above which additional
complexity was associated with poorer performance. The final
model was selected as the one with the lowest balanced log-loss
in the validation set. This model showed similar performance in
the held-out testing set. Notably, the models adjacent to this

Fig. 2 Estimating model discrimination and size by cross-validation. (Top row) AUPRC scores for phenotyping models trained in 5-fold
cross-validation over 50 iterations, each averaged across testing folds. (Bottom row) Sizes of the trained models. Each subplot represents a
different training outcome, as determined by chart-review. Box centerline: median; box limits: quartiles; whiskers: 1.5x the interquartile range;
diamonds: outliers.
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inflection point demonstrated balanced log-loss comparable to
that of the RF model and far superior to that of the LR L1 model.

Assessment of model generalization and clinical utility
To further evaluate the utility of the resulting models, we selected
diagnostic interpretive thresholds. For the clinical goal of
identifying patients that should be screened for PA using models
predicting aTRH, we targeted a model PPV for aTRH of ≥0.70
amongst primary care patients. We assumed an aTRH prevalence
of 7.5%, based on the frequency observed in our training set and a
meta-analysis48. Based on the estimate that 20% of aTRH patients
have underlying PA, we expect that approximately 1 in 7 aTRH
prediction model-positive patients would have PA. In training, we
selected a classification threshold of 0.40, which corresponded to
an observed sensitivity of 0.82. Among the 200 randomly drawn
held-out test subjects, this FEAT model yielded an adjusted PPV of
0.70 and sensitivity of 0.62. To evaluate FEAT on a richer set of
cases, we also assessed its performance on 100 test patients
positive for the final aTRH or HTN-hk heuristics. In this set, the final
FEAT model demonstrated a PPV of 0.79.
To further evaluate the generalization of FEAT-trained models to

external data, we performed an internal-external validation study
in which models were trained in subjects from 70% of primary
care practice sites and evaluated in a held-out set of subjects from
30% of primary care practice sites. The FEAT-trained models
showed very similar performance to when sites’ data were
randomly spread over both training and testing, including an
AUPRC for aTRH of 0.77 (95% CI: 0.63–0.89; Supplementary
Table 5). Notably, while all methods showed lower AUPRC for HTN-
hk by chart review in this evaluation, the FEAT model (AUPRC: 0.92
(CI: 0.85–0.96)) appeared to generalize better than several other
methods, including the more complex RF model (AUPRC: 0.88 (CI:
0.80–0.95)).

Model interpretability
We next evaluated the relative interpretability of the resulting
models, focusing on the models for predicting aTRH. The final

FEAT model (Fig. 5b) was concise and fully specifiable. This model
assigned risk according to the following factors, in order of
absolute coefficient magnitudes: first, a history of more than one
encounter while prescribed three or more anti-hypertensive
medications (β= 1.33); second, a mean systolic blood pressure
above 128.6 mmHg (β= 0.95); third, a history of low variability
(standard deviation) in the number of encounters while prescribed
two anti-hypertensive medications each year (β= -0.52); fourth, a
history of a median of 1.25 or more encounters per year while
prescribed four or more hypertension medications (β= 0.49); fifth,
more than 40 mentions of hypertension in clinical notes (β= 0.42);
and sixth, a maximum total calcium greater than 10.1 mg/dL
(β= 0.40). To investigate the factors underlying the maximum
calcium feature, we explored its associations. We found that
subjects with aTRH were in fact more likely to have an elevated
maximum calcium (OR= 4.4; p= 4 × 10−9, Fisher’s Exact test) and
that these elevations were in turn associated with the number of
days prescribed thiazide diuretics (OR= 1.5 per SD; p= 3 × 10−6,
Z-test) and beta-blockers (OR= 1.4; p= 2 × 10−4).
None of the other methods’ trained models can be described in

such compact and clear language. The other potentially inter-
pretable modeling methods generated models that were too large
to be understood at an intuitive level in practice. To directly
compare and contrast the interpretability of FEAT and other
methods, we calculated SHAP values31 for the test subjects. SHAP
values summarize the impact of input variables on model outputs
by generating an additive feature attribution model. Positive and
negative SHAP values indicate a marginal increase and decrease in
predictions, respectively. The summary plots for SHAP values
(Fig. 6a, c) depict the distribution of SHAP values relative to the
magnitude of each input variable, with each dot representing a
single test subject. The decision plots for SHAP values (Fig. 6b, d)
illustrate how each feature contributes to predictions for a subset
of individual subjects.
The FEAT summary plot (Fig. 6c) reflects the simplicity of the

FEAT model. For the five dichotomized features, each patient’s
prediction is either increased or decreased by a fixed increment.
The one continuous feature affects each patient distinctly, but has

Fig. 3 The tradeoff between model discrimination and complexity. Each point shows the cross-validation testing AUPRC (y-axis) and size
(x-axis) for models trained in 50 repeat trials for each method. Each subplot represents a different expert-curated heuristic (top row) or chart
review phenotype (bottom row). The ideal model is discriminative and simple, meaning it is near the top left corner. DT models occupy this
zone for modeling simple heuristics, whereas FEAT models tend to be simple and accurate across all experiments.
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a clear directionality, i.e. high variability in the number of
encounters per year on two anti-hypertensive medications
decreases the prediction. These simple effects translate into
intuitive interpretations for individual subjects as to why the
model is calling them positive or negative (Fig. 6d). The positive
increases in model output show that most patients predicted to
be positive have had multiple encounters while prescribed three
anti-hypertensive medications. They also had either an elevated
mean systolic blood pressure and many mentions of hypertension
in notes or multiple encounters per year while prescribed four or
more anti-hypertensive medications.
In contrast, the LR L1 (Fig. 6a, b) and RF (Supplementary Fig. 4)

