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Abstract 

The design (synthesis) of an analog electrical circuit entails the 
creation of both the topology and sizing (numerical values) of all of 
the circuit's components. There has previously been no general 
automated technique for automatically creating the design for an 
analog electrical circuit from a high-level statement of the circuit's 
desired behavior. This paper shows how genetic programming can be 
used to automate the design of eight prototypical analog circuits, 
including a lowpass filter, a highpass filter, a bandstop filter, a tri-
state frequency discriminator circuit, a frequency-measuring circuit, a 
60 dB amplifier, a computational circuit for the square root function, 
and a time-optimal robot controller circuit.  

 
 

1. Introduction 
Design is a major activity of practicing mechanical, electrical, civil, 
and aeronautical engineers. The design process entails creation of a 



2 

complex structure to satisfy user-defined requirements. Since the 
design process typically entails tradeoffs between competing 
considerations, the end product of the process is usually a satisfactory 
and compliant design as opposed to a perfect design. Design is usually 
viewed as requiring human intelligence. Consequently, the field of 
design is a source of challenging problems for automated techniques 
of machine learning and artificial intelligence. In particular, design 
problems are useful for determining whether an automated technique 
can perform tasks that are competitive with human-created designs.  

The design (synthesis) of analog electrical circuits is especially 
challenging. The design process for analog circuits begins with a high-
level description of the circuit's desired behavior and characteristics 
and entails creation of both the topology and the sizing of a 
satisfactory circuit. The topology comprises the gross number of 
components in the circuit, the type of each component (e.g., a 
resistor), and a list of all connections between the components. The 
sizing involves specifying the values (typically numerical) of each of 
the circuit's components.  

Although considerable progress has been made in automating the 
synthesis of certain categories of purely digital circuits, the synthesis 
of analog circuits and mixed analog-digital circuitshas not proved to 
be as amenable to automation [30]. There is no previously known 
general technique for automatically creating an entire analog circuit 
from a high-level statement of the design goals of the circuit. 
Describing "the analog dilemma," O. Aaserud and I. Ring Nielsen [1] 
noted  

"Analog designers are few and far between. In contrast to digital 
design, most of the analog circuits are still handcrafted by the 
experts or so-called 'zahs' of analog design. The design process 
is characterized by a combination of experience and intuition 
and requires a thorough knowledge of the process characteristics 
and the detailed specifications of the actual product.  
"Analog circuit design is known to be a knowledge-intensive, 
multiphase, iterative task, which usually stretches over a 



3 

significant period of time and is performed by designers with a 
large portfolio of skills. It is therefore considered by many to be 
a form of art rather than a science."  

There has been extensive previous work (surveyed in [23]) on the 
problem of automated circuit design (synthesis) using simulated 
annealing, artificial intelligence, and other techniques, including work 
employing genetic algorithms [11, 27, 33].  

This paper presents a uniform approach to the automatic synthesis of 
both the topology and sizing of analog electrical circuits. Section 2 
presents eight design problems involving prototypical analog circuits. 
Section 3 describes genetic programming. Section 4 details the circuit-
constructing functions used in applying genetic programming to the 
problem of analog circuit synthesis. Section 5 presents the preparatory 
steps required for applying genetic programming to a particular design 
problem. Section 6 shows the results for the eight problems. Section 7 
cites other circuits that have been designed by genetic programming.  
2. Eight Problems of Analog Design 
This paper applies genetic programming to an illustrative suite of eight 
problems of analog circuit design. The circuits comprise a variety of 
types of components, including transistors, diodes, resistors, inductors, 
and capacitors. The circuits have varying numbers of inputs and 
outputs. They circuits encompass both passive and active circuits.  

(1) Design a one-input, one-output lowpass filter composed of 
capacitors and inductors that passes all frequencies below 1,000 Hz 
and suppresses all frequencies above 2,000 Hz.  

(2) Design a one-input, one-output highpass filter composed of 
capacitors and inductors that suppresses all frequencies below 1,000 
Hz and passes all frequencies above 2,000 Hz.  

(3) Design a one-input, one-output bandstop (notch) filter composed 
of capacitors and inductors that suppresses all frequencies between 
500 Hz and 1,000 Hz and that passes frequencies that are less than 250 
Hz and greater than 2,000 Hz..  

(4) Design a one-input, one-output frequency-measuring circuit that 
is composed of capacitors and inductors whose output in millivolts 
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(from 1 millivolt to 1,000 millivolts) is proportional to the frequency 
of an incoming signal (between 1 Hz and 100,000 Hz).  

(5) Design a one-input, one-output tri-state frequency discriminator 
(source identification) circuit that is composed of resistors, capacitors, 
and inductors and that produces an output of 1/2 volt and 1 volt for 
incoming signals whose frequencies are within 10% of 256 Hz and 
within 10% of 2,560 Hz, respectively, but produces an output of 0 
volts otherwise.  

(6) Design a one-input, one-output computational circuit that is 
composed of transistors, diodes, resistors, and capacitors and that 
produces an output voltage equal to the square root of its input 
voltage.  

(7) Design a two-input, one-output time-optimal robot controller 
circuit that is composed of the above components and that navigates a 
constant-speed autonomous mobile robot (with nonzero turning 
radius) to an arbitrary destination in minimal time.  

(8) Design a one-input, one-output amplifier composed of the above 
components and that delivers amplification of 60 dB (i.e., 1,000 to 1) 
with low distortion and low bias.  

The above eight prototypical circuits are representative of analog 
circuits that are in widespread use. Filters extract specified ranges of 
frequencies from electrical signals and amplifiers enhance the 
amplitude of signal. Amplifiers are used to increase the amplitude of 
an incoming signal. Frequency discriminators are used in source 
identification and signal recognition. Analog computational circuits 
are used to perform real-time mathematical calculations on signals. 
Embedded controllers are used to control the operation of numerous 
automatic devices.  
3. Background on Genetic Programming 
Genetic programming is a biologically inspired, domain-independent 
method that automatically creates a computer program from a high-
level statement of a problem's requirements. Genetic programming is 
an extension of the genetic algorithm described in John Holland's 
pioneering book Adaptation in Natural and Artificial Systems [13]. In 
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genetic programming, the genetic algorithm operates on a population 
of computer programs of varying sizes and shapes [18, 26].  

Starting with a primordial ooze of thousands of randomly created 
computer programs, genetic programming progressively breeds a 
population of computer programs over a series of generations. Genetic 
programming applies the Darwinian principle of survival of the fittest, 
analogs of naturally occurring operations such as sexual 
recombination (crossover), mutation, gene duplication, and gene 
deletion, and certain mechanisms of developmental biology. The 
computer programs are compositions of functions (e.g., arithmetic 
operations, conditional operators, problem-specific functions) and 
terminals (e.g., external inputs, constants, zero-argument functions).  
The programs may be thought of as trees whose points are labeled 
with the functions and whose leaves are labeled with the terminals. 

Genetic programming breeds computer programs to solve problems 
by executing the following three steps:  

(1) Randomly create an initial population of individual computer 
programs. 
(2) Iteratively perform the following substeps (called a generation) 
on the population of programs until the termination criterion has 
been satisfied:  

(a) Assign a fitness value to each individual program in the 
population using the fitness measure. 
(b) Create a new population of individual programs by applying 
the following three genetic operations. The genetic operations are 
applied to one or two individuals in the population selected with a 
probability based on fitness (with reselection allowed).  

