
1

Version 2 - Submitted November 28, 1998 for special issue of
Computer Methods in Applied Mechanics and Engineering (CMAME
journal) edited by David E. Goldberg and Kalyanmoy Deb.

Synthesis of Topology and Sizing of Analog
Electrical Circuits by Means of Genetic

Programming

J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned
aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California

94305 USA, koza@stanford.edu
bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, forrest@evolute.com

cDivision of Computer Science, University of California. Berkeley, California 94720 USA, dandre@cs.berkeley.edu
dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, makeane@ix.netcom.com

* Corresponding author.

Abstract

The design (synthesis) of an analog electrical circuit entails the
creation of both the topology and sizing (numerical values) of all of
the circuit's components. There has previously been no general
automated technique for automatically creating the design for an
analog electrical circuit from a high-level statement of the circuit's
desired behavior. This paper shows how genetic programming can be
used to automate the design of eight prototypical analog circuits,
including a lowpass filter, a highpass filter, a bandstop filter, a tri-
state frequency discriminator circuit, a frequency-measuring circuit, a
60 dB amplifier, a computational circuit for the square root function,
and a time-optimal robot controller circuit.

1. Introduction
Design is a major activity of practicing mechanical, electrical, civil,
and aeronautical engineers. The design process entails creation of a

2

complex structure to satisfy user-defined requirements. Since the
design process typically entails tradeoffs between competing
considerations, the end product of the process is usually a satisfactory
and compliant design as opposed to a perfect design. Design is usually
viewed as requiring human intelligence. Consequently, the field of
design is a source of challenging problems for automated techniques
of machine learning and artificial intelligence. In particular, design
problems are useful for determining whether an automated technique
can perform tasks that are competitive with human-created designs.

The design (synthesis) of analog electrical circuits is especially
challenging. The design process for analog circuits begins with a high-
level description of the circuit's desired behavior and characteristics
and entails creation of both the topology and the sizing of a
satisfactory circuit. The topology comprises the gross number of
components in the circuit, the type of each component (e.g., a
resistor), and a list of all connections between the components. The
sizing involves specifying the values (typically numerical) of each of
the circuit's components.

Although considerable progress has been made in automating the
synthesis of certain categories of purely digital circuits, the synthesis
of analog circuits and mixed analog-digital circuitshas not proved to
be as amenable to automation [30]. There is no previously known
general technique for automatically creating an entire analog circuit
from a high-level statement of the design goals of the circuit.
Describing "the analog dilemma," O. Aaserud and I. Ring Nielsen [1]
noted

"Analog designers are few and far between. In contrast to digital
design, most of the analog circuits are still handcrafted by the
experts or so-called 'zahs' of analog design. The design process
is characterized by a combination of experience and intuition
and requires a thorough knowledge of the process characteristics
and the detailed specifications of the actual product.
"Analog circuit design is known to be a knowledge-intensive,
multiphase, iterative task, which usually stretches over a

3

significant period of time and is performed by designers with a
large portfolio of skills. It is therefore considered by many to be
a form of art rather than a science."

There has been extensive previous work (surveyed in [23]) on the
problem of automated circuit design (synthesis) using simulated
annealing, artificial intelligence, and other techniques, including work
employing genetic algorithms [11, 27, 33].

This paper presents a uniform approach to the automatic synthesis of
both the topology and sizing of analog electrical circuits. Section 2
presents eight design problems involving prototypical analog circuits.
Section 3 describes genetic programming. Section 4 details the circuit-
constructing functions used in applying genetic programming to the
problem of analog circuit synthesis. Section 5 presents the preparatory
steps required for applying genetic programming to a particular design
problem. Section 6 shows the results for the eight problems. Section 7
cites other circuits that have been designed by genetic programming.
2. Eight Problems of Analog Design
This paper applies genetic programming to an illustrative suite of eight
problems of analog circuit design. The circuits comprise a variety of
types of components, including transistors, diodes, resistors, inductors,
and capacitors. The circuits have varying numbers of inputs and
outputs. They circuits encompass both passive and active circuits.

(1) Design a one-input, one-output lowpass filter composed of
capacitors and inductors that passes all frequencies below 1,000 Hz
and suppresses all frequencies above 2,000 Hz.

(2) Design a one-input, one-output highpass filter composed of
capacitors and inductors that suppresses all frequencies below 1,000
Hz and passes all frequencies above 2,000 Hz.

(3) Design a one-input, one-output bandstop (notch) filter composed
of capacitors and inductors that suppresses all frequencies between
500 Hz and 1,000 Hz and that passes frequencies that are less than 250
Hz and greater than 2,000 Hz..

(4) Design a one-input, one-output frequency-measuring circuit that
is composed of capacitors and inductors whose output in millivolts

4

(from 1 millivolt to 1,000 millivolts) is proportional to the frequency
of an incoming signal (between 1 Hz and 100,000 Hz).

(5) Design a one-input, one-output tri-state frequency discriminator
(source identification) circuit that is composed of resistors, capacitors,
and inductors and that produces an output of 1/2 volt and 1 volt for
incoming signals whose frequencies are within 10% of 256 Hz and
within 10% of 2,560 Hz, respectively, but produces an output of 0
volts otherwise.

(6) Design a one-input, one-output computational circuit that is
composed of transistors, diodes, resistors, and capacitors and that
produces an output voltage equal to the square root of its input
voltage.

(7) Design a two-input, one-output time-optimal robot controller
circuit that is composed of the above components and that navigates a
constant-speed autonomous mobile robot (with nonzero turning
radius) to an arbitrary destination in minimal time.

(8) Design a one-input, one-output amplifier composed of the above
components and that delivers amplification of 60 dB (i.e., 1,000 to 1)
with low distortion and low bias.

The above eight prototypical circuits are representative of analog
circuits that are in widespread use. Filters extract specified ranges of
frequencies from electrical signals and amplifiers enhance the
amplitude of signal. Amplifiers are used to increase the amplitude of
an incoming signal. Frequency discriminators are used in source
identification and signal recognition. Analog computational circuits
are used to perform real-time mathematical calculations on signals.
Embedded controllers are used to control the operation of numerous
automatic devices.
3. Background on Genetic Programming
Genetic programming is a biologically inspired, domain-independent
method that automatically creates a computer program from a high-
level statement of a problem's requirements. Genetic programming is
an extension of the genetic algorithm described in John Holland's
pioneering book Adaptation in Natural and Artificial Systems [13]. In

5

genetic programming, the genetic algorithm operates on a population
of computer programs of varying sizes and shapes [18, 26].

Starting with a primordial ooze of thousands of randomly created
computer programs, genetic programming progressively breeds a
population of computer programs over a series of generations. Genetic
programming applies the Darwinian principle of survival of the fittest,
analogs of naturally occurring operations such as sexual
recombination (crossover), mutation, gene duplication, and gene
deletion, and certain mechanisms of developmental biology. The
computer programs are compositions of functions (e.g., arithmetic
operations, conditional operators, problem-specific functions) and
terminals (e.g., external inputs, constants, zero-argument functions).
The programs may be thought of as trees whose points are labeled
with the functions and whose leaves are labeled with the terminals.

Genetic programming breeds computer programs to solve problems
by executing the following three steps:

(1) Randomly create an initial population of individual computer
programs.
(2) Iteratively perform the following substeps (called a generation)
on the population of programs until the termination criterion has
been satisfied:

(a) Assign a fitness value to each individual program in the
population using the fitness measure.
(b) Create a new population of individual programs by applying
the following three genetic operations. The genetic operations are
applied to one or two individuals in the population selected with a
probability based on fitness (with reselection allowed).

(i) Reproduce an existing individual by copying it into the new
population.
(ii) Create two new individual programs from two existing
parental individuals by genetically recombining subtrees from
each program using the crossover operation at randomly chosen
crossover points in the parental individuals.

6

(iii) Create a new individual from an existing parental individual
by randomly mutating one randomly chosen subtree of the
parental individual.