summary and decision plots reflect much more complicated
models, in which many features contribute to the prediction
scores. The summary plots show the modest effect of each of the
20 displayed features, sorted by average absolute variable
importance. The decision plots demonstrate that each patient
has a distinct reason for a positive or negative prediction,
determined by a combination of many features. There is slow
decay in importance across ranked features. In addition, there is
also considerable signal from the features not depicted, as evident
in the variable, non-zero intercepts between each patient’s line
and the model output value x-axis. Thus, one cannot simply
identify specific factors that explain LR L1 or RF classifications. For
example, there are many features that appear to have had small,
positive impacts resulting in misclassification of the single
depicted false-positive subject (Supplementary Fig 4B, dot-
dashed line with model output probability greater than 0.5). The
mechanism by which each feature contributes to the misclassi-
fication cannot be deduced without fully considering the
interactions between features in the ensemble. In contrast, since
FEAT performs logistic regression on the transformed features
(Fig. 6), the derived predictors have linear and additive impacts on
model output that can explain misclassifications.
Notably, for the LR L1 explanations in Fig. 6 many of the top

features (e.g. minimum HDL cholesterol) are not intuitively linked
to the phenotype, likely due to feature co-linearity. To address this,
we also calculated LR L1 SHAP values after adjusting for feature
covariance (Supplementary Fig. 5A, B). In this case, SHAP values do
not explicitly represent linear model coefficients. Instead, SHAP
values are transformed by applying a linear projection to the input
data and model coefficients. Put simply, whereas Fig. 6 SHAP
values are faithful to the models and its coefficients, Supplemen-
tary Fig. 5 SHAP values are more faithful to the correlation
structure of the input data. After adjustment, the top features (e.g.

# enc 4+ meds, median) more closely matched clinical intuition,
including small positive effects on aTRH predictions from
encounter counts while prescribed multiple medications, systolic
blood pressure summarizations, and counts of days on hyperten-
sion medications. However, the relationships between features
and SHAP values remained complex, including a large number of
features with small individual effects. In addition, to identify the
relationships between such features and the LR L1 model
predictions requires a close inspection of the data, and is not
apparent from simple inspection of the model coefficients
themselves (i.e. Fig. 6). For the sake of comparison, we also
accounted for co-linearity in the FEAT model (Supplementary
Fig. 5C, D). While these FEAT model explanations do show some
smearing of the features’ apparent impact, the overall interpret-
ability and interpretation of the model does not fundamentally
change.

Method generalizability across common phenotypes in open,
benchmark EHR tasks
Finally, to assess the generalizability of this approach to many
important clinical use cases and other clinical data sources, we
leveraged an existing data pipeline23 for the large, publicly
available, and well-studied MIMIC-III critical care database46. We
applied FEAT in comparison to LSTMs and LR on 25 benchmarking
clinical phenotype prediction tasks. In contrast to the PA chart-
reviewed phenotyping, these data consist mostly of time series,
which LSTMs train on directly. We trained models using data from
35,621 patients and evaluated models for 6281 patients.
To explore the tradeoff between model performance and

complexity, we compared two versions each for FEAT and LR that
learn models with up to either 10 or 100 dimensions. Limiting
models to 10 dimensions to maximize interpretation, FEAT models
demonstrated discrimination (macro AUROC [mAUROC]= 0.72;
macro AUPRC [mAUPRC]= 0.35) that outperformed LR
(mAUROC= 0.68, p= 6.0 × 10−6; mAUPRC = 0.30, p= 3.4 × 10−6;
Fig. 7, Supplementary Fig. 6 and Table 6). Notably, these 10-
dimension FEAT models performed similarly to 100-feature LR
models (mAUROC= 0.72, mAUPRC= 0.37; p= 1.0). Across tasks
there was considerable variability in model discriminative
performance (Supplementary Fig. 6). The LSTM models were 4
orders of magnitude larger and demonstrated slightly higher
discrimination (mAUROC= 77, mAUPRC= 0.41); allowing FEAT to
learn 100-dimensions enabled it to approach this discriminative
performance (mAUROC= 0.74, mAUPRC= 0.38; p= 0.005).

Fig. 4 Model precision-recall and receiver-operating curves. Precision-recall curves (left) and receiver-operating curves (right) for
phenotyping models trained to predict chart review classifications for aTRH. Values shown are means of test performance in 5-fold cross-
validation repeated 50 times.
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DISCUSSION
We adapted and further developed a symbolic regression method
FEAT for constructing EHR prediction models that are both
accurate and intuitively interpretable and then applied it to find
patients that should be screened for PA and to predict 25
phenotypes in established benchmark tasks. This approach yields
clinically intuitive models by embedding the design goals from
manual curation of phenotyping heuristics: high accuracy and low
complexity. Importantly, FEAT achieves this in a largely automated
process such that, unlike manual curation, it could be applied at
scale for a wide expanse of clinical use cases across many clinical
practices’ data.
There is an important and active debate regarding the