(i) Reproduce an existing individual by copying it into the new 
population. 
(ii) Create two new individual programs from two existing 
parental individuals by genetically recombining subtrees from 
each program using the crossover operation at randomly chosen 
crossover points in the parental individuals.  
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(iii) Create a new individual from an existing parental individual 
by randomly mutating one randomly chosen subtree of the 
parental individual. 

(3) Designate the individual computer program that is identified by 
the method of result designation (e.g., the best-so-far individual) as 
the result of the run of genetic programming. This result may 
represent a solution (or an approximate solution) to the problem.  
Genetic programming starts with an initial population (generation 0) 

of randomly generated computer programs composed of the given 
primitive functions and terminals. Typically, the size of each program 
is limited, for practical reasons, to a certain maximum number of 
points (i.e. total number of functions and terminals) or a maximum 
depth (of the program tree). The creation of this initial random 
population is, in effect, a blind random parallel search of the search 
space of the problem represented as computer programs.  

The computer programs in generation 0 of a run of genetic 
programming will almost always have exceedingly poor fitness. 
Nonetheless, some individuals in the population will turn out to be 
somewhat more fit than others. These differences in performance are 
then exploited. The Darwinian principle of reproduction and survival 
of the fittest and the genetic operation of crossover are used to create a 
new offspring population of individual computer programs from the 
current population of programs.  

The reproduction operation involves selecting a computer program 
from the current population of programs based on fitness (i.e., the 
better the fitness, the more likely the individual is to be selected) and 
allowing it to survive by copying it into the new population.  

The crossover operation creates new offspring computer programs 
from two parental programs selected based on fitness. The parental 
programs in genetic programming are typically of different sizes and 
shapes. The offspring programs are composed of subexpressions 
(subtrees, subprograms, subroutines, building blocks) from their 
parents. These offspring programs are typically of different sizes and 
shapes than their parents.  
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For example, consider the following computer program (presented 
here as a LISP S-expression):  

(+ (* 0.234 Z) (- X 0.789)), 

which we would ordinarily write as 
0.234 Z + X – 0.789. 

This program takes two inputs (X and Z) and produces a floating 
point output.  

Also, consider a second program: 

(* (* Z Y) (+ Y (* 0.314 Z))). 

One crossover point is randomly and independently chosen in each 
parent. Suppose that the crossover points are the * in the first parent 
and the + in the second parent. These two crossover fragments 
correspond to the underlined sub-programs (sub-lists) in the two 
parental computer programs. 

The two offspring resulting from crossover are as follows: 

(+ (+ Y (* 0.314 Z)) (- X 0.789)) 

(* (* Z Y) (* 0.234 Z)). 

Thus, crossover creates new computer programs using parts of 
existing parental programs. Because entire sub-trees are swapped, the 
crossover operation always produces syntactically and semantically 
valid programs as offspring regardless of the choice of the two 
crossover points. Because programs are selected to participate in the 
crossover operation with a probability based on fitness, crossover 
allocates future trials to regions of the search space whose programs 
contain parts of promising programs.  

The mutation operation creates an offspring computer program from 
one parental program selected based on fitness. One mutation point is 
randomly and independently chosen and the subtree occurring at that 
point is deleted. Then, a new subtree is grown at that point using the 
same growth procedure as was originally used to create the initial 
random population.  



8 

After the genetic operations are performed on the current population, 
the population of offspring (i.e., the new generation) replaces the old 
population (i.e., the old generation). Each individual in the new 
population of programs is then measured for fitness, and the process is 
repeated over many generations. 

The hierarchical character of the computer programs that are 
produced is an important feature of genetic programming. The 
dynamic variability of the computer programs that are developed 
along the way to a solution is also an important feature of genetic 
programming. It is often difficult and unnatural to try to specify or 
restrict the size and shape of the eventual solution in advance. 
Moreover, advance specification or restriction of the size and shape of 
the solution to a problem narrows the window by which the system 
views the world and might well preclude finding the solution to the 
problem at all. 

Automated programming requires some hierarchical mechanism to 
exploit, by reuse and parameterization, the regularities, symmetries, 
homogeneities, similarities, patterns, and modularities inherent in 
problem environments. Subroutines do this in ordinary computer 
programs. Automatically defined functions [19,. 20] can be 
implemented within the context of genetic programming by 
establishing a constrained syntactic structure for the individual 
programs in the population. Each multi-part program in the population 
contains one (or more) function-defining branches and one (or more) 
main result-producing branches. The result-producing branch usually 
has the ability to call one or more of the automatically defined 
functions. A function-defining branch may have the ability to refer 
hierarchically to other already-defined automatically defined 
functions.  

Since each individual program in the population of this example 
consists of function-defining branch(es) and result-producing 
branch(es), the initial random generation is created so that every 
individual program in the population has this particular constrained 
syntactic structure. Since a constrained syntactic structure is involved, 
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crossover is performed so as to preserve this syntactic structure in all 
offspring.  

Architecture-altering operations enhance genetic programming with 
automatically defined functions by providing a way to automatically 
determine the number of such automatically defined functions, the 
number of arguments that each automatically defined function 
possesses, and the nature of the hierarchical references, if any, among 
such automatically defined functions [21]. These operations include 
branch duplication, argument duplication, branch creation, argument 
creation, branch deletion, and argument deletion. The architecture-
altering operations are motivated by the naturally occurring 
mechanism of gene duplication that creates new proteins (and hence 
new structures and new behaviors in living things) [28].  

Genetic programming has been applied to numerous problems in 
fields such as system identification, control, classification, design, 
optimization, and automatic programming. Current research is 
described in [3, 4, 5, 16, 22, 23, 24, 25, 32] and on the World Wide 
Web at www.genetic-programming.org.  
4. Applying Genetic Programming to Analog Circuit Synthesis 
Genetic programming can be applied to the problem of synthesizing 
circuits if a mapping is established between the program trees (rooted, 
point-labeled trees – that is, acyclic graphs – with ordered branches) 
used in genetic programming and the labeled cyclic graphs germane to 
electrical circuits. The principles of developmental biology and work 
on applying genetic algorithms and genetic programming to evolve 
neural networks [12, 17] provide the motivation for mapping trees into 
circuits by means of a developmental process that begins with a simple 
embryo. For circuits, the embryo typically includes fixed wires that 
connect the inputs and outputs of the particular circuit being designed 
and certain fixed components (such as source and load resistors). Until 
these wires are modified, the circuit does not produce interesting 
output. An electrical circuit is developed by progressively applying the 
functions in a circuit-constructing program tree to the modifiable wires 
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of the embryo (and, during the developmental process, to new 
components and modifiable wires).  

An electrical circuit is created by executing the functions in a 
circuit-constructing program tree. The functions are progressively 
applied in a developmental process to the embryo and its successors 
until all of the functions in the program tree are executed. That is, the 
functions in the circuit-constructing program tree progressively side-
effect the embryo and its successors until a fully developed circuit 
eventually emerges. The functions are applied in a breadth-first order.  

The functions in the circuit-constructing program trees are divided 
into five categories: (1) topology-modifying functions that alter the 
circuit topology, (2) component-creating functions that insert 
components into the circuit, (3) development-controlling functions 
that control the development process by which the embryo and its 
successors is changed into a fully developed circuit, (4) arithmetic-
performing functions that appear in subtrees as argument(s) to the 
component-creating functions and specify the numerical value of the 
component, and (5) automatically defined functions that appear in the 
function-defining branches and potentially enable certain substructures 
of the circuit to be reused (with parameterization). 

