
Rapidly Reconfigurable Field-Programmable Gate Arrays for
Accelerating Fitness Evaluation in Genetic Programming

John R. Koza

Computer Science Dept.
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
forrest@evolute.com

Jeffrey L. Hutchings
Convergent Design, L.L.C.

3221 E. Hollyhock Hill
Salt Lake City, UT 84121

hutch@Convergent-Design.com

Stephen L. Bade
Convergent Design, L.L.C.

379 North, 900 East
Orem, UT, 84097

bade@Convergent-Design.com

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Division

University of California
Berkeley, California

dandre@cs.berkeley.edu

ABSTRACT
The dominant component of the

computational burden of solving non-
trivial problems with evolutionary
algorithms is the task of measuring the
fitness of each individual in each
generation of the evolving population.
The advent of rapidly reconfigurable
field-programmable gate arrays
(FPGAs) and the idea of evolvable
hardware opens the possiblity of
embodying each individual of the
evolving population into hardware for
the purpose of accelerating the time-
consuming fitness evaluation task This
paper demonstrates how the massive
parallelism of the rapidly
reconfigurable Xilinx XC6216 FPGA
can be exploited to accelerate the
computationally burdensome fitness
evaluation task of genetic
programming. The work was done on
Virtual Computing Corporation's low-
cost HOTS expansion board for PC type
computers. A 16-step 7-sorter was
evolved that has two fewer steps than
the sorting network described in the
1962 O'Connor and Nelson patent on
sorting networks and that has the same
number of steps as the minimal 7-sorter
that was devised by Floyd and Knuth
subsequent to the patent.

1. Introduction
The dominant component of the computational burden of
solving non-trivial problems with evolutionary algorithms is
the task of measuring the fitness of each individual in each
generation of the evolving population. This task is
especially burdensome when the problem has a large
number of fitness cases or a simulation with a large number
of steps. The remaining tasks, such as the creation of the
initial population at the beginning of the run and the
execution of the genetic operations during the run consume
relatively little computer time.

The advent of rapidly reconfigurable field-
programmable gate arrays (FPGAs) and the idea of
evolvable hardware (Higuchi et al. 1993a, 1993b; Sanchez
and Tomassini 1996; Higuchi 1997) opens the possiblity of
embodying each individual of the evolving population into
hardware and thereby exploiting the massive parallelism of
the hardware to greatly accelerate the time-consuming
fitness evaluation task of evolutionary algorithms.

 Section 2 describes field-
programmable gate arrays
(FPGAs). Section 3
distinguishes between
reconfigurability and rapid
reconfigurability. Section 4
describes the Xilinx XC6216
chip. Section 5 identifies the
type of problems for which
rapidly reconfigurable field-

programmable gate arrays may
be useful for evolutionary
computation. Section 6 describes
the minimal sorting network
problem. Section 7 outlines the
preparatory steps for applying
genetic programming to a
specific problem, namely the
problem of evolving a sorting
network. Section 8 outlines the
mapping of the fitness evaluation
task for sorting networks onto the
chip. Section 9 describes the
results. Section 10 is the
conclusion. Section 11 discusses
an observation on evolutionary
incrementalism.
2. Field-Programmable Gate Arrays
A field-programmable gate array (FPGA) is a type of
digital chip that contains a regular two-dimensional array of
thousands of logical cells and a regular network of
interconnection lines in which both the functionality of each
cells and the connectivity between the cells can be
programmed by the user in the field (rather than at the chip
fabrication factory).

FPGAs were commercially introduced in the mid 1980s
and are typically used to facilitate rapid prototyping of new
electronic products – particularly those for which low
initial product volume and time-to-market considerations
preclude the design and fabrication of a custom application-
specific integrated circuit (ASIC). Thus, many new
electronic products contain an FPGA when they are first
marketed. After the market is established for the product
and its design has stabilized, an ASIC may be used in later
versions of the product. FPGAs were commercially
introduced in the mid 1980s by Xilinx.

Some FPGAs are of the anti-fuse type that are
irreversibly programmed by the user in the field by the one-
time application of a high voltage. Other types can be
reprogrammed, but only with significant limitations. For
example, some FPGAs must be physically removed from
their operating environment and erased with ultraviolet light
before they can be electrically reprogrammed and can be
reprogrammed only a few hundred times. Our focus here is

on the infinitely reprogrammable type of FPGA where the
functionality of each function unit and the connectivity
between the function units is stored in static random access
memory (SRAM). This type of FPGA can be programmed
and reprogrammed quickly and electrically.