(3) Designate the individual computer program that is identified by
the method of result designation (e.g., the best-so-far individual) as
the result of the run of genetic programming. This result may
represent a solution (or an approximate solution) to the problem.
Genetic programming starts with an initial population (generation 0)

of randomly generated computer programs composed of the given
primitive functions and terminals. Typically, the size of each program
is limited, for practical reasons, to a certain maximum number of
points (i.e. total number of functions and terminals) or a maximum
depth (of the program tree). The creation of this initial random
population is, in effect, a blind random parallel search of the search
space of the problem represented as computer programs.

The computer programs in generation 0 of a run of genetic
programming will almost always have exceedingly poor fitness.
Nonetheless, some individuals in the population will turn out to be
somewhat more fit than others. These differences in performance are
then exploited. The Darwinian principle of reproduction and survival
of the fittest and the genetic operation of crossover are used to create a
new offspring population of individual computer programs from the
current population of programs.

The reproduction operation involves selecting a computer program
from the current population of programs based on fitness (i.e., the
better the fitness, the more likely the individual is to be selected) and
allowing it to survive by copying it into the new population.

The crossover operation creates new offspring computer programs
from two parental programs selected based on fitness. The parental
programs in genetic programming are typically of different sizes and
shapes. The offspring programs are composed of subexpressions
(subtrees, subprograms, subroutines, building blocks) from their
parents. These offspring programs are typically of different sizes and
shapes than their parents.

7

For example, consider the following computer program (presented
here as a LISP S-expression):

(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as
0.234 Z + X – 0.789.

This program takes two inputs (X and Z) and produces a floating
point output.

Also, consider a second program:

(* (* Z Y) (+ Y (* 0.314 Z))).

One crossover point is randomly and independently chosen in each
parent. Suppose that the crossover points are the * in the first parent
and the + in the second parent. These two crossover fragments
correspond to the underlined sub-programs (sub-lists) in the two
parental computer programs.

The two offspring resulting from crossover are as follows:

(+ (+ Y (* 0.314 Z)) (- X 0.789))

(* (* Z Y) (* 0.234 Z)).

Thus, crossover creates new computer programs using parts of
existing parental programs. Because entire sub-trees are swapped, the
crossover operation always produces syntactically and semantically
valid programs as offspring regardless of the choice of the two
crossover points. Because programs are selected to participate in the
crossover operation with a probability based on fitness, crossover
allocates future trials to regions of the search space whose programs
contain parts of promising programs.

The mutation operation creates an offspring computer program from
one parental program selected based on fitness. One mutation point is
randomly and independently chosen and the subtree occurring at that
point is deleted. Then, a new subtree is grown at that point using the
same growth procedure as was originally used to create the initial
random population.

8

After the genetic operations are performed on the current population,
the population of offspring (i.e., the new generation) replaces the old
population (i.e., the old generation). Each individual in the new
population of programs is then measured for fitness, and the process is
repeated over many generations.

The hierarchical character of the computer programs that are
produced is an important feature of genetic programming. The
dynamic variability of the computer programs that are developed
along the way to a solution is also an important feature of genetic
programming. It is often difficult and unnatural to try to specify or
restrict the size and shape of the eventual solution in advance.
Moreover, advance specification or restriction of the size and shape of
the solution to a problem narrows the window by which the system
views the world and might well preclude finding the solution to the
problem at all.

Automated programming requires some hierarchical mechanism to
exploit, by reuse and parameterization, the regularities, symmetries,
homogeneities, similarities, patterns, and modularities inherent in
problem environments. Subroutines do this in ordinary computer
programs. Automatically defined functions [19,. 20] can be
implemented within the context of genetic programming by
establishing a constrained syntactic structure for the individual
programs in the population. Each multi-part program in the population
contains one (or more) function-defining branches and one (or more)
main result-producing branches. The result-producing branch usually
has the ability to call one or more of the automatically defined
functions. A function-defining branch may have the ability to refer
hierarchically to other already-defined automatically defined
functions.

Since each individual program in the population of this example
consists of function-defining branch(es) and result-producing
branch(es), the initial random generation is created so that every
individual program in the population has this particular constrained
syntactic structure. Since a constrained syntactic structure is involved,

9

crossover is performed so as to preserve this syntactic structure in all
offspring.

Architecture-altering operations enhance genetic programming with
automatically defined functions by providing a way to automatically
determine the number of such automatically defined functions, the
number of arguments that each automatically defined function
possesses, and the nature of the hierarchical references, if any, among
such automatically defined functions [21]. These operations include
branch duplication, argument duplication, branch creation, argument
creation, branch deletion, and argument deletion. The architecture-
altering operations are motivated by the naturally occurring
mechanism of gene duplication that creates new proteins (and hence
new structures and new behaviors in living things) [28].

Genetic programming has been applied to numerous problems in
fields such as system identification, control, classification, design,
optimization, and automatic programming. Current research is
described in [3, 4, 5, 16, 22, 23, 24, 25, 32] and on the World Wide
Web at www.genetic-programming.org.
4. Applying Genetic Programming to Analog Circuit Synthesis
Genetic programming can be applied to the problem of synthesizing
circuits if a mapping is established between the program trees (rooted,
point-labeled trees – that is, acyclic graphs – with ordered branches)
used in genetic programming and the labeled cyclic graphs germane to
electrical circuits. The principles of developmental biology and work
on applying genetic algorithms and genetic programming to evolve
neural networks [12, 17] provide the motivation for mapping trees into
circuits by means of a developmental process that begins with a simple
embryo. For circuits, the embryo typically includes fixed wires that
connect the inputs and outputs of the particular circuit being designed
and certain fixed components (such as source and load resistors). Until
these wires are modified, the circuit does not produce interesting
output. An electrical circuit is developed by progressively applying the
functions in a circuit-constructing program tree to the modifiable wires

10

of the embryo (and, during the developmental process, to new
components and modifiable wires).

An electrical circuit is created by executing the functions in a
circuit-constructing program tree. The functions are progressively
applied in a developmental process to the embryo and its successors
until all of the functions in the program tree are executed. That is, the
functions in the circuit-constructing program tree progressively side-
effect the embryo and its successors until a fully developed circuit
eventually emerges. The functions are applied in a breadth-first order.

The functions in the circuit-constructing program trees are divided
into five categories: (1) topology-modifying functions that alter the
circuit topology, (2) component-creating functions that insert
components into the circuit, (3) development-controlling functions
that control the development process by which the embryo and its
successors is changed into a fully developed circuit, (4) arithmetic-
performing functions that appear in subtrees as argument(s) to the
component-creating functions and specify the numerical value of the
component, and (5) automatically defined functions that appear in the
function-defining branches and potentially enable certain substructures
of the circuit to be reused (with parameterization).

Each branch of the program tree is created in accordance with a
constrained syntactic structure. Each branch is composed of topology-
modifying functions, component-creating functions, development-
controlling functions, and terminals. Component-creating functions
typically have one arithmetic-performing subtree, while topology-
modifying functions, and development-controlling functions do not.
Component-creating functions and topology-modifying functions are
internal points of their branches and possess one or more arguments
(construction-continuing subtrees) that continue the developmental
process. The syntactic validity of this constrained syntactic structure is
preserved using structure-preserving crossover with point typing. For
details, see [23].

11

4.1. The Embryonic Circuit
An electrical circuit is created by executing a circuit-constructing
program tree that contains various component-creating, topology-
modifying, and development-controlling functions. Each tree in the
population creates one circuit. The specific embryo used depends on
the number of inputs and outputs.

Fig. 1 shows a one-input, one-output embryonic circuit in which
VSOURCE is the input signal and VOUT is the output signal (the
probe point). The circuit is driven by an incoming alternating circuit
source VSOURCE. There is a fixed load resistor RLOAD and a fixed
source resistor RSOURCE in the embryo. In addition to the fixed
components, there is a modifiable wire Z0 between nodes 2 and 3. All
development originates from this modifiable wire.

Fig. 1 One-input, one-output embryo

4.2. Component-Creating Functions
The component-creating functions insert a component into the
developing circuit and assign component value(s) to the component.

Each component-creating function has a writing head that points to
an associated highlighted component in the developing circuit and
modifies that component in a specified manner. The construction-
continuing subtree of each component-creating function points to a
successor function or terminal in the circuit-constructing program tree.