Each branch of the program tree is created in accordance with a 
constrained syntactic structure. Each branch is composed of topology-
modifying functions, component-creating functions, development-
controlling functions, and terminals. Component-creating functions 
typically have one arithmetic-performing subtree, while topology-
modifying functions, and development-controlling functions do not. 
Component-creating functions and topology-modifying functions are 
internal points of their branches and possess one or more arguments 
(construction-continuing subtrees) that continue the developmental 
process. The syntactic validity of this constrained syntactic structure is 
preserved using structure-preserving crossover with point typing. For 
details, see [23].  
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4.1. The Embryonic Circuit 
An electrical circuit is created by executing a circuit-constructing 
program tree that contains various component-creating, topology-
modifying, and development-controlling functions. Each tree in the 
population creates one circuit. The specific embryo used depends on 
the number of inputs and outputs. 

Fig. 1 shows a one-input, one-output embryonic circuit in which 
VSOURCE is the input signal and VOUT is the output signal (the 
probe point). The circuit is driven by an incoming alternating circuit 
source VSOURCE. There is a fixed load resistor RLOAD and a fixed 
source resistor RSOURCE in the embryo. In addition to the fixed 
components, there is a modifiable wire Z0 between nodes 2 and 3. All 
development originates from this modifiable wire. 

 
Fig. 1 One-input, one-output embryo 

 
4.2. Component-Creating Functions 
The component-creating functions insert a component into the 
developing circuit and assign component value(s) to the component.  

Each component-creating function has a writing head that points to 
an associated highlighted component in the developing circuit and 
modifies that component in a specified manner. The construction-
continuing subtree of each component-creating function points to a 
successor function or terminal in the circuit-constructing program tree. 

The arithmetic-performing subtree of a component-creating function 
consists of a composition of arithmetic functions (addition and 
subtraction) and random constants (in the range -1.000 to +1.000). The 
arithmetic-performing subtree specifies the numerical value of a 
component by returning a floating-point value that is interpreted on a 
logarithmic scale as the value for the component in a range of 10 
orders of magnitude (using a unit of measure that is appropriate for the 
particular type of component). 
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The two-argument resistor-creating R function causes the 
highlighted component to be changed into a resistor. The value of the 
resistor in kilo Ohms is specified by its arithmetic-performing subtree.  

Fig. 2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a 
partial circuit containing four capacitors (C2, C3, C4, and C5). The 
modifiable wire Z0 has a writing head (i.e., is subject to subsequent 
modification). Fig. 3 shows the result of applying the R function to the 
modifiable wire Z0 of fig. 2. The newly created R1 has a writing head 
and remains subject to subsequent modification. 

 

Fig. 2 Modifiable wire Z0 
 

Fig. 3 Result of applying the R function.  

 
Similarly, the two-argument capacitor-creating C function causes the 

highlighted component to be changed into a capacitor whose value in 
micro-Farads is specified by its arithmetic-performing subtree. In 
addition, the two-argument inductor-creating L function causes the 
highlighted component to be changed into an inductor whose value in 
micro-Henrys is specified by its arithmetic-performing subtree.  

The one-argument Q_D_PNP diode-creating function causes a diode 
to be inserted in lieu of the highlighted component. This function has 
only one argument because there is no numerical value associated with 
a diode and thus no arithmetic-performing subtree. In practice, the 
diode is implemented here using a pnp transistor whose collector and 
base are connected to each other. The Q_D_NPN function inserts a 
diode using an npn transistor in a similar manner. 

There are also six one-argument transistor-creating functions 
(Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, 
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP) that 
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insert a bipolar junction transistor in lieu of the highlighted component 
and that directly connect the collector or emitter of the newly created 
transistor to a fixed point of the circuit (the positive power supply, 
ground, or the negative power supply). For example, the 
Q_POS_COLL_NPN function inserts a bipolar junction transistor 
whose collector is connected to the positive power supply.  

Each of the functions in the family of six different three-argument 
transistor-creating Q_3_NPN functions causes an npn bipolar junction 
transistor to be inserted in place of the highlighted component and one 
of the nodes to which the highlighted component is connected. The 
Q_3_NPN function creates five new nodes and three modifiable wires. 
There is no writing head on the new transistor, but there is a writing 
head on each of the three new modifiable wires. There are 12 members 
(called Q_3_NPN0, ..., Q_3_NPN11) in this family of functions 
because there are two choices of nodes (1 and 2) to be bifurcated and 
then there are six ways of attaching the transistor's base, collector, and 
emitter after the bifurcation. Similarly the family of 12 Q_3_PNP 
functions causes a pnp bipolar junction transistor to be inserted.  
4.3. Topology-Modifying Functions 
Each topology-modifying function in a program tree points to an 
associated highlighted component and modifies the topology of the 
developing circuit. 

The three-argument SERIES division function creates a series 
composition of the highlighted component (with a writing head), a 
copy of it (with a writing head), one new modifiable wire (with a 
writing head), and two new nodes.  

The four-argument PARALLEL0 parallel division function creates a 
parallel composition consisting of the original highlighted component 
(with a writing head), a copy of it (with a writing head), two new 
modifiable wires (each with a writing head), and two new nodes. 
There are potentially two topologically distinct outcomes of a parallel 
division. Since we want the outcome of all circuit-constructing 
functions to be deterministic, there are two members (called 
PARALLEL0 and PARALLEL1) in the PARALLEL family of 
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topology-modifying functions. The two functions operate differently 
depending on degree and numbering of the preexisting components in 
the developing circuit. The use of the two functions breaks the 
symmetry between the potentially distinct outcomes. Fig. 4 shows the 
result of applying PARALLEL0 to the resistor R1 from fig. 3. 
Modifiable resistors R1 and R7 and modifiable wires Z6 and Z8 are 
each linked to the top-most function in one of the four construction-
continuing subtrees of the PARALLEL0 function.  

 
Fig. 4 Result of the PARALLEL0 function 

The reader is referred to [23] for a detailed description of the 
operation of the PARALLEL0 and PARALLEL1 functions (and other 
functions mentioned herein).  

If desired, other topology-modifying functions may be defined to 
create the Y-shaped divisions and ∆-shaped divisions that are 
frequently seen in human-designed circuits.  

The one-argument polarity-reversing FLIP function reverses the 
polarity of the highlighted component.  

There are six three-argument functions (T_GND_0, T_GND_1, 
T_POS_0, T_POS_1, T_NEG_0, T_NEG_1) that insert two new 
nodes and two new modifiable wires, and then make a connection to 
ground, positive power supply, or negative power supply, respectively.  

There are two three-argument functions (PAIR_CONNECT_0 and 
PAIR_CONNECT_1) that enable distant parts of a circuit to be 
connected together. The first PAIR_CONNECT to occur in the 
development of a circuit creates two new wires, two new nodes, and 
one temporary port. The next PAIR_CONNECT creates two new wires 
and one new node, connects the temporary port to the end of one of 
these new wires, and then removes the temporary port. 

If desired, numbered vias can be created to provide connectivity 
between distant points of the circuit by using a three-argument VIA 
function. 
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The zero-argument SAFE_CUT function causes the highlighted 
component to be removed from the circuit provided that the degree of 
the nodes at both ends of the highlighted component is three (i.e., no 
dangling components or wires are created).  
4.4. Development-Controlling Functions 
The one-argument NOOP ("No Operation") function has no effect on 
the modifiable wire or modifiable component with which it is 
associated; however, it has the effect of delaying activity on the 
developmental path on which it appears in relation to other 
developmental paths in the overall circuit-constructing program tree.  