importance of model interpretability in achieving acceptance,
trust, and effectiveness in ML-triggered CDS16,17. Much of that
debate considers the relative utility of post-hoc explanations of
black-box models because of the performance limitations of
conventional interpretable modeling methods. We demonstrate
that for many important clinical use cases FEAT can learn models
that are concise enough to be inherently interpretable, circum-
venting the challenges and limitations of trying to accurately and
precisely explain a model’s predictions post-hoc. This level of
understanding of model predictions should contribute to safer
and more effective ML-triggered CDS and be advantageous in an
important set of clinical use cases for which interpretable model
performance rivals that of black box methods or a modest cost in
performance is outweighed by the benefits conferred by
interpretability in improved trust and understanding.
We compared the ability of FEAT to learn accurate and

interpretable prediction models from EHR data to that of

conventional ML methods. The models FEAT learned to predict
the PA screening chart-review phenotypes were more concise (CV
range: 1.7-fold to 4000-fold; p < 0.001) and more interpretable
(Figs. 5b & 6) than those of all other ML approaches. In addition,
their discriminative performance matched or exceeded that of all
other potentially interpretable ML methods (ΔCV AUPRC: +0.00 to
+0.44). Similarly, FEAT trained concise and accurate models across
25 established phenotyping tasks using MIMIC-III data. We also
compared FEAT to complex, black-box methods, demonstrating
that FEAT models can achieve similar discriminative performance
(FEAT-100 mAUPRC= 0.38 versus LSTM mAUPRC= 0.41).
Although some of the FEAT models for PA prediction showed
slightly lower AUPRC than corresponding RF models (e.g. CV
AUPRC 0.69 versus 0.75 for aTRH chart review), the two methods
generated similar balanced log-loss scores (the cost function
optimized as part of the FEAT algorithm), as shown in Fig. 5a.
The model that FEAT learned to identify patients with aTRH was

both accurate and understandable. FEAT learned to combine
complementary sources of information, including medication,
vitals, laboratory results, and concepts from notes. The model’s
components were very similar to those of the expert heuristic and
they matched factors expert clinicians use in evaluating for
resistant hypertension, including the number of anti-hypertension
medications, the duration and variability of these medication
prescriptions, and blood pressure measurements. In addition,
FEAT learned an unexpected but clinically intuitive and valuable
rule related to maximum blood calcium levels. Anti-hypertensive
medications, particularly diuretics, can dysregulate calcium home-
ostasis. In addition, hyperparathyroidism, which causes elevated
blood calcium, is associated with hypertension. We suspect this
rule enabled the model to identify a few affected subjects, either

Table 1. Final model discrimination in test set and size by chart-review phenotype.

Phenotype Method Test AUPRC Test AUROC Model Size

HTN GNB 0.97 (0.94–0.98) 0.96 (0.94–0.98) 331

DT 0.97 (0.95–0.99) 0.97
(0.95–0.99)

43

LR L1 1.0 (0.99–1.0) 0.99 (0.99–1.0) 32

LR L2 0.99 (0.99–1.0) 0.98
(0.97–0.99)

331

RF 1.0 (0.99–1.0) 0.99 (0.99–1.0) 67,276

FEAT 0.99 (0.98–1.0) 0.99 (0.98–1.0) 18

HTN-Hypokalemia GNB 0.61 (0.52–0.69) 0.81 (0.76–0.86) 331

DT 0.75 (0.67–0.82) 0.86 (0.81–0.9) 33

LR L1 0.95
(0.92–0.97)

0.98
(0.96–0.99)

29

LR L2 0.92
(0.88–0.95)

0.96
(0.93–0.98)

331

RF 0.96
(0.93–0.99)

0.99
(0.98–0.99)

16,256

FEAT 0.96
(0.93–0.98)

0.98
(0.96–0.99)

8

Resistant HTN GNB 0.57 (0.49–0.66) 0.86 (0.82–0.89) 331

DT 0.24 (0.19–0.28) 0.47 (0.41–0.52) 67

LR L1 0.74 (0.66–0.82) 0.87 (0.83–0.91) 130

LR L2 0.78
(0.69–0.86)

0.91 (0.87–0.94) 331

RF 0.90
(0.84–0.94)

0.96
(0.95–0.98)

119,760

FEAT 0.78
(0.69–0.85)

0.93
(0.91–0.95)

11

Bootstrapped 95% confidence intervals (CIs) shown in parenthesis. Bold indicates best models and those with an overlapping CI.
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on intensive anti-hypertensive regimens or with underlying
hyperparathyroidism, who were missed by expert-curated heur-
istics that only consider medication prescriptions and blood
pressure.

In applying FEAT to identify patients that meet the two major
clinical guideline criteria for PA screening, aTRH and HTN-hk, we
constructed prediction models that could be used to trigger
decision support for PA screening. Expert-curated computable
phenotypes have been constructed for PA screening criteria,
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>1# of encounters with 3 HTN
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# of encounters with 4+ HTN
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> 10.1
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Fig. 5 FEAT models trained to predict apparent treatment-resistant hypertension. a We plot the final Pareto archive of FEAT models for
aTRH in terms of complexity versus balanced log-loss, with the latter shown for training, validation (used for model selection), and external
test sets. The selected FEATmodel is shaded gray. Vertical bars are shown for the test set performance of RF and LR L1 models. Note, for clarity
of display the model numeric thresholds are rounded to the nearest integer (i.e. Calcium, max > 10.1 mg/dL as Calcium, max > 10). b Depiction
of the selected FEAT model for classifying subjects as having apparent treatment-resistant hypertension. The input features are shown on the
left followed by the learned transformation operations, the multiplication coefficients, the summation, logistic transformation, and decision
threshold.
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including for aTRH49,50. But to our knowledge this is the first
demonstration of a ML-trained phenotyping model for this
purpose. Critically, the FEAT-trained model achieves our clinically
derived goals for (1) specificity in our target population (PPV >=
0.7) such that we would expect >10% of model-positive patients
to have undiagnosed PA, and (2) interpretability (Fig. 5b). The
FEAT-trained models are preferable to those trained by conven-
tional interpretable ML modeling methods because of their
comparable or superior discrimination (ΔCV AUPRC: +0.0 to
+0.44) and better interpretability (Fig. 5b & 6). The FEAT models
are also preferable to the RF models in this case, because the small
decrement in discrimination (e.g. CV AUPRCs 0.69 versus 0.75 for
aTRH chart review) is outweighed by the considerable improve-
ment in interpretability (Figs. 5b & 6c, Supplementary Fig. 4) and
thereby likely better compatibility with corroborating or second-
guessing model predictions as part of conventional clinical
decision making practices.
We note several study limitations. First, the FEAT models we

