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ABSTRACT 
The dominant component of the 

computational burden of solving non-
trivial problems with evolutionary 
algorithms is the task of measuring the 
fitness of each individual in each 
generation of the evolving population.  
The advent of rapidly reconfigurable 
field-programmable gate arrays 
(FPGAs) and the idea of evolvable 
hardware opens the possiblity of 
embodying each individual of the 
evolving population into hardware for 
the purpose of accelerating the time-
consuming fitness evaluation task   This 
paper demonstrates how the massive 
parallelism of the rapidly 
reconfigurable Xilinx XC6216 FPGA 
can be exploited to accelerate the 
computationally burdensome fitness 
evaluation task of genetic 
programming.  The work was done on 
Virtual Computing Corporation's low-
cost HOTS expansion board for PC type 
computers.  A 16-step 7-sorter was 
evolved that has two fewer steps than 
the sorting network described in the 
1962 O'Connor and Nelson patent on 
sorting networks and that has the same 
number of steps as the minimal 7-sorter 
that was devised by Floyd and Knuth 
subsequent to the patent.   

1. Introduction 
The dominant component of the computational burden of 
solving non-trivial problems with evolutionary algorithms is 
the task of measuring the fitness of each individual in each 
generation of the evolving population.  This task is 
especially burdensome when the problem has a large 
number of fitness cases or a simulation with a large number 
of steps.  The remaining tasks, such as the creation of the 
initial population at the beginning of the run and the 
execution of the genetic operations during the run consume 
relatively little computer time.      

The advent of rapidly reconfigurable field-
programmable gate arrays (FPGAs) and the idea of 
evolvable hardware (Higuchi et al. 1993a, 1993b; Sanchez 
and Tomassini 1996; Higuchi 1997) opens the possiblity of 
embodying each individual of the evolving population into 
hardware and thereby exploiting the massive parallelism of 
the hardware to greatly accelerate the time-consuming 
fitness evaluation task of evolutionary algorithms.    

 Section 2 describes field-
programmable gate arrays 
(FPGAs).  Section 3 
distinguishes between 
reconfigurability and rapid 
reconfigurability.  Section 4 
describes the Xilinx XC6216 
chip.  Section 5 identifies the 
type of problems for which 
rapidly reconfigurable field-



 

programmable gate arrays may 
be useful for evolutionary 
computation.  Section 6 describes 
the minimal sorting network 
problem. Section 7 outlines the 
preparatory steps for applying 
genetic programming to a 
specific problem, namely the 
problem of evolving a sorting 
network.  Section 8 outlines the 
mapping of the fitness evaluation 
task for sorting networks onto the 
chip.  Section 9 describes the 
results.  Section 10 is the 
conclusion.  Section 11 discusses 
an observation on evolutionary 
incrementalism.   
2. Field-Programmable Gate Arrays 
A field-programmable gate array (FPGA) is a type of 
digital chip that contains a regular two-dimensional array of 
thousands of logical cells and a regular network of 
interconnection lines in which both the functionality of each 
cells and the connectivity between the cells can be 
programmed by the user in the field (rather than at the chip 
fabrication factory).   

FPGAs were commercially introduced in the mid 1980s 
and are typically used to facilitate rapid prototyping of new 
electronic products –  particularly those for which low 
initial product volume and time-to-market considerations 
preclude the design and fabrication of a custom application-
specific integrated circuit (ASIC).  Thus, many new 
electronic products contain an FPGA when they are first 
marketed.  After the market is established for the product 
and its design has stabilized, an ASIC may be used in later 
versions of the product.  FPGAs were commercially 
introduced in the mid 1980s by Xilinx.   

Some FPGAs are of the anti-fuse type that are 
irreversibly programmed by the user in the field by the one-
time application of a high voltage.  Other types can be 
reprogrammed, but only with significant limitations.   For 
example, some FPGAs must be physically removed from 
their operating environment and erased with ultraviolet light 
before they can be electrically reprogrammed and can be 
reprogrammed only a few hundred times.  Our focus here is 

on the infinitely reprogrammable type of FPGA where the 
functionality of each function unit and the connectivity 
between the function units is stored in static random access 
memory (SRAM).  This type of FPGA can be programmed 
and reprogrammed quickly and electrically.   

Engineers working with FPGAs typically employ a 
multi-step process involving a computer-aided design 
(CAD) tool to design and optimize their FPGA circuits.  

First, the engineer conceives the design (which often 
incorporates subcircuits from a library).   

Second, the engineer's design of the desired circuit is 
captured by the CAD tool in the form of a schematic 
diagram, Boolean expressions, or a general-purpose high-
level description language such as VHSIC Hardware 
Description Language (where VHSIC stands for Very High 
Speed Integrated Circuits).   

Third, a technology mapping converts the description of 
the circuit into logical function units of the particular type 
that are present on the particular FPGA chip that is to be 
used.  

 Fourth, a time-consuming placement step places the 
logical function units into particular locations on the FPGA.   

Fifth, a routing between the logical function units on the 
chip is created using the FPGA's interconnection resources.  
This routing process may be difficult because 
interconnection resources are extremely scarce for almost 
all commercially available FPGAs.    

Sixth, the hundreds of thousands of configuration bits  
are created.  The encoding scheme for the configuration bits 
of almost all commercially available FPGAs are kept 
confidential by the FPGA manufacturers for a variety of 
reasons (including deterrence of reverse engineering of the 
prototype products that account for much of the FPGA 
market).   