The zero-argument END function makes the modifiable wire or 
modifiable component with which it is associated non-modifiable 
(thereby ending a particular developmental path). 
4.5. Example of Developmental Process 
Fig. 5 is an illustrative circuit-constructing program tree shown as a 
rooted, point-labeled tree with ordered branches. The overall program 
consists of two main result-producing branches joined by a connective 
LIST function (labeled 1 in the figure). The first (left) result-
producing branch is rooted at the capacitor-creating C function 
(labeled 2). The second result-producing branch is rooted at the 
polarity-reversing FLIP function (labeled 3). This figure also contains 
four occurrences of the inductor-creating L function (at 17, 11, 20, and 
12). The figure contains two occurrences of the topology-modifying 
SERIES function (at 5 and 10). The figure also contains five 
occurrences of the development-controlling END function (at 15, 25, 
27, 31, and 22) and one occurrence of the development-controlling "no 
operation" NOP function (at 6). There is a seven-point arithmetic-
performing subtree at 4 under the capacitor-creating C function at 4. 
Similarly, there is a three-point arithmetic-performing subtree at 19 
under the inductor-creating L function at 11.  There are also one-point 
arithmetic-performing subtrees (i.e., constants) at 26, 30, and 21. 
Additional details can be found in [23].  
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Fig. 5 Illustrative circuit-constructing program tree.  

 
5. Preparatory Steps 
Before applying genetic programming to a problem of circuit design, 
seven major preparatory steps are required: (1) identify the embryonic 
circuit, (2) determine the architecture of the circuit-constructing 
program trees, (3) identify the primitive functions of the program 
trees, (4) identify the terminals of the program trees, (5) create the 
fitness measure, (6) choose control parameters for the run, and (7) 
determine the termination criterion and method of result designation.  
5.1. Embryonic Circuit 
The embryonic circuit used on a particular problem depends on the 
circuit's number of inputs and outputs. All development originates 
from the modifiable wires.  

An embryo with two modifiable wires (Z0 and Z1) was used for the 
one-input, one-output lowpass filter, highpass filter, bandstop filter 
and frequency-measuring circuits.  

The robot controller circuit has two inputs (VSOURCE1 and 
VSOURCE2) representing the two-dimensional position of the target 
point. Therefore, this problem requires a different embryonic circuit 
than that used above. Both voltage inputs require their own separate 
source resistor (RSOURCE1 and RSOURCE2). The embryo for the 
robot controller circuit has three modifiable wires (Z0, Z1, and Z2) in 
order to provide full connectivity between the two inputs and the one 
output.  

In some problems, such as the amplifier, the embryo contains 
additional fixed components (as detailed in [23]).  

For historical reasons, an embryo with one modifiable wire was used 
for the frequency-discriminator circuit and the computational circuit. 
However, an embryo with two modifiable wires could have been used 
on these problems and an embryo with one modifiable wire could have 
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been used on the lowpass filter, highpass filter, bandstop filter, and 
frequency-measuring circuits.  
5.2. Program Architecture 
Since there is one result-producing branch in the program tree for each 
modifiable wire in the embryo, the architecture of each circuit-
constructing program tree depends on the embryonic circuit. One 
result-producing branch was used for the frequency discriminator and 
the computational circuit; two were used for lowpass, highpass, and 
bandstop filter problems; and three were used for the robot controller 
and amplifier.  

The architecture of each circuit-constructing program tree also 
depends on the use, if any, of automatically defined functions. 
Automatically defined functions provide a mechanism enabling certain 
substructures to be reused and are described in detail in [23]. 
Automatically defined functions and architecture-altering operations 
were used in the frequency discriminator, robot controller, and 
amplifier. For these problems, each program in the initial population 
of programs had a uniform architecture with no automatically defined 
functions. In later generations, the number of automatically defined 
functions, if any, emerged as a consequence of the architecture-
altering operations (also described in [23]).  
5.3. Function and Terminal Sets 
The function set for each design problem depends on the type of 
electrical components that are to be used for constructing the circuit.  

For the problems of synthesizing a lowpass, highpass, and bandstop 
filter and the problem of synthesizing a frequency-measuring circuit, 
the function set included two component-creating functions (for 
inductors and capacitors), topology-modifying functions (for series 
and parallel divisions and for flipping components), one development-
controlling function (“no operation”), functions for creating a via to 
ground, and functions for connecting pairs of points. That is, the 
function set, Fccs-initial, for each construction-continuing subtree was 
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Fccs-initial = {L, C, SERIES, PARALLEL0, PARALLEL1, FLIP, 
NOOP, T_GND_0, T_GND_1, PAIR_CONNECT_0, 
PAIR_CONNECT_1}. 

 
For the frequency discriminator, the function set also included the 

resistor-creating function R, so that the function set, Fccs-initial, for 
each construction-continuing subtree was  
Fccs-initial = {R, L, C, SERIES, PARALLEL0, PARALLEL1, FLIP, 

NOOP, T_GND_0, T_GND_1, PAIR_CONNECT_0, 
PAIR_CONNECT_1}. 

Capacitors, resistors, diodes, and transistors were used for the 
computational circuit, the robot controller, and the amplifier. In 
addition, the function set also included functions to provide 
connectivity to the positive and negative power supplies (in order to 
provide a source of energy for the transistors). Thus, the function set, 
Fccs-initial, for each construction-continuing subtree was 
Fccs-initial = {R, C, SERIES, PARALLEL0, PARALLEL1, FLIP, 

NOOP, T_GND_0, T_GND_1, T_POS_0, T_POS_1, T_NEG_0, 
T_NEG_1, PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, 
Q_3_PNP0, ..., Q_3_PNP11, Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}. 

For the npn transistors, the Q2N3904 model was used. For pnp 
transistors, the Q2N3906 model was used.  

The initial terminal set, Tccs-initial, for each construction-continuing 
subtree was 
Tccs-initial = {END, SAFE_CUT}.  

The initial terminal set, Taps-initial, for each arithmetic-performing 
subtree consisted of 
Taps-initial = {ℜ}, 
where ℜ represents floating-point random constants from –1.0 to +1.0.  

The function set, Faps, for each arithmetic-performing subtree was, 
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Faps = {+, -}.  
The terminal and function sets were identical for all result-producing 

branches for a particular problem. 
For the lowpass filter, highpass filter, and frequency discriminator, 

there was no need for functions to provide connectivity to the positive 
and negative power supplies.  

For the frequency discriminator, the robot controller, and the 
amplifier, the architecture-altering operations were used and the set of 
potential new functions, Fpotential, was 
Fpotential = {ADF0, ADF1, ...}.  

The set of potential new terminals, Tpotential, for the automatically 
defined functions was 
Tpotential = {ARG0}.  

The architecture-altering operations change the function set, Fccs for 
each construction-continuing subtree of all three result-producing 
branches and the function-defining branches, so that 
Fccs = Fccs-initial ≈ Fpotential. 