have trained would require additional refinement and validation
prior to implementation in clinical practice. As this work’s goal was
to present and evaluate the method and approach rather than to
build a specific, implementable model, we did not assess the
generalizability of specific FEAT-trained models across healthcare
systems. However, to assess the approach’s potential for learning

generalizable models, we did perform an internal-external
validation study in which models were trained and tested in
patients from separate primary care practices. Although there is
likely more variability between health systems than between
clinical practices within a health system, this validation study
demonstrated the generalizability of FEAT-trained models to held-
out clinical practices (Supplementary Table 5). For aTRH by chart
review, FEAT achieved a test AUPRC of 0.77, which was similar to
that of both the LR L1 (AUPRC= 0.78) and FEAT in the non-site-
randomized, held-out testing (AUPRC= 0.78) models. This cross-
site generalizability is expected because FEAT uses an internal
held-out validation set to select a final model from a set of models
trained in parallel (see Fig. 5a) and because the lower complexity
of FEAT models should decrease overfitting. In fact, FEAT models
appeared to generalize better than some other models, including
RF models that showed AUPRCs that were lower by 0.08 (HTN-
hypoK) and 0.05 (aTRH) in subjects from held-out practice sites.
A second study limitation is that we only compared FEAT to a

select number of other ML methods. In our PA studies as our
primary focus was on interpretable models, we chose to only
compare to a single ‘black-box’ method, RF. In our follow-up
MIMIC-III studies that leveraged time series data, we compared to
a single deep learning method (LSTM). In each of these studies, we
could have included additional methods that may have

a b

c d

Fig. 6 SHAP plots for explaining models. SHAP summary (a) and decision (b) plots for the LR L1 and summary (c) and decision (d) plots for
the FEAT models. The summary plots (a, c) describe the most important features, ranked by the mean absolute SHAP value in the test data.
Each point represents a subject; its color reflects the relative feature value and the location along x-axis its estimated impact on the subject’s
model output. The lines in the decision plots (b, d) show model predictions for a sample of 10 positive and 10 negative predictions, with dash-
dotted lines indicating misclassifications. The summary and decision plots are aligned vertically, such that the feature labels in the summary
plots correspond to the incremental changes in the adjacent decision plot lines, indicating the feature responsible for the change in the
model score at each level. Note, the x-axis for the decision plots (b, d) are restricted to 0–1.
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demonstrated slightly better classification than those we reported.
However, we believe this would not meaningfully change the
interpretation of this work because (a) we have previously
compared FEAT to a large variety of methods and (b) none of
the conventional methods expected to yield slightly higher
accuracy would be comparably interpretable32,33. In addition, as
the relative performance of these methods depends on the use
case, adding these analyses here would not change our
recommendation that when developing ML models for CDS one
should directly evaluate the relative discriminative performance of
FEAT and other potential methods for each specific clinical
use case.
A third related study limitation is the comparator methods likely

could have been further refined to achieve better interpretability
and accuracy. For instance, while in our MIMIC-III analyses we
performed feature selection prior to LR in order to compare FEAT
and LR classification performance at similar model complexity, we
did not do this in the PA studies. We felt this comparison was
unnecessary as in the PA studies the much more complex LR
models did not demonstrate superior classification. We expect
that if we were to decrease the LR models to the size of the FEAT
models, the smaller LR models’ discriminative performance would
be lower than that of the FEAT models. Similarly, we could have
explored other options for further optimizing comparator method
hyperparameters. However, the implementations we applied were
consistent with conventional best practices and we would not
expect further refinement to dramatically affect comparator
method performance.
We also note a few limitations to the presented FEAT method.

First, the FEAT models showed lower discriminative performance
than ‘black box’ modeling methods for some complex tasks. To
train models that are concise and interpretable, we restricted the
operator space and the size of learned models. This emphasis on
small size was necessary to achieve interpretability, but it came at
a cost to discriminative performance for more complex tasks. For
examples, for aTRH some patients with heart failure or chronic
kidney disease were misclassified by FEAT as positive (Fig. 6d), but
the larger LR L1 model lowered prediction scores based on
associated clinical features maximum creatinine or heart failure
diagnosis codes (Supplementary Fig. 5A). Related features were
observed in FEAT models along the Pareto-optimal front during
training (Fig. 5b and data not shown), but these models were
ultimately not selected due to their higher overall validation loss.
Such models may have been selected were more training cases
available. Across the 25 MIMIC-III phenotyping tasks, the
magnitude of the tradeoff between interpretability and discrimi-
nation varied. For several tasks, in order to approach the