Seventh, the configuration bits are downloaded into the 
FPGA's memory.   

An engineer might spend several days or weeks in 
designing a circuit and perhaps an hour in entering the 
design into the CAD tool (the first two steps in the multi-
step process above).  The CAD tool may require hours (or, 
at best, many minutes) to perform the technology mapping, 
placement, routing, and bit creation tasks (the next four 
steps above).  Then, the downloading of the configuration 
bits for a single design into memory may take about a half 
second.  For almost all FPGAs, 100% of the configuration 
bits must be reloaded if even one bit changes.   

The above elapsed times measured in hours, minutes, 
and seconds for an FPGA compare very favorably with the 
weeks or months that may be required to for performing the 
same steps using an ASIC – thereby giving the FPGA an 
advantage over an ASIC in the time required to launch a 
new product.   

Additional information on FPGAs can be found in 
Trimberger 1994; Brown, Francis, Rose, and Vranesic 
1992; Chan and Mourad 1994; Jenkins 1994; Murgai, 
Brayton, and Sangiovanni-Vincentelli 1995; and Oldfield, 
and Dorf  1995.  Sources of additional information on 
recent research on FPGAs is described in the proceedings of 
the IEEE Symposium on FPGAs for Custom Computing 



 

Machines (IEEE 1996), the ACM International Symposium 
on Field-Programmable Gate Arrays (ACM 1997), the 
Oxford International Workshop on Field Programmable 
Logic and Applications (Moore and Luk 1995); and the 
International Workshop on Field-Programmable Gate 
Arrays and Applications (Grunbacher and Hartenstein 
1993).   

3. Reconfigurability Versus Rapid 
Reconfigurability 

The previous section described the kind of reconfigurability  
that has been commercially available for about a decade 
with field programmable gate arrays.   

Once a FPGA is configured, its thousands of logical 
function units operate in parallel at the chip's clock rate.  
Since the fitness evaluation task of the genetic algorithm 
constitutes the main component of the computational burden 
of solving a non-trivial problem with the genetic algorithm, 
the question arises as to whether the massive parallellism of 
FPGAs can be used to accelerate the fitness evaluation task 
of the genetic algorithm.   

This alluring possiblity cannot, in practice, be realized 
with previously available FPGAs for two reasons.   

First, the encoding scheme for the configuration bits of 
almost all commercially available FPGAs are kept 
confidential by the FPGA manufacturers.   

Second, more importantly, the technology mapping, 
placement, routing, bit creation, and downloading tasks 
consume so much time as to preclude practical use of an 
FPGA in the inner loop of an genetic algorithm.  Even if the 
first four of these five tasks could be reduced to as little as 
10 seconds for each individual, these four tasks would 

consume 106 seconds (278 hours) in a run of the genetic 
algorithm involving a population as small as 1,000 for as 
few as 100 generations.   Moreover, the half second 
required for merely the downloading task would consume 
an additional 14 hours for a population of 1,000 over 100 
generations.  Both of these times are, of course, in addition 
to the time required for the actual fitness evaluation task of 
the problem.   

In round numbers, there is a discrepancy of many orders 
of magnitude between the time required for the technology 
mapping, placement, routing, bit creation, and downloading 
tasks and the time available for these preliminaries in the 
inner loop of a practical run of a genetic algorithm.  That is, 
reconfigurability is not enough. Rapid reconfigurability is 
what is needed – where "rapid" means times ranging 
between microseconds to milliseconds for the five 
preliminary tasks of technology mapping, placement, 
routing, bit creation, and downloading.   

As will be seen in the next section, the new Xilinx 
XC6200 series of field programmable gate array addresses 
the need for rapid reconfigurability.  The subsequent section 
will then discuss the characteristics of problems that can be 
beneficially handled by this new type of FPGA.    

4. Xilinx XC6216 Field-Programmable 
Gate Array 

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells (Xilinx 1997).  Figure 1 
shows the hierarchical arrangement of the 4,096 cells on the 
chip.  At the highest level, there is a 4 ∞ 4 arrangement of 
regions, with each region containing a total of 16 ∞ 16 = 
256 individual cells.  At the next lower level of the 
hierarchy, there is a 4 ∞ 4 arrangement of subregions, with 
each subregion containing 4 ∞ 4 = 16 individual cells.  

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16

16x16

16x16

 
Figure 1  Hierarchical view of Xilinx XC6216 field 
programmable gate array.   

Figure 2 shows additional detail of the lower left corner 
of the Xilinx XC6216 chip.  This figure shows a 5 ∞ 5 area 
containing 25 of the chip's 4,096 cells.  The figure also 
shows 10 of 256 input-output blocks (IOBs) on the 
periphery of the chip that surround the cells on the chip.  
The figure also shows some of the long, intermediate, and 
short interconnection lines that provide connectivity 
between the cells of the chip and between the cells and the 
input-output blocks.  The switch boxes between the fourth 
and fifth rows and columns of the chip are the sites where 
signals are attached to the various long, intermediate, and 
short interconnection lines.    



 

 
Figure 2  Small 5 by 5 corner of Xilinx XC6216 FPGA.   

The functionality and local routing of each of the chip's 
4,096 cells is controlled by 24 configuration bits.   
Additional configuration bits are used to establish non-local 
interconnections between cells and the functionality of the 
256 input-output blocks located on the periphery of the 
chip.  The meaning of all configuration bits is both 
straightforward and public.  