The arithmetic-performing subtree of a component-creating function
consists of a composition of arithmetic functions (addition and
subtraction) and random constants (in the range -1.000 to +1.000). The
arithmetic-performing subtree specifies the numerical value of a
component by returning a floating-point value that is interpreted on a
logarithmic scale as the value for the component in a range of 10
orders of magnitude (using a unit of measure that is appropriate for the
particular type of component).

12

The two-argument resistor-creating R function causes the
highlighted component to be changed into a resistor. The value of the
resistor in kilo Ohms is specified by its arithmetic-performing subtree.

Fig. 2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a
partial circuit containing four capacitors (C2, C3, C4, and C5). The
modifiable wire Z0 has a writing head (i.e., is subject to subsequent
modification). Fig. 3 shows the result of applying the R function to the
modifiable wire Z0 of fig. 2. The newly created R1 has a writing head
and remains subject to subsequent modification.

Fig. 2 Modifiable wire Z0

Fig. 3 Result of applying the R function.

Similarly, the two-argument capacitor-creating C function causes the

highlighted component to be changed into a capacitor whose value in
micro-Farads is specified by its arithmetic-performing subtree. In
addition, the two-argument inductor-creating L function causes the
highlighted component to be changed into an inductor whose value in
micro-Henrys is specified by its arithmetic-performing subtree.

The one-argument Q_D_PNP diode-creating function causes a diode
to be inserted in lieu of the highlighted component. This function has
only one argument because there is no numerical value associated with
a diode and thus no arithmetic-performing subtree. In practice, the
diode is implemented here using a pnp transistor whose collector and
base are connected to each other. The Q_D_NPN function inserts a
diode using an npn transistor in a similar manner.

There are also six one-argument transistor-creating functions
(Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP) that

13

insert a bipolar junction transistor in lieu of the highlighted component
and that directly connect the collector or emitter of the newly created
transistor to a fixed point of the circuit (the positive power supply,
ground, or the negative power supply). For example, the
Q_POS_COLL_NPN function inserts a bipolar junction transistor
whose collector is connected to the positive power supply.

Each of the functions in the family of six different three-argument
transistor-creating Q_3_NPN functions causes an npn bipolar junction
transistor to be inserted in place of the highlighted component and one
of the nodes to which the highlighted component is connected. The
Q_3_NPN function creates five new nodes and three modifiable wires.
There is no writing head on the new transistor, but there is a writing
head on each of the three new modifiable wires. There are 12 members
(called Q_3_NPN0, ..., Q_3_NPN11) in this family of functions
because there are two choices of nodes (1 and 2) to be bifurcated and
then there are six ways of attaching the transistor's base, collector, and
emitter after the bifurcation. Similarly the family of 12 Q_3_PNP
functions causes a pnp bipolar junction transistor to be inserted.
4.3. Topology-Modifying Functions
Each topology-modifying function in a program tree points to an
associated highlighted component and modifies the topology of the
developing circuit.

The three-argument SERIES division function creates a series
composition of the highlighted component (with a writing head), a
copy of it (with a writing head), one new modifiable wire (with a
writing head), and two new nodes.

The four-argument PARALLEL0 parallel division function creates a
parallel composition consisting of the original highlighted component
(with a writing head), a copy of it (with a writing head), two new
modifiable wires (each with a writing head), and two new nodes.
There are potentially two topologically distinct outcomes of a parallel
division. Since we want the outcome of all circuit-constructing
functions to be deterministic, there are two members (called
PARALLEL0 and PARALLEL1) in the PARALLEL family of

14

topology-modifying functions. The two functions operate differently
depending on degree and numbering of the preexisting components in
the developing circuit. The use of the two functions breaks the
symmetry between the potentially distinct outcomes. Fig. 4 shows the
result of applying PARALLEL0 to the resistor R1 from fig. 3.
Modifiable resistors R1 and R7 and modifiable wires Z6 and Z8 are
each linked to the top-most function in one of the four construction-
continuing subtrees of the PARALLEL0 function.

Fig. 4 Result of the PARALLEL0 function

The reader is referred to [23] for a detailed description of the
operation of the PARALLEL0 and PARALLEL1 functions (and other
functions mentioned herein).

If desired, other topology-modifying functions may be defined to
create the Y-shaped divisions and ∆-shaped divisions that are
frequently seen in human-designed circuits.

The one-argument polarity-reversing FLIP function reverses the
polarity of the highlighted component.

There are six three-argument functions (T_GND_0, T_GND_1,
T_POS_0, T_POS_1, T_NEG_0, T_NEG_1) that insert two new
nodes and two new modifiable wires, and then make a connection to
ground, positive power supply, or negative power supply, respectively.

There are two three-argument functions (PAIR_CONNECT_0 and
PAIR_CONNECT_1) that enable distant parts of a circuit to be
connected together. The first PAIR_CONNECT to occur in the
development of a circuit creates two new wires, two new nodes, and
one temporary port. The next PAIR_CONNECT creates two new wires
and one new node, connects the temporary port to the end of one of
these new wires, and then removes the temporary port.

If desired, numbered vias can be created to provide connectivity
between distant points of the circuit by using a three-argument VIA
function.

15

The zero-argument SAFE_CUT function causes the highlighted
component to be removed from the circuit provided that the degree of
the nodes at both ends of the highlighted component is three (i.e., no
dangling components or wires are created).
4.4. Development-Controlling Functions
The one-argument NOOP ("No Operation") function has no effect on
the modifiable wire or modifiable component with which it is
associated; however, it has the effect of delaying activity on the
developmental path on which it appears in relation to other
developmental paths in the overall circuit-constructing program tree.

The zero-argument END function makes the modifiable wire or
modifiable component with which it is associated non-modifiable
(thereby ending a particular developmental path).
4.5. Example of Developmental Process
Fig. 5 is an illustrative circuit-constructing program tree shown as a
rooted, point-labeled tree with ordered branches. The overall program
consists of two main result-producing branches joined by a connective
LIST function (labeled 1 in the figure). The first (left) result-
producing branch is rooted at the capacitor-creating C function
(labeled 2). The second result-producing branch is rooted at the
polarity-reversing FLIP function (labeled 3). This figure also contains
four occurrences of the inductor-creating L function (at 17, 11, 20, and
12). The figure contains two occurrences of the topology-modifying
SERIES function (at 5 and 10). The figure also contains five
occurrences of the development-controlling END function (at 15, 25,
27, 31, and 22) and one occurrence of the development-controlling "no
operation" NOP function (at 6). There is a seven-point arithmetic-
performing subtree at 4 under the capacitor-creating C function at 4.
Similarly, there is a three-point arithmetic-performing subtree at 19
under the inductor-creating L function at 11. There are also one-point
arithmetic-performing subtrees (i.e., constants) at 26, 30, and 21.
Additional details can be found in [23].

16

Fig. 5 Illustrative circuit-constructing program tree.

5. Preparatory Steps
Before applying genetic programming to a problem of circuit design,
seven major preparatory steps are required: (1) identify the embryonic
circuit, (2) determine the architecture of the circuit-constructing
program trees, (3) identify the primitive functions of the program
trees, (4) identify the terminals of the program trees, (5) create the
fitness measure, (6) choose control parameters for the run, and (7)
determine the termination criterion and method of result designation.
5.1. Embryonic Circuit
The embryonic circuit used on a particular problem depends on the
circuit's number of inputs and outputs. All development originates
from the modifiable wires.

An embryo with two modifiable wires (Z0 and Z1) was used for the
one-input, one-output lowpass filter, highpass filter, bandstop filter
and frequency-measuring circuits.

The robot controller circuit has two inputs (VSOURCE1 and
VSOURCE2) representing the two-dimensional position of the target
point. Therefore, this problem requires a different embryonic circuit
than that used above. Both voltage inputs require their own separate
source resistor (RSOURCE1 and RSOURCE2). The embryo for the
robot controller circuit has three modifiable wires (Z0, Z1, and Z2) in
order to provide full connectivity between the two inputs and the one
output.

In some problems, such as the amplifier, the embryo contains
additional fixed components (as detailed in [23]).