The architecture-altering operations generally change the terminal 
set for automatically defined functions, Taps-adf, for each arithmetic-
performing subtree, so that 
Taps-adf = Taps-initial ≈ Tpotential.  
5.4. Fitness Measure 
The evolutionary process is driven by the fitness measure. Each 
individual computer program in the population is executed and then 
evaluated, using the fitness measure. The nature of the fitness measure 
varies with the problem. The high-level statement of desired circuit 
behavior is translated into a well-defined measurable quantity that can 
be used by genetic programming to guide the evolutionary process. 
The evaluation of each individual circuit-constructing program tree in 
the population begins with its execution. This execution progressively 
applies the functions in each program tree to an embryonic circuit, 
thereby creating a fully developed circuit. A netlist is created that 
identifies each component of the developed circuit, the nodes to which 
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each component is connected, and the value of each component. The 
netlist becomes the input to our modified version of the 217,000-line 
SPICE (Simulation Program with Integrated Circuit Emphasis) 
simulation program [29, 34]. SPICE then determines the behavior of 
the circuit. It was necessary to make considerable modifications in 
SPICE so that it could run as a submodule within the genetic 
programming system.  
 5.4.1. Fitness Measure for the Lowpass Filter 
A simple filter is a one-input, one-output electronic circuit that 
receives a signal as its input and passes the frequency components of 
the incoming signal that lie in a specified range (called the passband) 
while suppressing the frequency components that lie in all other 
frequency ranges (the stopband).  

The desired lowpass LC filter has a passband below 1,000 Hz and a 
stopband above 2,000 Hz. The circuit is driven by an incoming AC 
voltage source with a 2 volt amplitude.  

The attenuation of the filter is defined in terms of the output signal 
relative to the reference voltage (half of 2 volt here). A decibel is a 
unitless measure of relative voltage that is defined as 20 times the 
common (base 10) logarithm of the ratio between the voltage at a 
particular probe point and a reference voltage.  

In this problem, a voltage in the passband of exactly 1 volt and a 
voltage in the stopband of exactly 0 volts is regarded as ideal. The 
(preferably small) variation within the passband is called the passband 
ripple. Similarly, the incoming signal is never fully reduced to zero in 
the stopband of an actual filter. The (preferably small) variation within 
the stopband is called the stopband ripple. A voltage in the passband 
of between 970 millivolts and 1 volt (i.e., a passband ripple of 30 
millivolts or less) and a voltage in the stopband of between 0 volts and 
1 millivolts (i.e., a stopband ripple of 1 millivolts or less) is regarded 
as acceptable. Any voltage lower than 970 millivolts in the passband 
and any voltage above 1 millivolts in the stopband is regarded as 
unacceptable. 
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A fifth-order elliptic (Cauer) filter with a modular angle Θ of 30 
degrees (i.e., the arcsin of the ratio of the boundaries of the passband 
and stopband) and a reflection coefficient ρ of 24.3% is required to 
satisfy these design goals [35]. 

Since the high-level statement of behavior for the desired circuit is 
expressed in terms of frequencies, the voltage VOUT is measured in 
the frequency domain. SPICE performs an AC small signal analysis 
and reports the circuit's behavior over five decades (between 1 Hz and 
100,000 Hz) with each decade being divided into 20 parts (using a 
logarithmic scale), so that there are a total of 101 fitness cases.  

Fitness is measured in terms of the sum over these cases of the 
absolute weighted deviation between the actual value of the voltage 
that is produced by the circuit at the probe point VOUT and the target 
value for voltage. The smaller the value of fitness, the better. A fitness 
of zero represents an (unattainable) ideal filter. 

Specifically, the standardized fitness is 

F(t) = 
i=0

100
∑ (W (d ( f i ), f i)d ( f i )) 

where fi is the frequency of fitness case i; d(x) is the absolute value of 
the difference between the target and observed values at frequency x; 
and W(y,x) is the weighting for difference y at frequency x. 

The fitness measure is designed to not penalize ideal values, to 
slightly penalize every acceptable deviation, and to heavily penalize 
every unacceptable deviation. Specifically, the procedure for each of 
the 61 points in the 3-decade interval between 1 Hz and 1,000 Hz for 
the intended passband is as follows:  

• If the voltage equals the ideal value of 1.0 volt in this interval, the 
deviation is 0.0.  
• If the voltage is between 970 millivolts and 1 volt, the absolute 
value of the deviation from 1 volt is weighted by a factor of 1.0.  
• If the voltage is less than 970 millivolts, the absolute value of the 
deviation from 1 volt is weighted by a factor of 10.0.  
The acceptable and unacceptable deviations for each of the 35 points 

from 2,000 Hz to 100,000 Hz in the intended stopband are similarly 
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weighed (by 1.0 or 10.0) based on the amount of deviation from the 
ideal voltage of 0 volts and the acceptable deviation of 1 millivolts.  

For each of the five "don't care" points between 1,000 and 2,000 Hz, 
the deviation is deemed to be zero. 

The number of “hits” for this problem (and all other problems 
herein) is defined as the number of fitness cases for which the voltage 
is acceptable or ideal or that lie in the "don't care" band (for a filter).  

Many of the random initial circuits and many that are created by the 
crossover and mutation operations in subsequent generations cannot 
be simulated by SPICE. These circuits receive a high penalty value of 
fitness (108) and become the worst-of-generation programs for each 
generation. For details, see [23].  
5.4.2. Fitness Measure for the Highpass Filter 
The fitness cases for the highpass filter are the same 101 points in the 
five decades of frequency between 1 Hz and 100,000 Hz as for the 
lowpass filter. The fitness measure is substantially the same as that for 
the lowpass filter problem above, except that the locations of the 
passband and stopband are reversed. Notice that the only difference in 
the seven preparatory steps for a highpass filter versus a lowpass filter 
is this change in the fitness measure.  
5.4.3. Fitness Measure for the Bandstop Filter 
The fitness cases for the bandstop filter are the same 101 points in the 
five decades of frequency between 1 Hz and 100,000 Hz as for the 
lowpass filter. The acceptable deviation in the desired stopband 
between 500 Hz and 1,000 Hz is 1 millivolt (i.e., the same as for the 
stopband of the lowpass and highpass filters above). The acceptable 
deviation in the two passbands (i.e., between 1 Hz and 250 Hz and 
between 2,000 Hz and 100,000 Hz is 30 millivolts (i.e., the same as 
for the stopband of the lowpass and highpass filters above). Again, 
notice that the only difference in the seven preparatory steps for a 
bandstop filter versus a lowpass or highpass filter is a change in the 
fitness measure.  
5.4.4. Fitness Measure for Frequency-Measuring Circuit 
The fitness cases for the frequency-measuring circuit are the same 101 
points in the five decades of frequency (on a logarithmic scale) 
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between 1 Hz and 100,000 Hz as for the lowpass and lowpass filters. 
The circuit's output in millivolts (from 1 millivolt to 1,000 millivolts) 
is intended to be proportional to the frequency of an incoming signal 
(between 1 Hz and 100,000 Hz). Fitness is the sum, over the 101 
fitness cases, of the absolute value of the difference between the 
circuit's actual output and the desired output voltage.  
5.4.5. Fitness Measure for the Tri-state Frequency Discriminator 
Fitness is the sum, over 101 fitness cases, of the absolute weighted 
deviation between the actual value of the voltage that is produced by 
the circuit and the target value.  

The three points that are closest to the band located within 10% of 
256 Hz are 229.1 Hz, 251.2 Hz, and 275.4 Hz. The procedure for each 
of these three points is as follows: If the voltage equals the ideal value 
of 1/2 volts in this interval, the deviation is 0.0. If the voltage is less 
than 240 millivolts from 1/2 volts, the absolute value of the deviation 
from 1/2 volts is weighted by a factor of 20. If the voltage is more than 
240 millivolts of 1/2 volts, the absolute value of the deviation from 1/2 
volts is weighted by a factor of 200. This arrangement reflects the fact 
that the ideal output voltage for this range of frequencies is 1/2 volts, 
the fact that a 240 millivolts discrepancy is acceptable, and the fact 
that a larger discrepancy is not acceptable.  