Engineers working with FPGAs typically employ a
multi-step process involving a computer-aided design
(CAD) tool to design and optimize their FPGA circuits.

First, the engineer conceives the design (which often
incorporates subcircuits from a library).

Second, the engineer's design of the desired circuit is
captured by the CAD tool in the form of a schematic
diagram, Boolean expressions, or a general-purpose high-
level description language such as VHSIC Hardware
Description Language (where VHSIC stands for Very High
Speed Integrated Circuits).

Third, a technology mapping converts the description of
the circuit into logical function units of the particular type
that are present on the particular FPGA chip that is to be
used.

 Fourth, a time-consuming placement step places the
logical function units into particular locations on the FPGA.

Fifth, a routing between the logical function units on the
chip is created using the FPGA's interconnection resources.
This routing process may be difficult because
interconnection resources are extremely scarce for almost
all commercially available FPGAs.

Sixth, the hundreds of thousands of configuration bits
are created. The encoding scheme for the configuration bits
of almost all commercially available FPGAs are kept
confidential by the FPGA manufacturers for a variety of
reasons (including deterrence of reverse engineering of the
prototype products that account for much of the FPGA
market).

Seventh, the configuration bits are downloaded into the
FPGA's memory.

An engineer might spend several days or weeks in
designing a circuit and perhaps an hour in entering the
design into the CAD tool (the first two steps in the multi-
step process above). The CAD tool may require hours (or,
at best, many minutes) to perform the technology mapping,
placement, routing, and bit creation tasks (the next four
steps above). Then, the downloading of the configuration
bits for a single design into memory may take about a half
second. For almost all FPGAs, 100% of the configuration
bits must be reloaded if even one bit changes.

The above elapsed times measured in hours, minutes,
and seconds for an FPGA compare very favorably with the
weeks or months that may be required to for performing the
same steps using an ASIC – thereby giving the FPGA an
advantage over an ASIC in the time required to launch a
new product.

Additional information on FPGAs can be found in
Trimberger 1994; Brown, Francis, Rose, and Vranesic
1992; Chan and Mourad 1994; Jenkins 1994; Murgai,
Brayton, and Sangiovanni-Vincentelli 1995; and Oldfield,
and Dorf 1995. Sources of additional information on
recent research on FPGAs is described in the proceedings of
the IEEE Symposium on FPGAs for Custom Computing

Machines (IEEE 1996), the ACM International Symposium
on Field-Programmable Gate Arrays (ACM 1997), the
Oxford International Workshop on Field Programmable
Logic and Applications (Moore and Luk 1995); and the
International Workshop on Field-Programmable Gate
Arrays and Applications (Grunbacher and Hartenstein
1993).

3. Reconfigurability Versus Rapid
Reconfigurability

The previous section described the kind of reconfigurability
that has been commercially available for about a decade
with field programmable gate arrays.

Once a FPGA is configured, its thousands of logical
function units operate in parallel at the chip's clock rate.
Since the fitness evaluation task of the genetic algorithm
constitutes the main component of the computational burden
of solving a non-trivial problem with the genetic algorithm,
the question arises as to whether the massive parallellism of
FPGAs can be used to accelerate the fitness evaluation task
of the genetic algorithm.

This alluring possiblity cannot, in practice, be realized
with previously available FPGAs for two reasons.

First, the encoding scheme for the configuration bits of
almost all commercially available FPGAs are kept
confidential by the FPGA manufacturers.

Second, more importantly, the technology mapping,
placement, routing, bit creation, and downloading tasks
consume so much time as to preclude practical use of an
FPGA in the inner loop of an genetic algorithm. Even if the
first four of these five tasks could be reduced to as little as
10 seconds for each individual, these four tasks would

consume 106 seconds (278 hours) in a run of the genetic
algorithm involving a population as small as 1,000 for as
few as 100 generations. Moreover, the half second
required for merely the downloading task would consume
an additional 14 hours for a population of 1,000 over 100
generations. Both of these times are, of course, in addition
to the time required for the actual fitness evaluation task of
the problem.