For historical reasons, an embryo with one modifiable wire was used
for the frequency-discriminator circuit and the computational circuit.
However, an embryo with two modifiable wires could have been used
on these problems and an embryo with one modifiable wire could have

17

been used on the lowpass filter, highpass filter, bandstop filter, and
frequency-measuring circuits.
5.2. Program Architecture
Since there is one result-producing branch in the program tree for each
modifiable wire in the embryo, the architecture of each circuit-
constructing program tree depends on the embryonic circuit. One
result-producing branch was used for the frequency discriminator and
the computational circuit; two were used for lowpass, highpass, and
bandstop filter problems; and three were used for the robot controller
and amplifier.

The architecture of each circuit-constructing program tree also
depends on the use, if any, of automatically defined functions.
Automatically defined functions provide a mechanism enabling certain
substructures to be reused and are described in detail in [23].
Automatically defined functions and architecture-altering operations
were used in the frequency discriminator, robot controller, and
amplifier. For these problems, each program in the initial population
of programs had a uniform architecture with no automatically defined
functions. In later generations, the number of automatically defined
functions, if any, emerged as a consequence of the architecture-
altering operations (also described in [23]).
5.3. Function and Terminal Sets
The function set for each design problem depends on the type of
electrical components that are to be used for constructing the circuit.

For the problems of synthesizing a lowpass, highpass, and bandstop
filter and the problem of synthesizing a frequency-measuring circuit,
the function set included two component-creating functions (for
inductors and capacitors), topology-modifying functions (for series
and parallel divisions and for flipping components), one development-
controlling function (“no operation”), functions for creating a via to
ground, and functions for connecting pairs of points. That is, the
function set, Fccs-initial, for each construction-continuing subtree was

18

Fccs-initial = {L, C, SERIES, PARALLEL0, PARALLEL1, FLIP,
NOOP, T_GND_0, T_GND_1, PAIR_CONNECT_0,
PAIR_CONNECT_1}.

For the frequency discriminator, the function set also included the

resistor-creating function R, so that the function set, Fccs-initial, for
each construction-continuing subtree was
Fccs-initial = {R, L, C, SERIES, PARALLEL0, PARALLEL1, FLIP,

NOOP, T_GND_0, T_GND_1, PAIR_CONNECT_0,
PAIR_CONNECT_1}.

Capacitors, resistors, diodes, and transistors were used for the
computational circuit, the robot controller, and the amplifier. In
addition, the function set also included functions to provide
connectivity to the positive and negative power supplies (in order to
provide a source of energy for the transistors). Thus, the function set,
Fccs-initial, for each construction-continuing subtree was
Fccs-initial = {R, C, SERIES, PARALLEL0, PARALLEL1, FLIP,

NOOP, T_GND_0, T_GND_1, T_POS_0, T_POS_1, T_NEG_0,
T_NEG_1, PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11,
Q_3_PNP0, ..., Q_3_PNP11, Q_POS_COLL_NPN,
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}.

For the npn transistors, the Q2N3904 model was used. For pnp
transistors, the Q2N3906 model was used.

The initial terminal set, Tccs-initial, for each construction-continuing
subtree was
Tccs-initial = {END, SAFE_CUT}.

The initial terminal set, Taps-initial, for each arithmetic-performing
subtree consisted of
Taps-initial = {ℜ},
where ℜ represents floating-point random constants from –1.0 to +1.0.

The function set, Faps, for each arithmetic-performing subtree was,

19

Faps = {+, -}.
The terminal and function sets were identical for all result-producing

branches for a particular problem.
For the lowpass filter, highpass filter, and frequency discriminator,

there was no need for functions to provide connectivity to the positive
and negative power supplies.

For the frequency discriminator, the robot controller, and the
amplifier, the architecture-altering operations were used and the set of
potential new functions, Fpotential, was
Fpotential = {ADF0, ADF1, ...}.

The set of potential new terminals, Tpotential, for the automatically
defined functions was
Tpotential = {ARG0}.

The architecture-altering operations change the function set, Fccs for
each construction-continuing subtree of all three result-producing
branches and the function-defining branches, so that
Fccs = Fccs-initial ≈ Fpotential.

The architecture-altering operations generally change the terminal
set for automatically defined functions, Taps-adf, for each arithmetic-
performing subtree, so that
Taps-adf = Taps-initial ≈ Tpotential.
5.4. Fitness Measure
The evolutionary process is driven by the fitness measure. Each
individual computer program in the population is executed and then
evaluated, using the fitness measure. The nature of the fitness measure
varies with the problem. The high-level statement of desired circuit
behavior is translated into a well-defined measurable quantity that can
be used by genetic programming to guide the evolutionary process.
The evaluation of each individual circuit-constructing program tree in
the population begins with its execution. This execution progressively
applies the functions in each program tree to an embryonic circuit,
thereby creating a fully developed circuit. A netlist is created that
identifies each component of the developed circuit, the nodes to which

20

each component is connected, and the value of each component. The
netlist becomes the input to our modified version of the 217,000-line
SPICE (Simulation Program with Integrated Circuit Emphasis)
simulation program [29, 34]. SPICE then determines the behavior of
the circuit. It was necessary to make considerable modifications in
SPICE so that it could run as a submodule within the genetic
programming system.
 5.4.1. Fitness Measure for the Lowpass Filter
A simple filter is a one-input, one-output electronic circuit that
receives a signal as its input and passes the frequency components of
the incoming signal that lie in a specified range (called the passband)
while suppressing the frequency components that lie in all other
frequency ranges (the stopband).

The desired lowpass LC filter has a passband below 1,000 Hz and a
stopband above 2,000 Hz. The circuit is driven by an incoming AC
voltage source with a 2 volt amplitude.

The attenuation of the filter is defined in terms of the output signal
relative to the reference voltage (half of 2 volt here). A decibel is a
unitless measure of relative voltage that is defined as 20 times the
common (base 10) logarithm of the ratio between the voltage at a
particular probe point and a reference voltage.

In this problem, a voltage in the passband of exactly 1 volt and a
voltage in the stopband of exactly 0 volts is regarded as ideal. The
(preferably small) variation within the passband is called the passband
ripple. Similarly, the incoming signal is never fully reduced to zero in
the stopband of an actual filter. The (preferably small) variation within
the stopband is called the stopband ripple. A voltage in the passband
of between 970 millivolts and 1 volt (i.e., a passband ripple of 30
millivolts or less) and a voltage in the stopband of between 0 volts and
1 millivolts (i.e., a stopband ripple of 1 millivolts or less) is regarded
as acceptable. Any voltage lower than 970 millivolts in the passband
and any voltage above 1 millivolts in the stopband is regarded as
unacceptable.

21

A fifth-order elliptic (Cauer) filter with a modular angle Θ of 30
degrees (i.e., the arcsin of the ratio of the boundaries of the passband
and stopband) and a reflection coefficient ρ of 24.3% is required to
satisfy these design goals [35].

Since the high-level statement of behavior for the desired circuit is
expressed in terms of frequencies, the voltage VOUT is measured in
the frequency domain. SPICE performs an AC small signal analysis
and reports the circuit's behavior over five decades (between 1 Hz and
100,000 Hz) with each decade being divided into 20 parts (using a
logarithmic scale), so that there are a total of 101 fitness cases.

Fitness is measured in terms of the sum over these cases of the
absolute weighted deviation between the actual value of the voltage
that is produced by the circuit at the probe point VOUT and the target
value for voltage. The smaller the value of fitness, the better. A fitness
of zero represents an (unattainable) ideal filter.

Specifically, the standardized fitness is

F(t) =
i=0

100
∑ (W (d (f i), f i)d (f i))

where fi is the frequency of fitness case i; d(x) is the absolute value of
the difference between the target and observed values at frequency x;
and W(y,x) is the weighting for difference y at frequency x.

The fitness measure is designed to not penalize ideal values, to
slightly penalize every acceptable deviation, and to heavily penalize
every unacceptable deviation. Specifically, the procedure for each of
the 61 points in the 3-decade interval between 1 Hz and 1,000 Hz for
the intended passband is as follows:

• If the voltage equals the ideal value of 1.0 volt in this interval, the
deviation is 0.0.
• If the voltage is between 970 millivolts and 1 volt, the absolute
value of the deviation from 1 volt is weighted by a factor of 1.0.
• If the voltage is less than 970 millivolts, the absolute value of the
deviation from 1 volt is weighted by a factor of 10.0.
The acceptable and unacceptable deviations for each of the 35 points

from 2,000 Hz to 100,000 Hz in the intended stopband are similarly

22

weighed (by 1.0 or 10.0) based on the amount of deviation from the
ideal voltage of 0 volts and the acceptable deviation of 1 millivolts.