Each cell can directly receive inputs from its four 
neighbors (as well as certain more distant cells).   

Figure 3 shows the contents of one of the chip's 4,096 
cells.  

Eight configuration bits (i.e., two associated each of the 
four directions) determine whether the cell's outputs in the 
four directions (Nout, Eout, Wout, Sout) is the output F 
of the cell's function unit or is a "fly over" output consisting 
of the output of the cell's three adjacent neighbors.  For 
example, Nout of a cell can be F or the northgoing, 
eastgoing, or westgoing outputs of the cell to the south, 
west, or east, respectively.   

Three configuration bits associated with each of the 
three inputs (X1, X2, and X3) to the function unit in the 
center of figure 3 (i.e., a total of 9 configuration bits) 
determine to which of eight possible sources each of these 
three inputs is connected.  The possible sources include the 
outputs of the four adjacent cells (N, E, W, and S) and the 
outputs of four more distant cells (N4, E4, W4, and S4).   

An 18th configuration bit determines which of two 
inputs (from among X2, and X3) become the cell's MAGIC 
output of the cell (useful for efficient routing and turning of 
data lines).   

Six configuration bits control the operation of the 
function unit of each cell.  The function unit contains a flip-
flop for storing one bit of information and combinatorial 
logic that is capable of implementing all possible two-
argument Boolean functions (as well as many useful three-
argument Boolean functions).   

 
Figure 3  One cell of the Xilinx XC6216.   

Figure 4 shows the function unit of one cell of the 
Xilinx XC6216 FPGA.  The function unit has one output F, 
three inputs, X1, X2, and X3 as well as clock (Clk) and 
clear (Clr) inputs.  The function unit contains five 
multiplexers.   Boolean logic is performed on the inputs X1, 
X2, and X3, and flip-flop output Q-NEG-HAT using the 
three multiplexers on the left half of the figure.  Two 
configuration bits determine whether input X3, the negation 
of X3, flip-flop output Q-NEG-HAT, or the negation of Q-
NEG-HAT become multiplexer output Y2.  Similarly, two 
additional configuration bits determine whether input X2, 
the negation of X2, flip-flop output Q-NEG-HAT, or the 
negation of Q-NEG-HAT become multiplexer output Y2.  
In any event, input X1 controls whether Y2 or Y2 becomes 
the combinatorial logic output C of the inverting 
multiplexer.  The configuration bit for the input of 
multiplexer CS determines whether the output F of the 
function unit is the combinatorial logic output C or the 
previously stored bit S in the flip-flop.  The configuration 
bit for the input of multiplexer RP determines whether flip-
flop input D is the negation of combinatorial logic output C 
or flip-flop output Q-NEG-HAT.   

Unlike other FPGAs, the 6200 can be randomly 
accessed, and the memory containing the configuration bits 
is directly memory-mapped onto the address space of the 
host processor.  Thus, it is possible to change single 
configuration bits without downloading any others.   

Most important, the Xilinx XC6216 FPGA is designed 
so that no combination of configuration bits for cells can 
cause internal contention (i.e., conflicting 1 and 0 signals 
simultaneously driving a destination) and potential damage 
of the chip.  Specifically, it is not possible for two or more 
signal sources to ever simultaneously drive a routing line or 
input node of a cell.  This is accomplished by obtaining the 
driving signal for each routing line and each input node 
from a multiplexer.  Thus, only a single driving signal can 
be selected regardless of the choice of configuration bits.  In 
contrast, in most other FPGAs, the driving signal is selected 
by multiple independently programmable interface points 
(pips). Nonetheless, care must still be taken with the 
configuration bits that control the XC6216's input-output 
blocks because an outside signal (with unknown voltage) 
connected to one of the chip's input pins can potentially get 
channeled onto the chip.   



 

 
Figure 4  Function unit for one cell of the Xilinx 
XC6216.  

Figure 5 shows a PC board containing the Xilinx 
XC6216 reconfigurable programming unit (RPU) that is 
available from Virtual Computer Corporation 
(www.vcc.com) for about $995.  The board contains 
SRAM memory and a programmable oscillator that 
establishes a suitable clock rate for operating the XC6216.  
The PCI interface is housed on a Xilinx XC4013E field 
programmable gate array.   

SRAM

SRAM

XC6216 RPU

XC4013E FPGA

Serial Prom Sockets

PCI MezzanineProgrammable
Oscillator

A/D Conv.
XChecker

 
Figure 5  PC board containing the Xilinx XC6216 field 
programmable gate array.   

Thompson (1996) used a genetic algorithm to evolve a 
frequency discriminator on a Xilinx XC6216 operating in 
analog mode.  

5. Problems Suitable for Rapidly 
Reconfigurable Field 
Programmable Gate Arrays 

The new Xilinx XC6216 rapidly reconfigurable field 
programmable gate array addresses several of the obstacles 
to using FPGAs for the fitness evaluation task of genetic 
algorithms.  First, the XC6216 accelerates the downloading 
task because the configuration bits are in the address space 
of the host processor.  Second, the encoding scheme for the 
configuration bits is public.  Third, the encoding scheme for 
the configuration bits is simple in comparison to most other 
FPGAs thereby potentially significantly accelerating the 
technology mapping, placement, routing, and bit creation 
tasks.  This simplicity is critical because these tasks are so 

time-consuming as to preclude practical use of conventional 
FPGAs in the inner loop of a genetic algorithm.   