In round numbers, there is a discrepancy of many orders
of magnitude between the time required for the technology
mapping, placement, routing, bit creation, and downloading
tasks and the time available for these preliminaries in the
inner loop of a practical run of a genetic algorithm. That is,
reconfigurability is not enough. Rapid reconfigurability is
what is needed – where "rapid" means times ranging
between microseconds to milliseconds for the five
preliminary tasks of technology mapping, placement,
routing, bit creation, and downloading.

As will be seen in the next section, the new Xilinx
XC6200 series of field programmable gate array addresses
the need for rapid reconfigurability. The subsequent section
will then discuss the characteristics of problems that can be
beneficially handled by this new type of FPGA.

4. Xilinx XC6216 Field-Programmable
Gate Array

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells (Xilinx 1997). Figure 1
shows the hierarchical arrangement of the 4,096 cells on the
chip. At the highest level, there is a 4 ∞ 4 arrangement of
regions, with each region containing a total of 16 ∞ 16 =
256 individual cells. At the next lower level of the
hierarchy, there is a 4 ∞ 4 arrangement of subregions, with
each subregion containing 4 ∞ 4 = 16 individual cells.

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16 16x16 16x16

16x16

16x16

16x16

Figure 1 Hierarchical view of Xilinx XC6216 field
programmable gate array.

Figure 2 shows additional detail of the lower left corner
of the Xilinx XC6216 chip. This figure shows a 5 ∞ 5 area
containing 25 of the chip's 4,096 cells. The figure also
shows 10 of 256 input-output blocks (IOBs) on the
periphery of the chip that surround the cells on the chip.
The figure also shows some of the long, intermediate, and
short interconnection lines that provide connectivity
between the cells of the chip and between the cells and the
input-output blocks. The switch boxes between the fourth
and fifth rows and columns of the chip are the sites where
signals are attached to the various long, intermediate, and
short interconnection lines.

Figure 2 Small 5 by 5 corner of Xilinx XC6216 FPGA.

The functionality and local routing of each of the chip's
4,096 cells is controlled by 24 configuration bits.
Additional configuration bits are used to establish non-local
interconnections between cells and the functionality of the
256 input-output blocks located on the periphery of the
chip. The meaning of all configuration bits is both
straightforward and public.

Each cell can directly receive inputs from its four
neighbors (as well as certain more distant cells).

Figure 3 shows the contents of one of the chip's 4,096
cells.

Eight configuration bits (i.e., two associated each of the
four directions) determine whether the cell's outputs in the
four directions (Nout, Eout, Wout, Sout) is the output F
of the cell's function unit or is a "fly over" output consisting
of the output of the cell's three adjacent neighbors. For
example, Nout of a cell can be F or the northgoing,
eastgoing, or westgoing outputs of the cell to the south,
west, or east, respectively.

Three configuration bits associated with each of the
three inputs (X1, X2, and X3) to the function unit in the
center of figure 3 (i.e., a total of 9 configuration bits)
determine to which of eight possible sources each of these
three inputs is connected. The possible sources include the
outputs of the four adjacent cells (N, E, W, and S) and the
outputs of four more distant cells (N4, E4, W4, and S4).

An 18th configuration bit determines which of two
inputs (from among X2, and X3) become the cell's MAGIC
output of the cell (useful for efficient routing and turning of
data lines).

Six configuration bits control the operation of the
function unit of each cell. The function unit contains a flip-
flop for storing one bit of information and combinatorial
logic that is capable of implementing all possible two-
argument Boolean functions (as well as many useful three-
argument Boolean functions).

Figure 3 One cell of the Xilinx XC6216.

Figure 4 shows the function unit of one cell of the
Xilinx XC6216 FPGA. The function unit has one output F,
three inputs, X1, X2, and X3 as well as clock (Clk) and
clear (Clr) inputs. The function unit contains five
multiplexers. Boolean logic is performed on the inputs X1,
X2, and X3, and flip-flop output Q-NEG-HAT using the
three multiplexers on the left half of the figure. Two
configuration bits determine whether input X3, the negation
of X3, flip-flop output Q-NEG-HAT, or the negation of Q-
NEG-HAT become multiplexer output Y2. Similarly, two
additional configuration bits determine whether input X2,
the negation of X2, flip-flop output Q-NEG-HAT, or the
negation of Q-NEG-HAT become multiplexer output Y2.
In any event, input X1 controls whether Y2 or Y2 becomes
the combinatorial logic output C of the inverting
multiplexer. The configuration bit for the input of
multiplexer CS determines whether the output F of the
function unit is the combinatorial logic output C or the
previously stored bit S in the flip-flop. The configuration
bit for the input of multiplexer RP determines whether flip-
flop input D is the negation of combinatorial logic output C
or flip-flop output Q-NEG-HAT.