discriminative performance of LSTM, FEAT models’ dimensionality
needed to be less constrained so that it could learn more
discriminative models. These larger models are unlikely to be
intuitively interpretable in the same way as a 10-dimensional
model can be. With this in mind, FEAT will not be the best tool for
every use case. For a given clinical use case, the utility of FEAT
compared to other methods will depend on the observed tradeoff
between of interpretability and discriminative performance and
use-case specific factors, including implementation contextual
factors such as the proposed role of the model in clinical decision
making and the cost (including financial cost, patient and clinician
time, and potential for harm) of the next step in the clinical
workflow. That said, we expect the tradeoff between discrimina-
tion and interpretability could be improved by further method
development. Since the balanced log-loss, which is the metric
FEAT was optimizing, was similar between the FEAT and RF
models, we plan to explore more effective cost function proxies
for model target performance metrics (e.g. AUPRC).
A third limitation, which if addressed by future work could likely

improve the performance of FEAT models, is the reliance on pre-
processing of input clinical data upstream of FEAT. This pre-
processing selects and compiles data elements from across large
databases consisting of many separate tables and transforms
longitudinal features into individual, summary patient-level
features. It is very important to consider this pre-processing as
both the interpretability and accuracy of the end-model is
dependent on it. However, this deficit is not specific to FEAT, as
comparable pre-processing is also required for conventional
potentially interpretable methods and some ‘black box’ methods
(e.g. RF). We applied two distinct approaches to feature
engineering. For PA, we leveraged expert knowledge to derive
some use case-specific input features, such as “# of encounters
with 3 HTN meds, sum”. In contrast, for MIMIC-III in order to scale
to many more phenotypes, we applied an automated approach
that was not informed by external expert knowledge. We expect
that if we had leveraged external knowledge in the MIMIC-III
analyses, the FEAT model discriminative performance could have
been improved for some phenotypes. To scale this approach to
effectively leverage external knowledge in an automated way for
new use cases, further methodological development would be
needed. External knowledge could be incorporated by leveraging
clinical vocabularies and ontologies for representing both clinical
data and expert clinical knowledge51,52. For example, the
importance of counting the number of prescribed HTN meds
could be learned by aggregating medication prescriptions using
grouper variables defined in EHRs or standard vocabularies (e.g.
RxNorm). In addition, if the method were able to directly operate

Fig. 7 Performance across benchmark phenotyping tasks. We compare FEAT to penalized LR and deep neural networks (LSTM) on 25
established phenotyping tasks using the MIMIC-III critical care database. To compare FEAT and LR at similar levels of interpretability, we restrict
the final model dimensionality to 10 or 100 features, as noted. Macro-averaged AUROC, AUPRC, and model size comparisons are shown.
Boxplot notches indicate bootstrapped 95% confidence intervals (CIs) of the medians. Wilcoxon rank-sum pairwise significance comparisons
are shown as follows: ns: p <= 1; *0.01 < p <= 0.05; **0.001 < p <= 0.01; ***1e–04 < p <= 0.001; ****p <= 1 × 10−4. Box centerline: median;
box limits: quartiles; whiskers: 1.5x the interquartile range.

W.G. La Cava et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) _####_



on longitudinal data (like LSTMs) it could learn cross-feature
longitudinal interactions such as “elevated BP while prescribed
3+ HTN medications”.
A fourth limitation of the presented method is that the FEAT

models are not guaranteed to be as clinically intuitive as expert
curated heuristics. Our modifications to FEAT successfully con-
strained the size of models and the operators used in models,
which is a necessary component for interpretability. However,
these constraints do not guarantee that the models are also
intuitive. Intuitive interpretability places further requirements on
the processing of input data and the model component
operations. One future opportunity for improving interpretability
is building on top of clinical concepts from ontologies, as
described above. Another direction for improving interpretability
is further simplifying the model operations. For instance,
simplifying threshold choices so that instead of learning a BP
threshold of 128.6 mmHg and Calcium threshold of 10.1 mg/dL,
FEAT would consider less precise but more intuitive thresholds of
SBP >= 130 mmHg, Calcium >= 10mg/dL, or high Calcium (i.e.
Calcium above the upper limit of the reported reference interval).
In summary, FEAT can effectively learn EHR prediction models

that are both highly accurate and highly interpretable. The FEAT-
trained PA screening models could be implemented, following
further refinement and validation, to trigger decision support
safely and accurately. We expect that this modeling approach will
ultimately enable scaling of the learning of safe, effective ML
models across clinical use cases and healthcare practices,
facilitating widespread implementation of targeted, efficient CDS.

METHODS
Feature engineering automation tool (FEAT)
We extended a recent method for learning informative feature
representations called FEAT (v0.4.2) to improve its ability to
construct interpretable EHR prediction models (Fig. 1)32–34. Our
goal was to build a classification model from a set of N paired
samples, yi ; x ið Þ; i ¼ 1; ¼ ;Nf g, with binary labels y 2 f0; 1g and
attributes x 2 Rd . FEAT attempts to learn a set of features for a
logistic model of the form

logit P y ¼ 1; j; xð Þð Þ ¼ βTΦ xð Þ (1)

where ϕ xð Þ is a feature representation, i.e., a p-dimensional vector
of transformations of x, and β ¼ β1; ¼ ; βp