The above positive features of the XC6216 must be 
considered in light of several important negative factors 
affecting all FPGAs.  First, the clock rate (established by a 
programmable oscillator) at which an FPGA actually 
operates is typically slower (perhaps around ten-fold) than 
that of contemporary microprocessor chips.  Second, the 
operations that can be performed by the logical function 
units of an FPGA are extremely primitive in comparison to 
the 32-bit arithmetic operations that can be performed by 
contemporary microprocessor chips.  

However, the above negative factors may, in turn, be 
counterbalanced by the fact that the FPGA's logical function 
units operate in parallel. The existing XC6216 chip has 
4,096 cells and chips of this same 6200 series will soon be 
available with four times as many logical function units.  A 
ten-fold slowing of the clock rate can be more than 
compensated by a thousand-fold acceleration due to 
parallelization.   

The bottom line is that rapidly reconfigurable field 
programmable gate arrays can be highly beneficial for 
certain types of problems (while useless or 
counterproductive for others).  Effective use of these 
devices depends on correctly identifying suitable problems.   

One indicator of possible suitability is the prominence of 
bit-level operations (or operations that can be conveniently 
recast as bit-level operations).  For example, a single 
multiplexer or flip-flop can often perform a computation 
that requires 32-bit operations using a conventional 
microprocessor in problems of image processing, pattern 
recognition, and manipulation of sequential data.   There is 
a wide variety of techniques for mapping problems that 
initially appear to be ill-suited for FPGAs into the FPGA 
architecture [XXX4 - XXX13].    

Another indicator of possible suitability is the 
prominence of parallelizable computations.  Problems 
containing a large number of identical parallelizable 
computations (e.g., cellular automata problems or problems 
that can be conveniently recast as cellular automata 
problems) are especially suitable for FPGAs because they 
can potentially maximize the benefits of the device's fine-
grained parallelism.   

Problems containing numerous disparate parallelizable 
computations that must be performed serially in a 
conventional microprocessor are also suitable for FPGAs.  
For these problems, the disparate parallelizable 
computations are housed in different areas of the FPGA.   

Problems containing computations that can be pipelined 
are especially congenial to the FPGA architecture.  The 
stages of the pipeline can correspond to different fitness 
cases or different steps of a simulation or computation.  The 
benefit rises proportionately with the number of stages of 
the pipeline that the FPGA can accommodate).   

The next section describes a problem that exploits, in 
several different ways, the advantages for evolutionary 
computation of the Xilinx XC6216 rapidly reconfigurable 
field programmable gate array.   



 

6. Minimal Sorting Networks 
A sorting network is an algorithm for sorting items 
consisting of a sequence of comparison-exchange 
operations that are executed in a fixed order.  Figure 6 
shows a sorting network for four items.  

A 1

A 2

A 3

A 4  
Figure 6  Minimal sorting network for 4 items.   

The to-be-sorted items, A1, A2, A3, A4, start at the left 
on the horizontal lines.  A vertical line connecting 
horizontal line i and j indicates that items i and j are to be 
compared and exchanged, if necessary, so that the larger of 
the two is on the bottom.  In this figure, the first step causes 
A1 and A2 to be exchanged if A2 < A1.  This step and the 
next three steps cause the largest and smallest items to be 
routed down and up, respectively.  The fifth step ensures 
that the remaining two items end up in the correct order.  
The correctly sorted output appears at the right.  A five-step 
network is known to be minimal for four items.   

Sorting networks are oblivious to their inputs in the 
sense that they always perform the same fixed sequence of 
comparison-exchange operations.  Nonetheless, they are of 
considerable practical importance because they are more 
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort 
and are therefore often embedded in commercial sorting 
software.   

Thus, there is considerable interest in sorting networks 
with a minimum number of comparison-exchange 
operations.  There has been a lively search over the years 
for smaller sorting networks (Knuth 1973).  In U. S. patent 
3,029,413, O'Connor and Nelson (1962) described sorting 
networks for 4, 5, 6, 7, and 8 items using 5, 9, 12, 18, and 
19 comparison-exchange operations, respectively.   

During the l960s, Floyd and Knuth devised a 16-step 
seven-sorter and proved it to be the minimal seven-sorter.  
They also proved that the four other sorting networks in the 
1962 O'Connor and Nelson patent were minimal.  

The 16-sorter has received considerable attention.  In 
1962, Bose and Nelson devised a 65-step sorting network 
for 16 items.  In 1964, Batcher and Knuth presented a 63-
step 16-sorter.  In l969, Shapiro discovered a 62-step 16-
sorter and, in the same year, Green discovered one with 60 
steps.   

Hillis (1990, 1992) used the genetic algorithm to evolve 
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing 
with a population of fitness cases.  In this work, Hillis 
incorporated the first 32 steps of Green's 60-step 16-sorter 
as a fixed beginning for all sorters (Juille 1995).   

Juille (1995) used an evolutionary algorithm to evolve a 
13-sorter with 45 steps thereby improving on the 13-sorter 
with 46 steps presented in Knuth (1973).  Juille (1997) has 
also evolved networks for sorting 14, 15, and 16 items 
having the same number of steps (i.e., 51, 56, and 60, 
respectively) as reported in Knuth (1973).   