Similar weighting was used for the three points (2,291 Hz, 2,512 Hz, 
and 2,754 Hz) that are closest to the band located within 10% of 2,560 
,Hz.  

The procedure for each of the remaining 95 points is as follows: If 
the voltage equals the ideal value of 0 volts, the deviation is 0.0. If the 
voltage is within 240 millivolts of 0 volts, the absolute value of the 
deviation from 0 volts is weighted by a factor of 1.0. If the voltage is 
more than 240 millivolts from 0 volts, the absolute value of the 
deviation from 0 volts is weighted by a factor of 10. For details, see 
[23]. 
5.4.6. Fitness Measure for the Computational Circuit 
SPICE is called to perform a DC sweep analysis at 21 equidistant 
voltages between –250 millivolts and +250 millivolts. Fitness is the 
sum, over these 21 fitness cases, of the absolute weighted deviation 
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between the actual value of the voltage that is produced by the circuit 
and the target value for voltage. For details, see [23].  
5.4.7. Fitness Measure for the Robot Controller Circuit 
The fitness of a robot controller was evaluated using 72 randomly 
chosen fitness cases each representing different two-dimensional 
target points. Fitness is the sum, over the 72 fitness cases, of the travel 
times of the robot to the target point. If the robot came within a 
capture radius of 0.28 meters of its target point before the end of the 
80 time steps allowed for a particular fitness case, the contribution to 
fitness for that fitness case was the actual time. However, if the robot 
failed to come within the capture radius during the 80 time steps, the 
contribution to fitness was a penalty value of 0.160 hours (i.e., double 
the worst possible time).  

The two voltage inputs to the circuit represents the two-dimensional 
location of the target point. SPICE performs a nested DC sweep, 
which provides a way to simulate the DC behavior of a circuit with 
two inputs. The nested DC sweep resembles a nested pair of FOR 
loops in a computer program in that both of the loops have a starting 
value for the voltage, an increment, and an ending value for the 
voltage. For each voltage value in the outer loop, the inner loop 
simulates the behavior of the circuit by stepping through its range of 
voltages. Specifically, the starting value for voltage is –4 volt, the step 
size is 0.2 volt, and the ending value is +4 volt. These values 
correspond to the dimensions of the robot's world of 64 square meters 
extending 4 meters in each of the four directions from the origin of a 
coordinate system (i.e., 1 volt equals 1 meter). For details, see [23]. 
5.4.8. Fitness Measure for the 60 dB Amplifier 
SPICE was requested to perform a DC sweep analysis to determine the 
circuit's response for several different DC input voltages. An ideal 
inverting amplifier circuit would receive the DC input, invert it, and 
multiply it by the amplification factor. A circuit is flawed to the extent 
that it does not achieve the desired amplification, the output signal is 
not perfectly centered on 0 volts(i.e., it is biased), or the DC response 
is not linear. Fitness is calculated by summing an amplification 
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penalty, a bias penalty, and two non-linearity penalties – each derived 
from these five DC outputs. For details, see [6].  
5.5. Control Parameters 
The probability of crossover was approximately 89%; reproduction 
10%; and mutation 1%. Other secondary control parameters were 
substantially the same for each of the eight problems and are detailed 
in [23]. Limited statistical studies [23] of the performance of genetic 
programming on the lowpass filter problem suggest that this particular 
problem (and, by inference, the highpass filter problem) can be best 
solved with a population of about 30,000. The lowpass filter problem 
can, in fact, be solved with populations as small as 1,000 (with a 
performance penalty of only about 25% in the number of fitness 
evaluations required to yield a solution with 99% probability, as 
compared to the apparently desirable population size of 30,000). 
However, problems involving active electrical components (such as 
amplifiers, computational circuits, and real-time controllers) seem to 
require a larger population size (such as 640,000). For uniformity, the 
population size, M, was 640,000 for all eight problems in this paper.  
5.6. Implementation on Parallel Computer 
Each problem was run on a medium-grained parallel Parsytec 
computer system consisting of 64 80-MHz PowerPC 601 processors 
arranged in an 8 by 8 toroidal mesh with a host PC Pentium type 
computer. The distributed genetic algorithm [2] was used with a 
population size of Q = 10,000 at each of the D = 64 demes (semi-
isolated subpopulations) for a total population, M, of 640,000. On each 
generation, four boatloads of emigrants, each consisting of B = 2% 
(the migration rate) of the node's subpopulation (selected on the basis 
of fitness) were dispatched to each of the four adjacent processing 
nodes.  
6. Results 
A large majority of the randomly created initial circuits of generation 
0 were not able to be simulated by SPICE; however, over 90% of the 
individuals in the population were simulatable after only a few 
generations of each run. In all eight problems, fitness was observed to 
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improve from generation to generation during the run. Satisfactory 
results were generated on the first or second run of each of the eight 
problems. Most of the eight problems were solved on the very first 
run. When a second run was required (i. e., a run with different 
random number seeds), the first run always produced a nearly 
satisfactory result. The fact that each of these eight illustrative 
problems were solved after only one or two runs suggests that the 
ability of genetic programming to evolve analog electrical circuits was 
not severely challenged by any of these eight problems. Thus augers 
well for handling more challenging problems in the future.  
6.1. Lowpass Filter 
Genetic programming has evolved numerous lowpass filters having 
topologies similar to that devised by human engineers. For example, a 
circuit (fig. 6) was evolved in generation 49 of one run with a near-
zero fitness of 0.00781. The circuit was 100% compliant with the 
design requirements in the sense that it scored 101 hits (out of 101). 
As can be seen, this evolved circuit consists of seven inductors (L5, 
L10, L22, L28, L31, L25, and L13) arranged horizontally across the 
top of the figure "in series" with the incoming signal VSOURCE and 
the source resistor RSOURCE. It also contains seven capacitors 
(C12, C24, C30, C3, C33, C27, and C15) that are each shunted to 
ground. This circuit is a classical ladder filter with seven rungs [35]. 

 
Fig. 6 Evolved seven-rung ladder lowpass filter.  

After the run, this evolved circuit (and all other evolved circuits 
herein) were simulated anew using the commercially available 
MicroSim circuit simulator to verify performance. Fig. 7 shows the 
behavior in the frequency domain of this evolved lowpass filter. As 
can be seen, the evolved circuit delivers about 1 volt for all 
frequencies up to 1,000 Hz and about 0 volts for all frequencies above 
2,000 Hz. There is a sharp drop-off in voltage in the transition region 
between 1,000 Hz and 2,000 Hz.  
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Fig. 7 Frequency domain behavior of genetically evolved 7-rung 

ladder lowpass filter. 

 
The circuit of fig. 6 has the recognizable features of the circuit for 

which George Campbell of American Telephone and Telegraph 
received U. S. patent 1,227,113[7]. Claim 2 of Campbell’s patent 
covered,  

“An electric wave filter consisting of a connecting line of 
negligible attenuation composed of a plurality of sections, each 
section including a capacity element and an inductance element, 
one of said elements of each section being in series with the line 
and the other in shunt across the line, said capacity and 
inductance elements having precomputed values dependent upon 
the upper limiting frequency and the lower limiting frequency of 
a range of frequencies it is desired to transmit without 
attenuation, the values of said capacity and inductance elements 
being so proportioned that the structure transmits with 
practically negligible attenuation sinusoidal currents of all 
frequencies lying between said two limiting frequencies, while 
attenuating and approximately extinguishing currents of 
neighboring frequencies lying outside of said limiting 
frequencies.” 