� �
is the associated

vector of coefficients. Like other symbolic regression methods53,
FEAT generates candidate representations ϕ xð Þ by searching a
space of expression trees composed of simple functions.
The goal of FEAT is to estimate the form of ϕ xð Þ and the β

coefficients that minimize two quantities: (1) the balanced logistic
loss of the βTΦðxÞ prediction in the training set, and (2) the
complexity of ΦðxÞ (Fig. 1b). In brief, FEAT accomplishes this using
a genetic programming approach in which a set of candidate
representations iteratively undergo selection, variation, and
survival operations (Fig. 1a). The selection step applies epsilon-
lexicase selection54, which helps preserve representations that
perform well for rare and/or difficult subjects. The variation step
applies insertion, deletion, point mutation, and crossover func-
tions to selected representations. The survival step uses a variant
of the multi-objective optimization algorithm NSGA-II55 for which
the main driving concept driving optimization is Pareto dom-
inance: one candidate representation dominates another if it is at
least as good in one of the two objectives (e.g., lower complexity)
while being better in the other (e.g., lower logistic loss; Fig. 1b).
The optimization procedure utilizes this concept to find a set of
models that are non-dominated, meaning they are efficient trade-
offs between complexity and error.
For model training, FEAT internally splits input data into training

(80%) and validation (20%) sets. Model representations and

coefficients are learned in the training set. Pareto-optimal models
are then evaluated in the validation set and the model with the
lowest balanced log-loss is selected. Classifier thresholds were
selected in the combined training and validation set to achieve a
positive-predictive value (PPV) in the longitudinal, primary care
cohort of 0.70.

FEAT methodological development
We made a series of methodological changes to FEAT to improve
its ability to construct interpretable EHR prediction models. First, in
order to generate models that are interpretable, we restricted the
operators in these expression trees to Boolean functions {<, >,
AND, OR, NOT}. Second, in contrast to traditional symbolic
regression, we implemented inequality operators that learn
splitting thresholds on input features based on Gini impurity, in
a similar way to classification and regression trees (CART)56. Unlike
decision tree algorithms, FEAT’s optimization process is non-
greedy, allowing for globally optimal thresholds to be sampled.
To further encourage model parsimony, we refined FEAT by

introducing two additional modifications to the FEAT algorithm
(Supplementary Table 1) and one modification to our application
of FEAT. These changes incorporated modifications (a) to sample
features based on univariate logistic regression coefficients; (b)
several modifications to shrink the feature representations without
significantly altering its behavior, including pruning highly
correlated feature branches, explicitly simplifying serial logical
operators, and adaptively pruning components of representations;
and (c) robust model selection favoring smaller models. The
following sections describe these in more detail.
First, we altered the initial feature weighting. The original FEAT

algorithm initialized weights of input features according to the
magnitude of their coefficient in a multivariate linear model33. In
addition, the initial population was seeded with the multivariate
linear model that was generated. Since we are interested in
learning a low-dimensional representation of high-dimensional
data to enable interpretation, this approach was not suitable.
Instead, we modified FEAT to specify initial weights of input
features according to the magnitude of each feature’s coefficient
in univariate logistic regression models. The initial population of
linear models was constructed by sampling features according to
these magnitudes and fitting a low-dimensional
multivariate model.
Second, we added functionality to prune highly correlated

feature branches. In previous work, operators for variation were
introduced to make use of information about the features
encoded by the representations32. Here, we propose an operator
designed to prune representations by removing the most
redundant feature (See Algorithm 1 in the Supplementary Notes).
In short, it consists of computing pairwise correlations between all
features, and among the pair that is most correlated, deleting the
feature that is less correlated with the outcome variable.
Third, we added methods to explicitly simplify models. Genetic

programming suffers from a phenomenon known as bloat, in
which final equations that are produced tend to be larger than
necessary for capturing their semantics57. Many methods exist to
combat bloat58,59, including various pruning mutations such as
Algorithm 1. A simple but effective way to reduce bloat is post-run
simplification60, in which simplification operations are applied to
the final model in a hill climbing manner. In order to avoid over-
fitting, changes are only accepted if their cumulative effect on the
model output is on average within a user-specified tolerance.
We introduced an automated method for simplifying final

representations produced by FEAT that includes three steps. First,
redundant operations, such as NOT(NOT(.)), are removed. Second,
correlation deletion mutation is applied iteratively. Finally, a
uniform subtree deletion operator is applied iteratively. Each
iteration succeeds only if the impact on the final model

W.G. La Cava et al.

10

npj Digital Medicine (2023) _####_ Published in partnership with Seoul National University Bundang Hospital



performance is minimal, or, in the case of correlation deletions, if
the features were perfectly correlated. Post-run simplification is
shown concretely in Algorithm 2 in the Supplementary
Information.
Finally, we applied an approach for robust model selection that

favored smaller models. Due to its nature as a population-based
method, FEAT’s optimization process produces several candidate
final models along the Pareto-optimal front. In order to choose a
single final model, models are trained on 80% of available training
samples and 20% of training samples are held-out for internal
model validation. Then from the population of models along the
Pareto front, the model with the lowest balanced log-loss in the
validation (held-out 20%) samples is selected as the final model.
Due to its nature as a probabilistic algorithm, FEAT is sensitive to
the random seed used in training. In order to encourage the
selection of a robust final model, we designed a heuristic
procedure. FEAT was rerun 10 times in training, thereby yielding
10 models. Of these final models, we excluded those in the lowest
quartile of validation AUPRC and then chose the smallest model.
In our preliminary cross-validation analyses, we found this to result
in relatively stable, discriminative, and interpretable models over
50 realizations of our experiment. However, this procedure is ad
hoc and a better approach may exist.