Unlike other FPGAs, the 6200 can be randomly
accessed, and the memory containing the configuration bits
is directly memory-mapped onto the address space of the
host processor. Thus, it is possible to change single
configuration bits without downloading any others.

Most important, the Xilinx XC6216 FPGA is designed
so that no combination of configuration bits for cells can
cause internal contention (i.e., conflicting 1 and 0 signals
simultaneously driving a destination) and potential damage
of the chip. Specifically, it is not possible for two or more
signal sources to ever simultaneously drive a routing line or
input node of a cell. This is accomplished by obtaining the
driving signal for each routing line and each input node
from a multiplexer. Thus, only a single driving signal can
be selected regardless of the choice of configuration bits. In
contrast, in most other FPGAs, the driving signal is selected
by multiple independently programmable interface points
(pips). Nonetheless, care must still be taken with the
configuration bits that control the XC6216's input-output
blocks because an outside signal (with unknown voltage)
connected to one of the chip's input pins can potentially get
channeled onto the chip.

Figure 4 Function unit for one cell of the Xilinx
XC6216.

Figure 5 shows a PC board containing the Xilinx
XC6216 reconfigurable programming unit (RPU) that is
available from Virtual Computer Corporation
(www.vcc.com) for about $995. The board contains
SRAM memory and a programmable oscillator that
establishes a suitable clock rate for operating the XC6216.
The PCI interface is housed on a Xilinx XC4013E field
programmable gate array.

SRAM

SRAM

XC6216 RPU

XC4013E FPGA

Serial Prom Sockets

PCI MezzanineProgrammable
Oscillator

A/D Conv.
XChecker

Figure 5 PC board containing the Xilinx XC6216 field
programmable gate array.

Thompson (1996) used a genetic algorithm to evolve a
frequency discriminator on a Xilinx XC6216 operating in
analog mode.

5. Problems Suitable for Rapidly
Reconfigurable Field
Programmable Gate Arrays

The new Xilinx XC6216 rapidly reconfigurable field
programmable gate array addresses several of the obstacles
to using FPGAs for the fitness evaluation task of genetic
algorithms. First, the XC6216 accelerates the downloading
task because the configuration bits are in the address space
of the host processor. Second, the encoding scheme for the
configuration bits is public. Third, the encoding scheme for
the configuration bits is simple in comparison to most other
FPGAs thereby potentially significantly accelerating the
technology mapping, placement, routing, and bit creation
tasks. This simplicity is critical because these tasks are so

time-consuming as to preclude practical use of conventional
FPGAs in the inner loop of a genetic algorithm.

The above positive features of the XC6216 must be
considered in light of several important negative factors
affecting all FPGAs. First, the clock rate (established by a
programmable oscillator) at which an FPGA actually
operates is typically slower (perhaps around ten-fold) than
that of contemporary microprocessor chips. Second, the
operations that can be performed by the logical function
units of an FPGA are extremely primitive in comparison to
the 32-bit arithmetic operations that can be performed by
contemporary microprocessor chips.

However, the above negative factors may, in turn, be
counterbalanced by the fact that the FPGA's logical function
units operate in parallel. The existing XC6216 chip has
4,096 cells and chips of this same 6200 series will soon be
available with four times as many logical function units. A
ten-fold slowing of the clock rate can be more than
compensated by a thousand-fold acceleration due to
parallelization.

The bottom line is that rapidly reconfigurable field
programmable gate arrays can be highly beneficial for
certain types of problems (while useless or
counterproductive for others). Effective use of these
devices depends on correctly identifying suitable problems.

One indicator of possible suitability is the prominence of
bit-level operations (or operations that can be conveniently
recast as bit-level operations). For example, a single
multiplexer or flip-flop can often perform a computation
that requires 32-bit operations using a conventional
microprocessor in problems of image processing, pattern
recognition, and manipulation of sequential data. There is
a wide variety of techniques for mapping problems that
initially appear to be ill-suited for FPGAs into the FPGA
architecture [XXX4 - XXX13].