For each of the five "don't care" points between 1,000 and 2,000 Hz,
the deviation is deemed to be zero.

The number of “hits” for this problem (and all other problems
herein) is defined as the number of fitness cases for which the voltage
is acceptable or ideal or that lie in the "don't care" band (for a filter).

Many of the random initial circuits and many that are created by the
crossover and mutation operations in subsequent generations cannot
be simulated by SPICE. These circuits receive a high penalty value of
fitness (108) and become the worst-of-generation programs for each
generation. For details, see [23].
5.4.2. Fitness Measure for the Highpass Filter
The fitness cases for the highpass filter are the same 101 points in the
five decades of frequency between 1 Hz and 100,000 Hz as for the
lowpass filter. The fitness measure is substantially the same as that for
the lowpass filter problem above, except that the locations of the
passband and stopband are reversed. Notice that the only difference in
the seven preparatory steps for a highpass filter versus a lowpass filter
is this change in the fitness measure.
5.4.3. Fitness Measure for the Bandstop Filter
The fitness cases for the bandstop filter are the same 101 points in the
five decades of frequency between 1 Hz and 100,000 Hz as for the
lowpass filter. The acceptable deviation in the desired stopband
between 500 Hz and 1,000 Hz is 1 millivolt (i.e., the same as for the
stopband of the lowpass and highpass filters above). The acceptable
deviation in the two passbands (i.e., between 1 Hz and 250 Hz and
between 2,000 Hz and 100,000 Hz is 30 millivolts (i.e., the same as
for the stopband of the lowpass and highpass filters above). Again,
notice that the only difference in the seven preparatory steps for a
bandstop filter versus a lowpass or highpass filter is a change in the
fitness measure.
5.4.4. Fitness Measure for Frequency-Measuring Circuit
The fitness cases for the frequency-measuring circuit are the same 101
points in the five decades of frequency (on a logarithmic scale)

23

between 1 Hz and 100,000 Hz as for the lowpass and lowpass filters.
The circuit's output in millivolts (from 1 millivolt to 1,000 millivolts)
is intended to be proportional to the frequency of an incoming signal
(between 1 Hz and 100,000 Hz). Fitness is the sum, over the 101
fitness cases, of the absolute value of the difference between the
circuit's actual output and the desired output voltage.
5.4.5. Fitness Measure for the Tri-state Frequency Discriminator
Fitness is the sum, over 101 fitness cases, of the absolute weighted
deviation between the actual value of the voltage that is produced by
the circuit and the target value.

The three points that are closest to the band located within 10% of
256 Hz are 229.1 Hz, 251.2 Hz, and 275.4 Hz. The procedure for each
of these three points is as follows: If the voltage equals the ideal value
of 1/2 volts in this interval, the deviation is 0.0. If the voltage is less
than 240 millivolts from 1/2 volts, the absolute value of the deviation
from 1/2 volts is weighted by a factor of 20. If the voltage is more than
240 millivolts of 1/2 volts, the absolute value of the deviation from 1/2
volts is weighted by a factor of 200. This arrangement reflects the fact
that the ideal output voltage for this range of frequencies is 1/2 volts,
the fact that a 240 millivolts discrepancy is acceptable, and the fact
that a larger discrepancy is not acceptable.

Similar weighting was used for the three points (2,291 Hz, 2,512 Hz,
and 2,754 Hz) that are closest to the band located within 10% of 2,560
,Hz.

The procedure for each of the remaining 95 points is as follows: If
the voltage equals the ideal value of 0 volts, the deviation is 0.0. If the
voltage is within 240 millivolts of 0 volts, the absolute value of the
deviation from 0 volts is weighted by a factor of 1.0. If the voltage is
more than 240 millivolts from 0 volts, the absolute value of the
deviation from 0 volts is weighted by a factor of 10. For details, see
[23].
5.4.6. Fitness Measure for the Computational Circuit
SPICE is called to perform a DC sweep analysis at 21 equidistant
voltages between –250 millivolts and +250 millivolts. Fitness is the
sum, over these 21 fitness cases, of the absolute weighted deviation

24

between the actual value of the voltage that is produced by the circuit
and the target value for voltage. For details, see [23].
5.4.7. Fitness Measure for the Robot Controller Circuit
The fitness of a robot controller was evaluated using 72 randomly
chosen fitness cases each representing different two-dimensional
target points. Fitness is the sum, over the 72 fitness cases, of the travel
times of the robot to the target point. If the robot came within a
capture radius of 0.28 meters of its target point before the end of the
80 time steps allowed for a particular fitness case, the contribution to
fitness for that fitness case was the actual time. However, if the robot
failed to come within the capture radius during the 80 time steps, the
contribution to fitness was a penalty value of 0.160 hours (i.e., double
the worst possible time).

The two voltage inputs to the circuit represents the two-dimensional
location of the target point. SPICE performs a nested DC sweep,
which provides a way to simulate the DC behavior of a circuit with
two inputs. The nested DC sweep resembles a nested pair of FOR
loops in a computer program in that both of the loops have a starting
value for the voltage, an increment, and an ending value for the
voltage. For each voltage value in the outer loop, the inner loop
simulates the behavior of the circuit by stepping through its range of
voltages. Specifically, the starting value for voltage is –4 volt, the step
size is 0.2 volt, and the ending value is +4 volt. These values
correspond to the dimensions of the robot's world of 64 square meters
extending 4 meters in each of the four directions from the origin of a
coordinate system (i.e., 1 volt equals 1 meter). For details, see [23].
5.4.8. Fitness Measure for the 60 dB Amplifier
SPICE was requested to perform a DC sweep analysis to determine the
circuit's response for several different DC input voltages. An ideal
inverting amplifier circuit would receive the DC input, invert it, and
multiply it by the amplification factor. A circuit is flawed to the extent
that it does not achieve the desired amplification, the output signal is
not perfectly centered on 0 volts(i.e., it is biased), or the DC response
is not linear. Fitness is calculated by summing an amplification

25

penalty, a bias penalty, and two non-linearity penalties – each derived
from these five DC outputs. For details, see [6].
5.5. Control Parameters
The probability of crossover was approximately 89%; reproduction
10%; and mutation 1%. Other secondary control parameters were
substantially the same for each of the eight problems and are detailed
in [23]. Limited statistical studies [23] of the performance of genetic
programming on the lowpass filter problem suggest that this particular
problem (and, by inference, the highpass filter problem) can be best
solved with a population of about 30,000. The lowpass filter problem
can, in fact, be solved with populations as small as 1,000 (with a
performance penalty of only about 25% in the number of fitness
evaluations required to yield a solution with 99% probability, as
compared to the apparently desirable population size of 30,000).
However, problems involving active electrical components (such as
amplifiers, computational circuits, and real-time controllers) seem to
require a larger population size (such as 640,000). For uniformity, the
population size, M, was 640,000 for all eight problems in this paper.
5.6. Implementation on Parallel Computer
Each problem was run on a medium-grained parallel Parsytec
computer system consisting of 64 80-MHz PowerPC 601 processors
arranged in an 8 by 8 toroidal mesh with a host PC Pentium type
computer. The distributed genetic algorithm [2] was used with a
population size of Q = 10,000 at each of the D = 64 demes (semi-
isolated subpopulations) for a total population, M, of 640,000. On each
generation, four boatloads of emigrants, each consisting of B = 2%
(the migration rate) of the node's subpopulation (selected on the basis
of fitness) were dispatched to each of the four adjacent processing
nodes.
6. Results
A large majority of the randomly created initial circuits of generation
0 were not able to be simulated by SPICE; however, over 90% of the
individuals in the population were simulatable after only a few
generations of each run. In all eight problems, fitness was observed to

26

improve from generation to generation during the run. Satisfactory
results were generated on the first or second run of each of the eight
problems. Most of the eight problems were solved on the very first
run. When a second run was required (i. e., a run with different
random number seeds), the first run always produced a nearly
satisfactory result. The fact that each of these eight illustrative
problems were solved after only one or two runs suggests that the
ability of genetic programming to evolve analog electrical circuits was
not severely challenged by any of these eight problems. Thus augers
well for handling more challenging problems in the future.
6.1. Lowpass Filter
Genetic programming has evolved numerous lowpass filters having
topologies similar to that devised by human engineers. For example, a
circuit (fig. 6) was evolved in generation 49 of one run with a near-
zero fitness of 0.00781. The circuit was 100% compliant with the
design requirements in the sense that it scored 101 hits (out of 101).
As can be seen, this evolved circuit consists of seven inductors (L5,
L10, L22, L28, L31, L25, and L13) arranged horizontally across the
top of the figure "in series" with the incoming signal VSOURCE and
the source resistor RSOURCE. It also contains seven capacitors
(C12, C24, C30, C3, C33, C27, and C15) that are each shunted to
ground. This circuit is a classical ladder filter with seven rungs [35].