Benchmarking variants of FEAT
Supplementary Table 1 describes 5 variants of FEAT that we
benchmarked in order to validate the algorithmic changes
proposed above. We conducted this experiment to test the
following hypotheses: (1) restricting FEAT to boolean operators
would produce simpler models; (2) the post-run simplification
operator would produce simpler models; (3) post-run simplifica-
tion would produce models with derived features that were more
orthogonal; (4) the multi-dimensional architecture FEAT uses
would perform better than an even simpler “single model”
approach frequently used in genetic programming.
In order to test these changes generally, we chose a set of 20

benchmark classification problems from the Penn ML Benchmark
(PMLB)47. These datasets are widely available, real-world and
simulated problems. We chose 20 datasets whose shape (number
of samples and features) was closest to that of the hypertension
problems (Supplementary Table 2). For the PMLB comparisons, we
ran 10 trials of shuffled 75/25 train/test splits.

Method performance assessment
FEAT models were compared to conventional supervised classi-
fiers from Scikit-learn61. Hyperparameters for each of the methods
were optimized using 5-fold nested cross-validation. Specifically,
random forest hyperparameters n_estimators (from= 100, to=
2100, num= 6) and max_depth (from= 100, to= 110, num= 6)
were optimized in 5-fold inner cross-validation. Decision tree
hyperparameters considered were max_depth (from= 10, to=
110, num= 11), min_samples_split (2, 5, or 10), and min_sam-
ples_leaf (1, 2, or 4). Logistic regression L1 and L2 methods
penalties were optimized across 10 orders of magnitude from
10−6 to 10−3. For LSTM architecture, see section ‘MIMIC-III clinical
data analyses’ below.
We first evaluated methods in 50 trials of 5-fold cross-validation

on shuffled training datasets and averaged test scores across
folds. We report the mean test AUPRC and AUROC for all
experiments. AUPRC is calculated as average precision (see
average_precision_score in scikit-learn version 0.23.2). We mea-
sured the size of the models for tree-based methods (FEAT, DT,
and RF) as the total number of split nodes and leaf nodes in the
trees. For the linear methods and GNB, in the PA studies the size is
the number of predictors with non-zero coefficients. For the
MIMIC-III benchmarks, we used a more complete measure of size
for linear models that included multiplication operators and

variables in the calculation. Models’ metrics were quantitatively
compared using pairwise Wilcoxon rank-sum tests. Confidence
intervals were estimated using 1000 bootstrap resamples. Study
code, including full environment specification, is available in the
repository https://bitbucket.org/hermanlab/ehr_feat/.

PA patients
We studied 1200 patients receiving longitudinal primary care in
the University of Pennsylvania Healthcare System (UPHS). Subjects
included had (a) at least five outpatient visits in at least three
separate years between 2007 and 2017, (b) at least two
encounters at one of 40 primary care practice sites, and (c) were
18 years or older in 2018. A set of 1000 random subjects from this
cohort were divided into 800 for model training (and validation)
and 200 for model testing. One subject in the random training set
was excluded because of a mid-study change in enterprise master
patient index (EMPI) identifier.
Preliminary and final expert-curated heuristics for aTRH and

HTN-hk were used to identify an additional 50 subjects each for
model training and model testing. This yielded a total of
899 subjects for the training set and 300 subjects in the
testing set.
This study followed all relevant ethical regulations. The protocol

was reviewed and approved by the University of Pennsylvania
Institutional Review Board (#827260), which approved a waiver of
informed consent.

Clinical chart review
A study physician reviewed clinical charts and classified subjects
with respect to three phenotypes of increasing complexity for
hypertension related to screening guidelines for PA: hypertension,
hypertension with unexplained hypokalemia (HTN-hk), and
apparent treatment-resistant hypertension (aTRH). The chart
review process and form was designed and reviewed by three
study physicians (I.A., D.S.H., and J.C.). Classification was based on
JNC7 Guidelines on Prevention, Detection, Evaluation, and
Treatment of High Blood Pressure62. Chart-review was primarily
performed by one clinician reviewer (I.A) who was a MD graduate
with practice experience as a medical officer. Unclear cases were
reviewed by one additional study physician (either D.S.H. or J.C.).
J.C. is a hypertension specialist.
Chart review results were documented in a single Redcap form,

including the reviewer’s summative conclusion (i.e. yes/no for
resistant hypertension) and the underlying evidence (e.g. # of
concurrent anti-hypertension medications, # of elevated blood
pressure measurements, alternative explanations for elevated
blood pressure such as acute illness, and exclusion criteria).
Patients were deemed to have hypertension if they had

multiple documented elevated blood pressure measurements
(SBP >= 140mmHg or DBP >= 90), were being treated with an
anti-hypertensive medication for blood pressure control, or had
documented hypertension in diagnosis codes or notes. Elevated
blood pressures were considered not indicative of hypertension if
there was no clinical diagnosis and the elevation was potentially
explained by clinical context, such as acute illness or pain, or
interpreted as situational (e.g. white coat hypertension) and not
treated as hypertension.
Patients were considered to have hypokalemia if there was

documented evidence of an outpatient laboratory test result with
low potassium or were prescribed outpatient oral potassium
supplementation. Hypokalemia was considered explained if the
measurements coincided with a dilutional explanation (e.g. saline
infusion, chemo-infusion), acute illness potentially explaining (e.g.
gastroenteritis with vomiting and diarrhea), dietary restriction,
medication with known side effect (e.g. Bortezomib, amphotericin
B), or hypomagnesemia.
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Patients were considered to have apparent treatment-resistant
hypertension (aTRH) if they were on anti-hypertension medica-
tions from 4 distinct classes for at least a month or from 3 distinct
classes for over a month and had multiple elevated blood pressure
measurements that did not appear to be explained by identifiable
factors (e.g. medication adherence, insufficient dosing, acute
illness). Patients with evidence of heart failure or chronic kidney
disease prior to meeting aTRH criteria were considered negative.