As the number of items to be sorted increases, 
construction of a minimal sorting network becomes 
increasingly difficult.  In addition, verification of the 
validity of a network (through analysis, instead of 
exhaustive enumeration) grows in difficulty as the number 
of items to be sorted increases.  A sorting network can be 
exhaustively tested for validity by testing all n! 
permutations of n distinct numbers.  However, thanks to the 
"zero-one principle" (Knuth 1973, page 224), if a sorting 
network for n items correctly sorts n  bits into non-
decreasing order (i.e., all the 0's ahead of all the 1's) for all 
2n sequences of n  bits, it necessarily will correctly sort any 
set of n distinct numbers into non-decreasing order.  Thus, it 
is sufficient to test a putative 16-sorter against only 216 = 
65,536 combinations of binary inputs, instead of all 16! ~ 2 
∞ 1013 inputs.  Nonetheless, in spite of this "zero-one 
principle," testing a putative 16-sorter consisting of around 
60 steps on 65,536 different 16-bit input vectors is a 
formidable amount of computation when it appears in the 
inner loop of a genetic algorithm.  

7. Preparatory Steps 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population consists of 
computer programs of varying sizes and shapes (Koza 1992, 
1994a, 1994b; Koza and Rice 1992).  Sources of 
information on recent work on genetic programming 
include Kinnear 1994, Angeline and Kinnear 1996, and 
conference proceedings such as Koza, Goldberg, Fogel, and 
Riolo 1996, and Koza et al. 1997.   

Before applying genetic programming to a problem, the 
user must perform six major preparatory steps, namely (1) 
identifying the terminals, (2) identifying the primitive 
functions, (3) creating the fitness measure, (4) choosing 
control parameters, (5) setting the termination criterion and 
method of result designation, and (6) determining the 
architecture of the program trees in the population.   

For the problem of evolving a sorting network for 16 
items, the terminal set, T, is 
T = {D1, ..., D16, NOOP}.   
Here NOOP is the zero-argument "No Operation" function.  

The function set, F, is 
F = {COMPARE–EXCHANGE, PROG2, PROG3, PROG4}.  

Note that none of these functions have return values.  
Each individual in the population consists of a 

constrained syntactic structure composed of primitive 
functions from the function set, F, and terminals from the 
terminal set, T such that the root of each program tree is a 
PROG2,  PROG3, or PROG4; each argument to PROG2,  
PROG3, and PROG4 must be a NOOP or a function from F; 
and both arguments to every COMPARE–EXCHANGE 
function must be from T (but not NOOP). 

The PROG2,  PROG3, and PROG4 functions respectively 
evaluate each of their two, three, or four arguments 
sequentially.   

The two-argument COMPARE–EXCHANGE function 
changes the order of the to-be-sorted bits.  The result of 



 

executing a (COMPARE–EXCHANGE i j) is that the bit 
currently in position i of the vector is compared with the bit 
currently in position j of the vector.  If the first bit is greater 
than the second bit, the two bits are exchanged.  That is, the 
effect of executing a(COMPARE–EXCHANGE i j) is that 
the two bits are sorted into non-decreasing order.  Table 1 
shows the two results Ri and produced by executing a 
(COMPARE–EXCHANGE i j).  Note that column Ri is 
the Boolean AND function and column Rj is the Boolean 
OR function.   
Table 1  The COMPARE–EXCHANGE function. 

Two Arguments Two Results 
Ai Aj Ri  Rj  
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 
The fitness of each individual program in the population 

is based on the correctness of its sorting of 216 = 65,536 
fitness cases consisting of all possible vectors of 16 bits.  If, 
after an individual program is executed on a particular 
fitness case, all the 1's appear below all the 0's), the program 
is deemed to have correctly sorted that particular fitness 
case.   

Because our goal is to evolve small (and preferably 
minimal) sorting networks, we ignore exchanges where i = j 
and exchanges that are identical to the previous exchange.  
Moreover, during the depth-first execution of a program 
tree, only the first Cmax = 65 COMPARE–EXCHANGE 
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby 
relegating the remainder of the program to be unused code).   

Hits are defined as the number of fitness cases for which 
the sort is performed correctly.   

The fitness measure for this problem is multi-objective 
in that it involves both the correctness and size of the 
sorting network.  Standardized fitness is defined in a lexical 
fashion to be the number of fitness cases (0 to 16 ∞ 216) for 
which the sort is performed incorrectly plus 0.01 times the 
number (1 to Cmax) of COMPARE–EXCHANGE functions 
that are actually executed.  For example, the fitness of a 16-
sorter with 60 COMPARE–EXCHANGE functions (such as 
Green's) is 0.60 while the fitness of an imperfect network 
with 60 COMPARE–EXCHANGE functions that correctly 
handles all but 12 fitness cases (out of 16 ∞ 216) is 12.60.  
Note that we used tournament selection.  

The population size was 1,000.  The percentage of 
genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.  
The maximum size, Hrpb, for the result-producing branch 
was 300 points.  The other parameters for controlling the 
runs were the default values specified in Koza 1994a 
(appendix D).  The architecture of the overall program 
consisted of one result-producing branch.   

8. Mapping the Sorting Network 
Problem onto the XC6216 Chip 

The problem of evolving sorting networks was run on a host 
PC Pentium type computer with a Virtual Computer 
Corporation "HOT Works" PCI board containing a Xilinx 
XC6216 field-programmable gate array.  This combination 
permits the field-programmable gate array to be 
advantageously used for the computationally burdensome 
fitness evaluation task while permitting the general-purpose 
host computer to perform all the other tasks.   