Fig. 6 Evolved seven-rung ladder lowpass filter.

After the run, this evolved circuit (and all other evolved circuits
herein) were simulated anew using the commercially available
MicroSim circuit simulator to verify performance. Fig. 7 shows the
behavior in the frequency domain of this evolved lowpass filter. As
can be seen, the evolved circuit delivers about 1 volt for all
frequencies up to 1,000 Hz and about 0 volts for all frequencies above
2,000 Hz. There is a sharp drop-off in voltage in the transition region
between 1,000 Hz and 2,000 Hz.

27

Fig. 7 Frequency domain behavior of genetically evolved 7-rung

ladder lowpass filter.

The circuit of fig. 6 has the recognizable features of the circuit for

which George Campbell of American Telephone and Telegraph
received U. S. patent 1,227,113[7]. Claim 2 of Campbell’s patent
covered,

“An electric wave filter consisting of a connecting line of
negligible attenuation composed of a plurality of sections, each
section including a capacity element and an inductance element,
one of said elements of each section being in series with the line
and the other in shunt across the line, said capacity and
inductance elements having precomputed values dependent upon
the upper limiting frequency and the lower limiting frequency of
a range of frequencies it is desired to transmit without
attenuation, the values of said capacity and inductance elements
being so proportioned that the structure transmits with
practically negligible attenuation sinusoidal currents of all
frequencies lying between said two limiting frequencies, while
attenuating and approximately extinguishing currents of
neighboring frequencies lying outside of said limiting
frequencies.”

An examination of the evolved circuit of fig. 6 shows that it indeed
consists of “a plurality of sections.” (specifically, seven). In the figure,
“Each section include[es] a capacity element and an inductance
element.” Specifically, the first of the seven sections consists of
inductor L5 and capacitor C12; the second section consists of inductor
L10 and capacitor C24; and so forth. Moreover, “one of said elements
of each section [is] in series with the line and the other in shunt across
the line.” Inductor L5 of the first section is indeed “in series with the
line” and capacitor C12 is indeed “in shunt across the line.” This is
also true for the circuit’s remaining six sections. Moreover, fig. 6

28

herein matches Figure 7 of Campbell’s 1917 patent. In addition, this
circuit’s 100% compliant behavior in the frequency domain (fig. 7
herein) confirms the fact that the values of the inductors and capacitors
are such as to transmit “with practically negligible attenuation
sinusoidal currents” of the passband frequencies “while attenuating
and approximately extinguishing currents” of the stopband
frequencies.

In short, genetic programming evolved an electrical circuit that
infringes on the claims of Campbell’s now-expired patent.

Moreover, the evolved circuit of fig. 6 also approximately possesses
the numerical values recommended in Campbell’s 1917 patent. After
making several very minor adjustments and approximations (detailed
in [23]), the evolved lowpass filter circuit of fig. 6 can be viewed as
what is now known as a cascade of six identical symmetric π-sections
[15]. Such π-sections are characterized by two key parameters. The
first parameter is the characteristic resistance (impedance) of the π-
section. This characteristic resistance should match the circuit’s fixed
load resistance RLOAD (1,000 Ω). The second parameter is the
nominal cutoff frequency which separates the filter’s passband from
its stopband. This second parameter should lie somewhere in the
transition region between the end of the passband (1,000 Hz) and the
beginning of the stopband (2,000 Hz). The characteristic resistance, R,
of each of the π-sections is given by the formula √ L / C. Here L
equals 200,000 µH and C equals 197 nF when employing this formula
after making the minor adjustments and approximations detailed in
[23]. This formula yields a characteristic resistance, R, of 1,008 Ω.
This value is very close to the value of the 1,000 Ω load resistance of
this problem. The nominal cutoff frequency, fc, of each of the π-
sections of a lowpass filter is given by the formula 1 / π √ LC. This
formula yields a nominal cutoff frequency, fc, of 1,604 Hz (i.e.,
roughly in the middle of the transition region between the passband
and stopband of the desired lowpass filter).

29

The legal criteria for obtaining a U. S. patent are that the proposed
invention be "new” and “useful" and

... the differences between the subject matter sought to be
patented and the prior art are such that the subject matter as a
whole would [not] have been obvious at the time the invention
was made to a person having ordinary skill in the art to which
said subject matter pertains. (35 United States Code 103a).

George Campbell was part of the renowned research team of the
American Telephone and Telegraph Corporation. He received a patent
for his filter in 1917 because his idea was new in 1917, because it was
useful, and because satisifed the above statutory test for
unobviousness. The fact that genetic programming rediscovered an
electrical circuit that was unobvious "to a person having ordinary skill
in the art" establishes that this evolved result satisfies Arthur Samuel's
criterion [31] for artificial intelligence and machine learning, namely

“The aim [is] ... to get machines to exhibit behavior, which if
done by humans, would be assumed to involve the use of
intelligence.”

In another run, a 100% compliant recognizable "bridged T"
arrangement was evolved. The “bridged T” filter topology was
invented and patented by Kenneth S. Johnson of Western Electric
Company in 1926 [14]. In yet another run of this same problem using
automatically defined functions, a 100% compliant circuit emerged
with the recognizable elliptic topology that was invented and patented
by Wilhelm Cauer [8, 9, 10]. The Cauer filter was a significant
advance (both theoretically and commercially) over the Campbell,
Johnson, Butterworth, Chebychev, and other earlier filter designs.
Details are found in [23].

It is important to note that when we performed the preparatory steps
for applying genetic programming to the problem of synthesizing a
lowpass filter, we did not employ any significant domain knowledge
about filter design. We did not, for example, incorporate knowledge of
Kirchhoff's laws, integro-differential equations, Laplace transforms,
poles, zeroes, or the other mathematical techniques and insights about

30

circuits that are known to electrical engineers who design filters. We
did, of course, specify the basic ingredients from which a circuit is
composed, such as appropriate electrical components (e.g., inductors
and capacitors). We also specified various generic methods for
constructing the topology of electrical circuits (e.g., series divisions,
parallel divisions, and vias). Genetic programming then proceeded to
evolve a satisfactory circuit under the guidance of the fitness measure.

The choices of electrical components in the preparatory steps are, of
course, important. If, for example, we had included an insufficient set
of components (e.g., only resistors and neon bulbs), genetic
programming would have been incapable of evolving a satisfactory
solution to the problem. On other hand, if we had included transistor-
creating functions in the set of component-creating functions (instead
of functions for creating inductors and capacitors), genetic
programming would have evolved an active filter composed of
transistors, instead of a passive filter composed of inductors and
capacitors. See [23] for an example of the successful evolution of an
active filter satisfying the same design requirements as above.