PA clinical data
We extracted 331 features from the EHR clinical data repository
Penn Data Store and EPIC Clarity reporting database (Supplemen-
tary Tables 7–12). Demographic and encounter features included
age, race, sex, categorized distance from zip code 19104, weight,
BMI, blood pressures, and number of elevated blood pressures.
Longitudinal features were aggregated as minimum, maximum,
median, standard deviation, and skewness. The 34 most common
laboratory test results (complete metabolic panel, complete blood
count with differential, lipids, thyroid stimulating hormone, and
hemoglobin A1c) with <33% missingness were summarized as
minimum, maximum, median, 1st quartile, and 3rd quartile.
Diagnosis codes for hypertension, associated comorbidities, and
other indications for anti-hypertensive medications were aggre-
gated and summarized as median per year and sum. Medication
prescriptions were summarized as the number of days prescribed
for each antihypertensive class and the counts of encounters
while prescribed 1, 2, 3, or 4 or more anti-hypertensive
medications, summarized as sum, median, standard deviation,
and skewness, as well as the sum of encounters with elevated
blood pressures. Regular expressions, adapted with modifications
from Teixeira et al.63, were applied to clinical notes to identify
mentions of ‘hypertension’ and variants thereof, summarized as
counts. Features with values outside of physiologically reasonable
ranges, with fewer than 5% non-zero counts, or with variance
below than 0.05 were excluded. Missing values were median
imputed.

Construction of expert-curated heuristics
To provide fully specified and clinically relevant outcomes for
evaluating ML methods, heuristics were manually curated for the
three target phenotypes by expert review of EHR data. This
involved several iterations of proposing, applying, and evaluating
the heuristics (led by D.S.H, I.A., X.D. and supported by J.C.).
Heuristics were initially developed based on clinical and clinical
data expertise and iteratively refined based on evaluation in serial
sets of random training subjects. A preliminary set of heuristics for
HTN-hk and aTRH were used to identify 50 patients, which were
then used to further refine the criteria. Thus, final heuristics were
developed from the entire set of 799 random and 100 targeted
training subjects. Final heuristics were subsequently used to
identify an additional 100 subjects for the held-out testing set.
The heuristic designed for hypertension queried for a history of

two or more diagnosis codes for hypertension (International
Classification of Diseases [ICD]-9: 401.*, 405.*; ICD-10: I10.*, I15.*).
For HTN-hk, we labeled patients with at least two diagnosis codes
for hypokalemia (ICD-9: 276.8; ICD-10: E87.6), or at least two
outpatient encounters with low blood potassium (<3.6 mmol/L), or
at least two prescriptions for an oral potassium supplement. For
aTRH, we revised a previously reported heuristic64 to label patients
(1) with documentation of at least 2 out of 5 consecutive
outpatient encounters with elevated blood pressure (systolic
blood pressure ≥140mmHg or diastolic blood pressure
≥90mmHg) while on antihypertensive medications from 3 distinct
classes for at least 30 days prior to the elevated blood pressures or
(2) prescribed four or more antihypertensive drug classes for at
least 30 days. Exclusion criteria for aTRH included patients with a
diagnosis code for heart failure or transplant (ICD-9: 428.*, V42.1;

ICD-10: 150.*, Z94.1) or moderate to severe chronic kidney disease
(estimated glomerular filtration rate [Modification of Diet in Renal
Disease; MDRD]) <45 mL/min/1.73 m2 prior to meeting the above
criteria.

Association between laboratory results and medications
To understand the maximum calcium feature that FEAT learned to
classify apparent treatment-resistant hypertension, we performed
multivariate logistic regression considering all anti-hypertensive
medication features using backwards selection, optimizing for
Bayesian Information Content. Univariate relationships were
evaluated using Fisher’s Exact tests and associations in multi-
variate logistic regression models were evaluated using Z-tests.

MIMIC-III clinical data analyses
We constructed clinical phenotyping benchmark tasks from
MIMIC-III data using the data pipeline provided by Harutyunyan
et al.23 for extracting subjects, removing outliers, validating events,
extracting episodes from subjects, and producing training,
validation, and test sets. The dataset consisted of longitudinal
measures for 17 clinical variables, including observations such as
Glasgow coma scale, heart rate, oxygen saturation, temperature,
weight, pH, and others (See Table 3 in Harutyunyan et al. for a
complete list)23 from 42,276 ICU stays. For LR and FEAT models, we
apply a standard time series feature extraction tool known as
tsfresh65 that automatically extracts time series features and filters
them on the training set using hypothesis tests incorporating
training outcomes. Using tsfresh resulted in a large number of
predictors, ranging from 1073 to 5976 across the phenotypes.
Given the large dimensionality of these data, to compare

between FEAT and LR models we similarly restricted each to a
specific numbers of dimensions: 10 and 100. We did not attempt
to restrict the complexity of the LSTM. We used the LSTM
architecture from previous work, consisting of 256-dimension
LSTM layer with dropout set to 0.3, trained for 100 epochs with a
batch size of 8. A 20% validation set was used to select the best
epoch. An identical validation set was used by FEAT to select the
final model from the Pareto archive for each task. For LR, this
validation set was used to select the final hyperparameters for the
model for each task. The hyperparameters included the type of
regularization norm (L1 or L2) and the strength of this
regularization in powers of ten.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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