In this arrangement, the host PC begins the run by 
creating the initial random population (with the XC6216 
waiting).  Then, for generation 0 (and each succeeding 
generation), the PC creates the necessary configuration bits 
to enable the XC6216 to measure the fitness of the first 
individual program in the population (with the XC6216 
waiting).  Thereafter, the XC6216 measures the fitness of 
one individual.  Note that the PC can simultaneously 
prepare the configuration bits for the next individual in the 
population and poll to see if the XC6216 is finished.  After 
the fitness of all individuals in the current generation of the 
population is measured, the genetic operations 
(reproduction, crossover, and mutation) are performed (with 
the XC6216 waiting).  This arrangement is beneficial 
because the computational burden of creating the initial 
random population and of performing the genetic operations 
is small in comparison with the fitness evaluation task.   

The clock rate at which a field-programmable gate array 
can be run on a problem is considerably slower than that of 
a contemporary serial microprocessor (e.g., Pentium or 
PowerPC) that might run a software version of the same 
problem.  Thus, in order to advantageously use the Xilinx 
XC6216 field-programmable gate array, it is necessary to 
find a mapping of the fitness evaluation task onto the 
XC6216 that exploits at least some of the massive 
parallelism of the 4,096 cells of the XC6216. 

Figure 7 shows our placement on 32 horizontal rows and 
64 vertical columns of the XC6216 chip of eight major 
computational elements (labeled A through H).  Broadly, 
fitness cases are created in area B, are sorted in areas C, D, 
and E, and are evaluated in F and G.  The figure does not 
show the ring of input-output blocks on the periphery of the 
chip that surround the 64 ∞ 64 area of cells or the physical 
input-output pins that connect the chip to the outside.  The 
figure does not reflect the fact that two such 32 ∞ 64 areas 
operate in parallel on the same chip.   
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Figure 7  Arrangement of elements A through H on a 32 
∞ 64 portion of the XC6216 chip.   

For a k-sorter (k ≤ 16), a 16-bit counter B (near the 

upper left corner of the chip) counts down from 2k  - 2 to 0 
under control of control logic A (upper left corner).  The 
vector of k bits resident in counter B on a given time step 
represents one fitness case of the sorting network problem.  
The vector of bits from counter B is fed into the first 
(leftmost) 16 ∞ 1 vertical column of cells of the large 16 ∞ 
40 area C.  Counter B is an example of a task that is easily 
performed on a conventional serial microprocessor, but 
which occupies considerable space (but does not consume 
not considerable time) on the FPGA.  

Each 16 ∞ 1 vertical column of cells in C (and each cell 
in similar area E) corresponds to one COMPARE–
EXCHANGE operation of an individual candidate sorting 
network.  The vector of 16 bits produced by the 40th 
(rightmost) sorting step of area C then proceeds to area D.  
Area D is a U-turn area that channels the vector of 16 bits 
into the first (rightmost) column of 16 ∞ 40 area E.   

The final output from area E is checked by answer logic 
G for whether the individual candidate sorting network has 
correctly rearranged the original incoming vector of bits so 
that all the 0's are above all the 1's.  The 16-bit accumulator 
G is incremented by one if the bits are correctly sorted.  
Note that the 16 bits of accumulator G are sufficient for 
tallying the number of correctly sorted fitness cases because 

the host computer starts counter B at 2k  - 2, thereby 
skipping the uninteresting fitness case of consisting of all 
1's (which cannot be incorrectly sorted by any network). 
The final value of raw fitness is reported in 16-bit register H 

after all the 2k  - 2 fitness cases have been processed.   
The logical function units and interconnection resources 

of areas A, B, D, F, G, and H are permanently configured to 
handle the sorting network problem for k ≤ 16.   

The two large areas, C and E, together represent the 
individual candidate sorting network.  The configuration of 
the logical function units and interconnection resources of 

the 1,280 cells in areas C and E become personalized to the 
current individual candidate sorting network.   

For area C, each cell in a 16 ∞ 1 vertical column is 
configured in one of three main ways.  First, the logical 
function unit of exactly one of the 16 cells is configured as 
a two-argument Boolean AND function (corresponding to 
result Ri  of table 1).  Second, the logical function unit of 
exactly one other cell is configured as a two-argument 
Boolean OR function (corresponding to result Rj of table 
1).  Bits i and j become sorted into the correct order by 
virtue of the fact that the single  AND cell in each 16 ∞ 1 
vertical column always appears above the single OR cell.  
Third, the logical function units of 14 of the 16 cells are 
configured as "pass through" cells that horizontally pass 
their input from one vertical column to the next.   

For area E, each cell in a 16 ∞ 1 vertical column is 
configured in one of three similar main ways.   

There are four subtypes each of AND and OR cells and 
four types of "pass through" cells. Half of these subtypes 
are required because all the cells in area E differ in chirality 
(handedness) from those in area C in that they receive their 
input from their right and deliver output to their left.   

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, the last few vertical columns of area 
E each contain 16 "pass through" cells.  Note that the 
genetic operations are constrained so as to not produce 
networks with more than 80 steps and, as previously 
mentioned, only the first Cmax < 80 steps are actually 
executed.     

Within each cell of areas C and E, the one-bit output of 
the cell's logical function unit is stored into a flip-flop.  The 
contents of the 16 flip-flops in one vertical column become 
the inputs to the next vertical column on the next time step.   

The overall arrangement operates as an 87-stage 
pipeline (the 80 stages of areas C and E, the three stages of 
answer logic F, and four stages of padding at both ends of 
C and E).   