There are various ways of incorporating problem-specific domain
knowledge into a run of genetic programming if a practicing engineer
desires to bring such additional domain knowledge to bear on a
particular problem,. For example, subcircuits that are known (or
believed) to be necessary (or helpful) in solving a particular problem
may be provided as primitive components. Also, a particular subcircuit
may be hard-wired into an embryo (so that it is not subject to
modification during the developmental process). In addition, a circuit
may be divided into a prespecified number of distinct stages. A
constrained syntactic structure can be used to mandate certain desired
circuit features. Details and examples are found in [23].
6.2. Highpass Filter
In generation 27 of one run, a 100% compliant circuit (fig. 8) was
evolved with a near-zero fitness of 0.213. This circuit has four
capacitors and five inductors (in addition to the fixed components of
the embryo). As can be seen, capacitors appear in series horizontally

31

across the top of the figure, while inductors appear vertically as shunts
to ground.

Fig. 8 Evolved four-rung ladder highpass filter.

Fig. 9 shows the behavior in the frequency domain of this evolved

highpass filter. As desired, the evolved highpass delivers about 0 volts
for all frequencies up to 1,000 Hz and about 1 volt for all frequencies
above 2,000 Hz.

Fig. 9 Frequency domain behavior of evolved four-rung ladder

highpass filter.

The reversal of roles for the capacitors and inductors in lowpass and

highpass ladder filters is well known to electrical engineers. It arises
because of the duality of the single terms (derivatives versus integrals)
in the integro-differential equations that represent the voltages and
currents of the inductors and capacitors in the loops and nodes of a
circuit. However, genetic programming was not given any domain
knowledge concerning integro-differential equations or this duality. In
fact, the only difference in the preparatory steps for the problem of
synthesizing the highpass filter versus the problem of synthesizing the
lowpass filter was the fitness measure. The fitness measure was
merely a high-level statement of the goals of the problem (i.e.,
suppression of the low frequencies, instead of the high frequencies,
and passage at full voltage of the high frequencies, instead of the low
frequencies). In spite of the absence of explicit domain knowledge
about integro-differential equations or this duality, genetic
programming evolved a 100% compliant highpass filter embodying
the well-known highpass ladder topology. Using the altered fitness

32

measure appropriate for highpass filters, genetic programming
searched the same space (i.e., the space of circuit-constructing
program trees composed of the same component-creating functions,
the same topology-modifying functions, and the same development-
controlling functions) and discovered a circuit-constructing program
tree that yielded a 100%-complaint highpass filter.
6.3. Bandstop Filter
The 100%-compliant evolved bandstop filter circuit (Fig. 10) from
generation 56 scores 101 hits (out of 101).

Fig. 10 Evolved bandstop filter.

Fig. 11 shows the behavior in the frequency domain of this evolved

bandstop filter. The evolved circuit satisfies all of the stated
requirements (the irregularity in the figure occurring in a transitional
"don't care" region).

Fig. 11 Frequency domain behavior of evolved bandstop filter.

6.4. Frequency-Measuring Circuit
The 100%-compliant evolved frequency-measuring circuit (Fig. 12)
from generation 101 scores 101 hits (out of 101).

Fig. 12 Evolved frequency-measuring circuit.

Fig. 13 shows that the output of the circuit varies linearly with the
frequency (on a logarithmic scale) of the incoming signal from 1 Hz to
1,000 Hz.

33

Fig. 13 Frequency domain behavior of evolved frequency-measuring

circuit.

6.5. Tri-state Frequency Discriminator
The evolved three-way tri-state frequency discriminator circuit from
generation 106 scores 101 hits (out of 101). Fig. 14 shows this circuit
(after expansion of its automatically defined functions). The circuit
produces the desired outputs of 1 volt and 1/2 volts (each within the
allowable tolerance) for the two specified bands of frequencies and the
desired near-zero signal for all other frequencies.

Fig. 14 Evolved frequency discriminator.

6.6. Computational Circuit
The genetically evolved computational circuit for the square root from
generation 57 (fig. 15), achieves a fitness of 1.19, and has 38
transistors, seven diodes, no capacitors, and 18 resistors (in addition to
the source and load resistors in the embryo). The output voltages
produced by this best-of-run circuit are almost exactly the required
values.

Fig. 15 Evolved square root circuit.

6.7. Robot Controller Circuit
The best-of-run time-optimal robot controller circuit (fig. 16) appeared
in generation 31, scores 72 hits, and achieves a near-optimal fitness of
1.541 hours. In comparison, the optimal value of fitness for this
problem is known to be 1.518 hours. This best-of-run circuit has 10

34

transistors and 4 resistors. The program has one automatically defined
function that is called twice (incorporated into the figure).

Fig. 16 Evolved robot controller.This problem entails navigating a
robot to a destination in minimum time, so its fitness measure (section
4.4.5) is expressed in terms of elapsed time. The fitness measure is a
high-level description of "what needs to be done" – namely, get the
robot to the destination in a time-optimal way. However, the fitness
measure does not specify "how to do it." In particular, the fitness
measure conveys no hint about the critical (and counterintuitive) tactic
needed to minimize elapsed time in time-optimal control problem –
namely, that it is sometimes necessary to veer away from the
destination in order to reach it in minimal time. Nonetheless, the
evolved time-optimal robot controller embodies this counterintuitive
tactic. For example, fig. 17 shows the trajectory for the fitness case
where the destination is (0.409, –0.892). Correct time-optimal
handling of this difficult destination point requires a trajectory that
begins by veering away from the destination (thereby increasing the
distance to the destination) followed by a circular trajectory to the
destination. The small circle in the figure represents the capture radius
of 0.28 meters around the destination point.

Fig. 17 Evolved time-optimal trajectory to destination point (0.409, –

0.892).

The evolved time-optimal robot controller generalizes so as to

correctly handle all other possible destinations in the plane.
6.8. 60 dB Amplifier
The best circuit from generation 109 (fig. 18) achieves a fitness of
0.178. Based on a DC sweep, the amplification is 60 dB here (i.e.,
1,000-to-1 ratio) and the bias is 0.2 volt. Based on a transient analysis

35

at 1,000 Hz, the amplification is 59.7 dB; the bias is 0.18 volts; and
the distortion is very low (0.17%). Based on an AC sweep, the
amplification at 1,000 Hz is 59.7 dB; the flatband gain is 60 dB; and
the 3 dB bandwidth is 79,333 Hz. Thus, a high-gain amplifier with low
distortion and acceptable bias has been evolved.

Fig. 18 Genetically evolved amplifier.

7. Other Circuits
Numerous other analog electrical circuits have been similarly designed
using the techniques described in this paper, including a difficult-to-
design asymmetric bandpass filter, a crossover filter, a double
passband filter, other amplifiers, a temperature-sensing circuit, and a
voltage reference circuit [23]. Ten of the circuit described in [23] are
subjects of U. S. patents.
8. Conclusion
There has previously been no general automated technique for
synthesizing an analog electrical circuit from a high-level statement of
the circuit's desired behavior. In this paper, genetic programming
succeeded in evolving both the topology and sizing of eight different
prototypical analog electrical circuits, including a lowpass filter, a
highpass filter, a tri-state frequency discriminator circuit, a 60 dB
amplifier, a computational circuit for the square root, and a time-
optimal robot controller circuit. All eight of these genetically evolved
circuits constitute instances of an evolutionary computation technique
solving a problem that is usually thought to require human
intelligence. The approach described in this paper can be directly
applied to many other problems of analog circuit synthesis.
References
[1] Aaserud, O. and Nielsen, I. Ring. 1995. Trends in current analog

design: A panel debate. Analog Integrated Circuits and Signal
Processing. 7(1) 5-9.

36

[2] Andre, David and Koza, John R. 1996. Parallel genetic
programming: A scalable implementation using the transputer
architecture. In Angeline, P. J. and Kinnear, K. E. Jr. (editors). 1996.
Advances in Genetic Programming 2. Cambridge: MIT Press.

[3] Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996.
Advances in Genetic Programming 2. Cambridge, MA: The MIT
Press.

[4] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and
Francone, Frank D. 1998. Genetic Programming – An Introduction.
San Francisco, CA: Morgan Kaufmann and Heidelberg: dpunkt.

[5] Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and
Fogarty, Terence C. 1998. Genetic Programming: First European
Workshop. EuroGP'98. Paris, France, April 1998 Proceedings.
Paris, France. April l998. Lecture Notes in Computer Science.
Volume 1391. Berlin, Germany: Springer-Verlag.