An examination of the evolved circuit of fig. 6 shows that it indeed 
consists of “a plurality of sections.” (specifically, seven). In the figure, 
“Each section include[es] a capacity element and an inductance 
element.” Specifically, the first of the seven sections consists of 
inductor L5 and capacitor C12; the second section consists of inductor 
L10 and capacitor C24; and so forth. Moreover, “one of said elements 
of each section [is] in series with the line and the other in shunt across 
the line.” Inductor L5 of the first section is indeed “in series with the 
line” and capacitor C12 is indeed “in shunt across the line.” This is 
also true for the circuit’s remaining six sections. Moreover, fig. 6 
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herein matches Figure 7 of Campbell’s 1917 patent. In addition, this 
circuit’s 100% compliant behavior in the frequency domain (fig. 7 
herein) confirms the fact that the values of the inductors and capacitors 
are such as to transmit “with practically negligible attenuation 
sinusoidal currents” of the passband frequencies “while attenuating 
and approximately extinguishing currents” of the stopband 
frequencies.  

In short, genetic programming evolved an electrical circuit that 
infringes on the claims of Campbell’s now-expired patent.  

Moreover, the evolved circuit of fig. 6 also approximately possesses 
the numerical values recommended in Campbell’s 1917 patent. After 
making several very minor adjustments and approximations (detailed 
in [23]), the evolved lowpass filter circuit of fig. 6 can be viewed as 
what is now known as a cascade of six identical symmetric π-sections 
[15]. Such π-sections are characterized by two key parameters. The 
first parameter is the characteristic resistance (impedance) of the π-
section. This characteristic resistance should match the circuit’s fixed 
load resistance RLOAD (1,000 Ω). The second parameter is the 
nominal cutoff frequency which separates the filter’s passband from 
its stopband. This second parameter should lie somewhere in the 
transition region between the end of the passband (1,000 Hz) and the 
beginning of the stopband (2,000 Hz). The characteristic resistance, R, 
of each of the π-sections is given by the formula √ L / C. Here L 
equals 200,000 µH and C equals 197 nF when employing this formula 
after making the minor adjustments and approximations detailed in 
[23]. This formula yields a characteristic resistance, R, of 1,008 Ω. 
This value is very close to the value of the 1,000 Ω load resistance of 
this problem. The nominal cutoff frequency, fc, of each of the π-
sections of a lowpass filter is given by the formula 1 / π √ LC. This 
formula yields a nominal cutoff frequency, fc, of 1,604 Hz (i.e., 
roughly in the middle of the transition region between the passband 
and stopband of the desired lowpass filter).  
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The legal criteria for obtaining a U. S. patent are that the proposed 
invention be "new” and “useful" and  

... the differences between the subject matter sought to be 
patented and the prior art are such that the subject matter as a 
whole would [not] have been obvious at the time the invention 
was made to a person having ordinary skill in the art to which 
said subject matter pertains. (35 United States Code 103a).  

George Campbell was part of the renowned research team of the 
American Telephone and Telegraph Corporation. He received a patent 
for his filter in 1917 because his idea was new in 1917, because it was 
useful, and because satisifed the above statutory test for 
unobviousness. The fact that genetic programming rediscovered an 
electrical circuit that was unobvious "to a person having ordinary skill 
in the art" establishes that this evolved result satisfies Arthur Samuel's 
criterion [31] for artificial intelligence and machine learning, namely 

“The aim [is] ... to get machines to exhibit behavior, which if 
done by humans, would be assumed to involve the use of 
intelligence.” 

In another run, a 100% compliant recognizable "bridged T" 
arrangement was evolved. The “bridged T” filter topology was 
invented and patented by Kenneth S. Johnson of Western Electric 
Company in 1926 [14]. In yet another run of this same problem using 
automatically defined functions, a 100% compliant circuit emerged 
with the recognizable elliptic topology that was invented and patented 
by Wilhelm Cauer [8, 9, 10]. The Cauer filter was a significant 
advance (both theoretically and commercially) over the Campbell, 
Johnson, Butterworth, Chebychev, and other earlier filter designs. 
Details are found in [23].  

It is important to note that when we performed the preparatory steps 
for applying genetic programming to the problem of synthesizing a 
lowpass filter, we did not employ any significant domain knowledge 
about filter design. We did not, for example, incorporate knowledge of 
Kirchhoff's laws, integro-differential equations, Laplace transforms, 
poles, zeroes, or the other mathematical techniques and insights about 



30 

circuits that are known to electrical engineers who design filters. We 
did, of course, specify the basic ingredients from which a circuit is 
composed, such as appropriate electrical components (e.g., inductors 
and capacitors). We also specified various generic methods for 
constructing the topology of electrical circuits (e.g., series divisions, 
parallel divisions, and vias). Genetic programming then proceeded to 
evolve a satisfactory circuit under the guidance of the fitness measure.  

The choices of electrical components in the preparatory steps are, of 
course, important. If, for example, we had included an insufficient set 
of components (e.g., only resistors and neon bulbs), genetic 
programming would have been incapable of evolving a satisfactory 
solution to the problem. On other hand, if we had included transistor-
creating functions in the set of component-creating functions (instead 
of functions for creating inductors and capacitors), genetic 
programming would have evolved an active filter composed of 
transistors, instead of a passive filter composed of inductors and 
capacitors. See [23] for an example of the successful evolution of an 
active filter satisfying the same design requirements as above.  

There are various ways of incorporating problem-specific domain 
knowledge into a run of genetic programming if a practicing engineer 
desires to bring such additional domain knowledge to bear on a 
particular problem,. For example, subcircuits that are known (or 
believed) to be necessary (or helpful) in solving a particular problem 
may be provided as primitive components. Also, a particular subcircuit 
may be hard-wired into an embryo (so that it is not subject to 
modification during the developmental process). In addition, a circuit 
may be divided into a prespecified number of distinct stages. A 
constrained syntactic structure can be used to mandate certain desired 
circuit features. Details and examples are found in [23].  
6.2. Highpass Filter 
In generation 27 of one run, a 100% compliant circuit (fig. 8) was 
evolved with a near-zero fitness of 0.213. This circuit has four 
capacitors and five inductors (in addition to the fixed components of 
the embryo). As can be seen, capacitors appear in series horizontally 
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across the top of the figure, while inductors appear vertically as shunts 
to ground.  

 
Fig. 8 Evolved four-rung ladder highpass filter. 

 
Fig. 9 shows the behavior in the frequency domain of this evolved 

highpass filter. As desired, the evolved highpass delivers about 0 volts 
for all frequencies up to 1,000 Hz and about 1 volt for all frequencies 
above 2,000 Hz.  

 
Fig. 9 Frequency domain behavior of evolved four-rung ladder 

highpass filter.  