Figure 8 shows the bottom six cells of an illustrative 
vertical column from area C whose purpose is to implement 
a (COMPARE–EXCHANGE 2 5) operation.  As can be 
seen, cell 2 (second from top of the figure) is configured as 
a two-argument Boolean AND function (*) and cell 5 is 
configured as a two-argument OR function (+).  All the 
remaining 14 cells of the vertical column (of which only 
four are shown in this abbreviated figure) are "pass 
through" cells.  These "pass through" cells horizontally 
convey the bit in the previous vertical column to the next 
vertical column.  Every cell in the Xilinix XC6216 has the 
additional capacity of being able to convey one signal in 
each direction as a "fly over" signal that plays no role in the 
cell's own computation.  Thus, the two "intervening" "pass 
through" cells (3 and 4) that lie between the AND and OR 
cells (1 and 5) is configured so that it conveys one signal 
vertically upwards and one signal vertically downwards as 
"fly over" signals.  These "fly overs" of the two intervening 
cells (3 and 4) enable cell 2's input to be shared with cell 5 
and cell 5's input to be shared with cell 2.  Specifically, the 
input coming into cell 2 horizontally from the previous 



 

vertical column (i.e., from the left in figure 8) is bifurcated 
so that it feeds both the two-argument AND in cell 2 and the 
two-argument OR in cell 5 (and similarly for the input 
coming into cell 5).   

Notice that when a 1 is received from the previous 
vertical column on horizontal row 2 and a 0 is received on 
horizontal row 5 (i.e., the two bits are out of order), the 
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted 
as output on horizontal row 2 and a 1 to be emitted as 
output on horizontal row 5 (i.e., the two bits have become 
sorted into the correct order).  

The remaining "pass through" cells (i.e., cells 1 and 6 in 
figure 8 and cells 7 through 16 in the full 1 ∞ 16  vertical 
column) are of a subtype that does not have the "fly over" 
capability of the two "intervening" cells (3 and 4).  The 
design of this subtype prevents possible reading of signals 
(of unknown voltage) from the input-output blocks that 
surround the main 64 ∞ 64 area of the chip.  All AND and 
OR cells are similarly designed since they necessarily 
sometimes occur at the top or bottom of a vertical column.   

 
Figure 8  Implementation of (COMPARE–EXCHANGE 2 
5). 

Note that the intervening "pass through" cells (cells 3 
and 4 in figure 8) invert their "fly over" signals.  Thus, if 
there is an odd number of "pass through" cells  intervening 
vertically between the AND cells and OR cells, the signals 
being conveyed upwards and downwards in a vertical 
column will arrive at their destinations in inverted form.  
Accordingly, special subtypes of the AND cells and OR 
cells reinvert (and thereby correct) such arriving signals.   

When the XC6216 begins operation for a particular 
individual sorting network, all the 16 ∞ 80 flip-flops in C 
and E (as well as the flip-flops in three-stage answer logic 
F, the four insulative stages, and the "done bit" flip-flop) are 
initialized to zero.  Thus, the first 87 output vectors received 
by the answer logic F each consist of 16 0's.  Since the 
answer logic F treats a vector of 16 0's as incorrect, 
accumulator G is not incremented for these first 87 vectors.   

A "past zero" flip-flop is set when counter B counts 
down to 0.  As B continues counting, it rolls over to 216 – 
1, and continues counting down.  When counter B reaches 
216 – 87 (with the "past zero" flip-flop being set), control 
logic A stops further incrementation of accumulator G.  The 
raw fitness from G appears in reporting register H and the 
"done bit" flip-flop is set to 1.  The host computer polls this 
"done bit" to determine that the XC6216 has completed its 
fitness evaluation task for the current individual.   

The flip-flop toggle rate of the chip (220 MHz for the 
XC6216) provides an upper bound on the speed at which a 
field-programmable gate array can be run.  In practice, the 
speed at which an FPGA can be run is determined by the 
longest routing delay.  We run the current unoptimized 
version of the FPGA design for the sorting network problem 
at 20 MHz.  This clock rate is approximately ten times 
slower than a contemporary serial microprocessor devices 
such as the Pentium or PowerPC chip (and a little less than 
one tenth of the FPGA's 220 MHz flip-flop toggle rate).   

Note that counter B and accumulator G are examples of 
tasks that are more easily performed on a conventional 
serial microprocessor than on the FPGA.   Nonetheless, 
these two tasks do not significantly slow the operation of 
the FPGA because sufficient space has been allocated to 
them.   

The above approach exploits the massive parallelism of 
the XC6216 chip in six different ways.   

First, the tasks performed by areas A, B, C, D, E, F, G, 
and H are examples of performing disparate tasks in parallel 
in physically different areas of the FPGA.  

Second, the two separate 32 ∞ 64 areas operating in 
parallel on the chip are an example (at a higher level) of 
performing identical tasks in parallel in physically different 
areas of the FPGA.  

Third, the XC6216 evaluates the 2k fitness cases 
independently of the activity of the host PC Pentium type 
computer (which simultaneously can prepare the next 
individual(s) for the XC6216).  This is an example  (at the 
highest level) of performing disparate tasks in parallel.   