[6] Bennett III, Forrest H, Koza, John R., Andre, David, and Keane,
Martin A. 1996. Evolution of a 60 Decibel op amp using genetic
programming. In Higuchi, Tetsuya, Iwata, Masaya, and Lui, Weixin
(editors). Proceedings of International Conference on Evolvable
Systems: From Biology to Hardware (ICES-96). Lecture Notes in
Computer Science, Volume 1259. Berlin: Springer-Verlag. Pages
455-469.

[7] Campbell, George A. 1917. Electric Wave Filter. Filed July 15,
1915. U. S. Patent 1,227,113. Issued May 22, 1917.

[8] Cauer, Wilhelm. 1934. Artificial Network. U. S. Patent 1,958,742.
Filed June 8, 1928 in Germany. Filed December 1, 1930 in United
States. Issued May 15, 1934.

[9] Cauer, Wilhelm. 1935. Electric Wave Filter. U. S. Patent
1,989,545. Filed June 8, 1928. Filed December 6, 1930 in United
States. Issued January 29, 1935.

[10] Cauer, Wilhelm. 1936. Unsymmetrical Electric Wave Filter. Filed
November 10, 1932 in Germany. Filed November 23, 1933 in United
States. Issued July 21, 1936.

37

[11] Grimbleby, J. B. 1995. Automatic analogue network synthesis
using genetic algorithms. Proceedings of the First International
Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications. London: Institution of Electrical
Engineers. Pages 53–58.

[12] Gruau, Frederic. 1992. Cellular Encoding of Genetic Neural
Networks. Technical report 92-21. Laboratoire de l'Informatique du
Parallélisme. Ecole Normale Supérieure de Lyon. May 1992.

[13] Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

[14] Johnson, Kenneth S. 1926. Electric-Wave Transmission. Filed
March 9, 1923. U. S. Patent 1,611,916. Issued December 28, 1926.

[15] Johnson, Walter C. 1950. Transmission Lines and Networks. New
York: NY: McGraw-Hill.

[16] Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

[17] Kitano, Hiroaki. 1990. Designing neural networks using genetic
algorithms with graph generation system. Complex Systems. 4(1990)
461–476.

[18] Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.

[19] Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT Press.

[20] Koza, John R. 1994b. Genetic Programming II Videotape: The
Next Generation. Cambridge, MA: MIT Press.

[21] Koza, John R. 1995. Evolving the architecture of a multi-part
program in genetic programming using architecture-altering
operations. In McDonnell, John R., Reynolds, Robert G., and Fogel,
David B. (editors). 1995. Evolutionary Programming IV:
Proceedings of the Fourth Annual Conference on Evolutionary
Programming. Cambridge, MA: The MIT Press. Pages 695–717.

[22] Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max H.,

38

Goldberg, David E., Iba, Hitoshi, and Riolo, Rick L. (editors).
Genetic Programming 1998: Proceedings of the Third Annual
Conference, July 22-25, 1998, University of Wisconsin, Madison,
Wisconsin. San Francisco, CA: Morgan Kaufmann.

[23] Koza, John R., Bennett III, Forrest H, Andre, David, and Keane,
Martin A. 1999. Genetic Programming III: Darwinian Invention and
Problem Solving. San Francisco, CA: Morgan Kaufmann.

[24] Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David
B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L. (editors). 1997.
Genetic Programming 1997: Proceedings of the Second Annual
Conference San Francisco, CA: Morgan Kaufmann.

[25] Koza, John R., Goldberg, David E., Fogel, David B., and Riolo,
Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of
the First Annual Conference. Cambridge, MA: The MIT Press.

[26] Koza, John R., and Rice, James P. 1992. Genetic Programming:
The Movie. Cambridge, MA: MIT Press.

[27] Kruiskamp Marinum Wilhelmus and Leenaerts, Domine. 1995.
DARWIN: CMOS opamp synthesis by means of a genetic algorithm.
Proceedings of the 32nd Design Automation Conference. New York,
NY: Association for Computing Machinery. Pages 433–438.

[28] Ohno, Susumu. Evolution by Gene Duplication. New York:
Springer-Verlag 1970.

[29] Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5 User's
Manual. Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA. March 1994.

[30] Rutenbar, R. A. 1993. Analog design automation: Where are we?
Where are we going? Proceedings of the l5th IEEE CICC. New
York: IEEE. 13.1.1-13.1.8.

[31] Samuel, Arthur L. 1983. AI: Where it has been and where it is
going. Proceedings of the Eighth International Joint Conference on
Artificial Intelligence. Los Altos, CA: Morgan Kaufmann. Pages
1152 – 1157.

39

[32] Spector, Lee, Langdon, William B., O'Reilly, Una-May, and
Angeline, Peter (editors). 1999. Advances in Genetic Programming
3. Cambridge, MA: The MIT Press.

[33] Thompson, Adrian. 1996. Silicon evolution. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).
1996. Genetic Programming 1996: Proceedings of the First Annual
Conference. Cambridge, MA: MIT Press.

[34] Vladimirescu, Andrei. 1994. The SPICE Book. New York, NY:
John Wiley.

[35] Williams, Arthur B. and Taylor, Fred J. 1995. Electronic Filter
Design Handbook. Third Edition. New York, NY: McGraw-Hill.

Version 2 - Submitted November 28, 1998 for special issue of
Computer Methods in Applied Mechanics and Engineering (CMAME
journal) edited by David E. Goldberg and Kalyanmoy Deb.

Synthesis of Topology and Sizing of Analog

Electrical Circuits by Means of Genetic
Programming

J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned

aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California
94305 USA, koza@stanford.edu

bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, forrest@evolute.com
cDivision of Computer Science, University of California. Berkeley, California 94720 USA, dandre@cs.berkeley.edu
dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, makeane@ix.netcom.com

* Corresponding author.

Keywords: Genetic programming, genetic
algorithms, circuit synthesis, electrical circuits,
design

Fig. 1 One-input, one-output embryo.

Fig. 2 Modifiable wire Z0.

Fig. 3 Result of applying the R function.

Fig. 4 Result of the PARALLEL0 function.

Fig. 5 Illustrative circuit-constructing program tree.

Fig. 6 Evolved seven-rung ladder lowpass filter.

Fig. 7 Frequency domain behavior of genetically evolved 7-rung
ladder lowpass filter.

Fig. 8 Evolved four-rung ladder highpass filter.

Fig. 9 Frequency domain behavior of evolved four-rung ladder
highpass filter.

Fig. 10 Evolved bandstop filter.

Fig. 11 Frequency domain behavior of evolved bandstop filter.

Fig. 12 Evolved frequency-measuring circuit.

Fig. 13 Frequency domain behavior of evolved frequency-measuring
circuit.

Fig. 14 Evolved frequency discriminator.

Fig. 15 Evolved square root circuit.

Fig. 16 Evolved robot controller.

Fig. 17 Evolved time-optimal trajectory to destination point (0.409, –
0.892).

Fig. 18 Genetically evolved amplifier

Fig. 1 One-input, one-output embryo.

Fig. 2 Modifiable wire Z0.

Fig. 3 Result of applying the R function.

Fig. 4 Result of the PARALLEL0 function.

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8
7

9 10 11 12

13 14 15 17 1816 19 20 21

22

23 24 25 26 27 28 29 30 31
Fig. 5 Illustrative circuit-constructing program tree.

Fig. 6 Evolved seven-rung ladder lowpass filter.

Fig. 7 Frequency domain behavior of genetically evolved 7-rung

ladder lowpass filter.

Fig. 8 Evolved four-rung ladder highpass filter.

Fig. 9 Frequency domain behavior of evolved four-rung ladder

highpass filter.

Fig. 10 Evolved bandstop filter.

Fig. 11 Frequency domain behavior of evolved bandstop filter.

Fig. 12 Evolved frequency-measuring circuit.

Fig. 13 Frequency domain behavior of evolved frequency-measuring

circuit.

Fig. 14 Evolved frequency discriminator.

Fig. 15 Evolved square root circuit.

Fig. 16 Evolved robot controller.

0 1 2 3

-2

-1

0

1

x

y

(0.409, -0.892)

Fig. 17 Evolved time-optimal trajectory to destination point (0.409, –

0.892).

Fig. 18 Genetically evolved amplifier.