 
The reversal of roles for the capacitors and inductors in lowpass and 

highpass ladder filters is well known to electrical engineers. It arises 
because of the duality of the single terms (derivatives versus integrals) 
in the integro-differential equations that represent the voltages and 
currents of the inductors and capacitors in the loops and nodes of a 
circuit. However, genetic programming was not given any domain 
knowledge concerning integro-differential equations or this duality. In 
fact, the only difference in the preparatory steps for the problem of 
synthesizing the highpass filter versus the problem of synthesizing the 
lowpass filter was the fitness measure. The fitness measure was 
merely a high-level statement of the goals of the problem (i.e., 
suppression of the low frequencies, instead of the high frequencies, 
and passage at full voltage of the high frequencies, instead of the low 
frequencies). In spite of the absence of explicit domain knowledge 
about integro-differential equations or this duality, genetic 
programming evolved a 100% compliant highpass filter embodying 
the well-known highpass ladder topology. Using the altered fitness 
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measure appropriate for highpass filters, genetic programming 
searched the same space (i.e., the space of circuit-constructing 
program trees composed of the same component-creating functions, 
the same topology-modifying functions, and the same development-
controlling functions) and discovered a circuit-constructing program 
tree that yielded a 100%-complaint highpass filter.  
6.3. Bandstop Filter 
The 100%-compliant evolved bandstop filter circuit (Fig. 10) from 
generation 56 scores 101 hits (out of 101).  

 
Fig. 10 Evolved bandstop filter. 

 
Fig. 11 shows the behavior in the frequency domain of this evolved 

bandstop filter. The evolved circuit satisfies all of the stated 
requirements (the irregularity in the figure occurring in a transitional 
"don't care" region). 

 
Fig. 11 Frequency domain behavior of evolved bandstop filter. 

 
6.4. Frequency-Measuring Circuit 
The 100%-compliant evolved frequency-measuring circuit (Fig. 12) 
from generation 101 scores 101 hits (out of 101).  

 
Fig. 12 Evolved frequency-measuring circuit.  

Fig. 13 shows that the output of the circuit varies linearly with the 
frequency (on a logarithmic scale) of the incoming signal from 1 Hz to 
1,000 Hz. 
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Fig. 13 Frequency domain behavior of evolved frequency-measuring 

circuit.  

 
6.5. Tri-state Frequency Discriminator 
The evolved three-way tri-state frequency discriminator circuit from 
generation 106 scores 101 hits (out of 101). Fig. 14 shows this circuit 
(after expansion of its automatically defined functions). The circuit 
produces the desired outputs of 1 volt and 1/2 volts (each within the 
allowable tolerance) for the two specified bands of frequencies and the 
desired near-zero signal for all other frequencies.  

 
Fig. 14 Evolved frequency discriminator.  

 
6.6. Computational Circuit 
The genetically evolved computational circuit for the square root from 
generation 57 (fig. 15), achieves a fitness of 1.19, and has 38 
transistors, seven diodes, no capacitors, and 18 resistors (in addition to 
the source and load resistors in the embryo). The output voltages 
produced by this best-of-run circuit are almost exactly the required 
values.  

 
Fig. 15 Evolved square root circuit.  

 
6.7. Robot Controller Circuit 
The best-of-run time-optimal robot controller circuit (fig. 16) appeared 
in generation 31, scores 72 hits, and achieves a near-optimal fitness of 
1.541 hours. In comparison, the optimal value of fitness for this 
problem is known to be 1.518 hours. This best-of-run circuit has 10 
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transistors and 4 resistors. The program has one automatically defined 
function that is called twice (incorporated into the figure).  

 

Fig. 16 Evolved robot controller.This problem entails navigating a 
robot to a destination in minimum time, so its fitness measure (section 
4.4.5) is expressed in terms of elapsed time. The fitness measure is a 
high-level description of "what needs to be done" – namely, get the 
robot to the destination in a time-optimal way. However, the fitness 
measure does not specify "how to do it." In particular, the fitness 
measure conveys no hint about the critical (and counterintuitive) tactic 
needed to minimize elapsed time in time-optimal control problem – 
namely, that it is sometimes necessary to veer away from the 
destination in order to reach it in minimal time. Nonetheless, the 
evolved time-optimal robot controller embodies this counterintuitive 
tactic. For example, fig. 17 shows the trajectory for the fitness case 
where the destination is (0.409, –0.892). Correct time-optimal 
handling of this difficult destination point requires a trajectory that 
begins by veering away from the destination (thereby increasing the 
distance to the destination) followed by a circular trajectory to the 
destination. The small circle in the figure represents the capture radius 
of 0.28 meters around the destination point.  

 
Fig. 17 Evolved time-optimal trajectory to destination point (0.409, –

0.892).  

 
The evolved time-optimal robot controller generalizes so as to 

correctly handle all other possible destinations in the plane.  
6.8. 60 dB Amplifier 
The best circuit from generation 109 (fig. 18) achieves a fitness of 
0.178. Based on a DC sweep, the amplification is 60 dB here (i.e., 
1,000-to-1 ratio) and the bias is 0.2 volt. Based on a transient analysis 
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at 1,000 Hz, the amplification is 59.7 dB; the bias is 0.18 volts; and 
the distortion is very low (0.17%). Based on an AC sweep, the 
amplification at 1,000 Hz is 59.7 dB; the flatband gain is 60 dB; and 
the 3 dB bandwidth is 79,333 Hz. Thus, a high-gain amplifier with low 
distortion and acceptable bias has been evolved.  

 
Fig. 18 Genetically evolved amplifier.  

 
7. Other Circuits 
Numerous other analog electrical circuits have been similarly designed 
using the techniques described in this paper, including a difficult-to-
design asymmetric bandpass filter, a crossover filter, a double 
passband filter, other amplifiers, a temperature-sensing circuit, and a 
voltage reference circuit [23]. Ten of the circuit described in [23] are 
subjects of U. S. patents. 
8. Conclusion 
There has previously been no general automated technique for 
synthesizing an analog electrical circuit from a high-level statement of 
the circuit's desired behavior. In this paper, genetic programming 
succeeded in evolving both the topology and sizing of eight different 
prototypical analog electrical circuits, including a lowpass filter, a 
highpass filter, a tri-state frequency discriminator circuit, a 60 dB 
amplifier, a computational circuit for the square root, and a time-
optimal robot controller circuit. All eight of these genetically evolved 
circuits constitute instances of an evolutionary computation technique 
solving a problem that is usually thought to require human 
intelligence. The approach described in this paper can be directly 
applied to many other problems of analog circuit synthesis.  
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Fig. 1 One-input, one-output embryo. 
 
Fig. 2 Modifiable wire Z0. 
 
Fig. 3 Result of applying the R function.  
 
Fig. 4 Result of the PARALLEL0 function. 
 
Fig. 5 Illustrative circuit-constructing program tree.  
 
Fig. 6 Evolved seven-rung ladder lowpass filter. 
 
Fig. 7 Frequency domain behavior of genetically evolved 7-rung 
ladder lowpass filter.  
 
Fig. 8 Evolved four-rung ladder highpass filter. 
 
Fig. 9 Frequency domain behavior of evolved four-rung ladder 
highpass filter.  
 
Fig. 10 Evolved bandstop filter. 
 
Fig. 11 Frequency domain behavior of evolved bandstop filter. 
 
Fig. 12 Evolved frequency-measuring circuit.  
 
Fig. 13 Frequency domain behavior of evolved frequency-measuring 
circuit.  
 
Fig. 14 Evolved frequency discriminator.  
 
Fig. 15 Evolved square root circuit.  
 



 

Fig. 16 Evolved robot controller.  
 
Fig. 17 Evolved time-optimal trajectory to destination point (0.409, –
0.892). 
 
Fig. 18 Genetically evolved amplifier 
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