Fourth, the Boolean AND functions and OR functions 
of each COMPARE–EXCHANGE operation are performed in 
parallel (in each of the vertical columns of C and E).  This 
is an example of recasting a key operation (the COMPARE–
EXCHANGE operation) as a bit-level operation so that the 
FPGA can be advantageously used.   It is also an example 
of performing two disparate operations (AND and OR) in 
parallel in physically different areas of the FPGA (i.e., 
different locations in the vertical columns of areas C and 
E).   

Fifth, numerous operations are performed in parallel in 
control logic A, counter B, answer logic F, accumulator G, 
and reporting register H.   Answer logic F of the FPGA is 
especially advantageous because numerous sequential steps 
on a conventional serial microprocessor to determine 
whether k bits are properly sorted.   Answer logic F is an 
example of a multi-step task that is both successfully 
parallelized and pipelined on the FPGA.   



 

Sixth, most importantly, the 87-step pipeline (80 steps 
for areas C and E and 7 steps for answer logic F and 
accumulator G) enables 87 fitness cases to be processed in 
parallel in the pipeline.   

9. Results 
A 16-step 7-sorter (figure 9) was evolved that has two fewer 
steps than the sorting network described in the 1962 
O'Connor and Nelson patent on sorting networks and that 
has the same number of steps as the minimal 7-sorter that 
was devised by Floyd and Knuth subsequent to the patent 
and described in Knuth 1973.  

 
Figure 9  Genetically evolved 7-sorter.   

10. Discussion and Future Work 
A default hierarchy is a set of problem-solving rules in 
which one (or possibly more) default rules satisfactorily 
handles the vast majority of instances of a problem, while a 
set of exception-handling rules then makes the corrections 
necessary to satisfactorily handle the remaining instances.  
A familiar example of a default hierarchy is the spelling rule 
"I before E, except after C."  It has been observed that 
human problem-solving often employs the style of default 
hierarchies (Holland 1986, 1987; Holland et al. 1986).   

Figure 10 shows the percentage of the 2k  = 128 fitness 
cases that become correctly sorted on each of its 16 steps of 
the genetically evolved minimal sorting network for seven 

items of figure 9.  Once the k bits of any one of the 2k  
fitness cases are arranged into the correct order, no 
COMPARE–EXCHANGE operation occurring later in the 
sorting network can change the ordering of the k bits.  Thus, 
the percentage of fitness cases that are correctly sorted is a 
non-decreasing function of the number of executed steps of 
the network.  As can be seen, the graph is approximately 
linear.  That is, the number of fitness cases that become 
correctly sorted after each time step is approximately equal 
for each of the 16 steps.  The largest single increase is 15 
(about twice the average of 8 fitness cases per step).  The 
graphs for all three of our other genetically evolved 16-step 
7-sorters were similar approximately linear progressions.  
That is, each step of all four genetically evolved 7-sorters 
makes steady incremental progress toward the goal of 
correctly sorting the given items.  
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Figure 10  Percentage of correctly sorted fitness cases 
after each step for genetically evolved minimal 7-sorter.   

Figure 11 shows the percentage of the fitness cases that 
are correctly sorted after deletion of single step i from the 
genetically evolved minimal 16-step 7-sorter of figure 9.   
Of course, the steps of a sorting network are intended to be 
executed in consecutive order.  Nonetheless, the deletion of 
single steps gives a rough indication of the importance of 
each step.  As can be seen, the degradation caused by most 
single deletions is relatively small.  The graphs of the effect 
of single deletions for all three of our other genetically 
evolved minimal 16-step 7-sorters were similar to figure 11.   
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Figure 11  Percentage of fitness cases that remain 
correctly sorted upon deletion of single steps from  for 
the genetically evolved minimal 7-sorter.    

Figure 12 shows the shows the percentage of the 2k = 
512 fitness cases that become correctly sorted on each of the 
25 steps of a human-designed 9-sorter presented in Knuth 
1973 (which does not show a minimal 7-sorter).  As can be 
seen, most steps of the sorting network satisfactorily 
dispose of relatively few of the fitness cases; however, one 
step disposes of 42% of the fitness cases (216 out of 512).   
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Figure 12  Percentage of correctly sorted fitness cases 
after each step for human-designed 9-sorter.  We 
observed that the graphs for several other human-designed 
minimal sorting networks displayed a similar highly non-
linear progression.  The major non-linearity occurred at 
different places in the sequence of steps.  For example, over 
99% of the 65,536 fitness cases of Green's 60-step 16-sorter 
are handled by only half of the steps 



 

Figure 13 shows the percentage of the 2k fitness cases 
that are correctly sorted after deletion of single step i the 
human-designed 9-sorter in Knuth 1973.  As can be seen, 
many of the single deletions cause comparatively greater 
degradation than those of figure 11.  The graphs for several 
other human-designed minimal sorting networks displayed 
similar large degradations caused by single deletions.   

0
20
40
60
80
100

1 4 7 10 13 16 19 22 25

 
Figure 13  Percentage of fitness cases that remain 
correctly sorted upon deletion of single steps for human-
designed 9-sorter.   

Although the above observations are admittedly limited 
to specific instances of one particular problem, the 
observations raise the interesting question of whether there 
is an general tendency of genetically evolved solutions to 
problems to exhibit this kind of steady incrementalism 
while human-written solutions to the same problem tend to 
employ the style of default hierarchies.   

11. Conclusion 
This paper demonstrated how the massive parallelism of the 
rapidly reconfigurable Xilinx XC6216 field-programmable 
gate array can be exploited to accelerate the 
computationally burdensome fitness evaluation task of 
genetic programming.   
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