Another indicator of possible suitability is the
prominence of parallelizable computations. Problems
containing a large number of identical parallelizable
computations (e.g., cellular automata problems or problems
that can be conveniently recast as cellular automata
problems) are especially suitable for FPGAs because they
can potentially maximize the benefits of the device's fine-
grained parallelism.

Problems containing numerous disparate parallelizable
computations that must be performed serially in a
conventional microprocessor are also suitable for FPGAs.
For these problems, the disparate parallelizable
computations are housed in different areas of the FPGA.

Problems containing computations that can be pipelined
are especially congenial to the FPGA architecture. The
stages of the pipeline can correspond to different fitness
cases or different steps of a simulation or computation. The
benefit rises proportionately with the number of stages of
the pipeline that the FPGA can accommodate).

The next section describes a problem that exploits, in
several different ways, the advantages for evolutionary
computation of the Xilinx XC6216 rapidly reconfigurable
field programmable gate array.

6. Minimal Sorting Networks
A sorting network is an algorithm for sorting items
consisting of a sequence of comparison-exchange
operations that are executed in a fixed order. Figure 6
shows a sorting network for four items.

A 1

A 2

A 3

A 4
Figure 6 Minimal sorting network for 4 items.

The to-be-sorted items, A1, A2, A3, A4, start at the left
on the horizontal lines. A vertical line connecting
horizontal line i and j indicates that items i and j are to be
compared and exchanged, if necessary, so that the larger of
the two is on the bottom. In this figure, the first step causes
A1 and A2 to be exchanged if A2 < A1. This step and the
next three steps cause the largest and smallest items to be
routed down and up, respectively. The fifth step ensures
that the remaining two items end up in the correct order.
The correctly sorted output appears at the right. A five-step
network is known to be minimal for four items.

Sorting networks are oblivious to their inputs in the
sense that they always perform the same fixed sequence of
comparison-exchange operations. Nonetheless, they are of
considerable practical importance because they are more
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort
and are therefore often embedded in commercial sorting
software.

Thus, there is considerable interest in sorting networks
with a minimum number of comparison-exchange
operations. There has been a lively search over the years
for smaller sorting networks (Knuth 1973). In U. S. patent
3,029,413, O'Connor and Nelson (1962) described sorting
networks for 4, 5, 6, 7, and 8 items using 5, 9, 12, 18, and
19 comparison-exchange operations, respectively.

During the l960s, Floyd and Knuth devised a 16-step
seven-sorter and proved it to be the minimal seven-sorter.
They also proved that the four other sorting networks in the
1962 O'Connor and Nelson patent were minimal.

The 16-sorter has received considerable attention. In
1962, Bose and Nelson devised a 65-step sorting network
for 16 items. In 1964, Batcher and Knuth presented a 63-
step 16-sorter. In l969, Shapiro discovered a 62-step 16-
sorter and, in the same year, Green discovered one with 60
steps.

Hillis (1990, 1992) used the genetic algorithm to evolve
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing
with a population of fitness cases. In this work, Hillis
incorporated the first 32 steps of Green's 60-step 16-sorter
as a fixed beginning for all sorters (Juille 1995).

Juille (1995) used an evolutionary algorithm to evolve a
13-sorter with 45 steps thereby improving on the 13-sorter
with 46 steps presented in Knuth (1973). Juille (1997) has
also evolved networks for sorting 14, 15, and 16 items
having the same number of steps (i.e., 51, 56, and 60,
respectively) as reported in Knuth (1973).

As the number of items to be sorted increases,
construction of a minimal sorting network becomes
increasingly difficult. In addition, verification of the
validity of a network (through analysis, instead of
exhaustive enumeration) grows in difficulty as the number
of items to be sorted increases. A sorting network can be
exhaustively tested for validity by testing all n!
permutations of n distinct numbers. However, thanks to the
"zero-one principle" (Knuth 1973, page 224), if a sorting
network for n items correctly sorts n bits into non-
decreasing order (i.e., all the 0's ahead of all the 1's) for all
2n sequences of n bits, it necessarily will correctly sort any
set of n distinct numbers into non-decreasing order. Thus, it
is sufficient to test a putative 16-sorter against only 216 =
65,536 combinations of binary inputs, instead of all 16! ~ 2
∞ 1013 inputs. Nonetheless, in spite of this "zero-one
principle," testing a putative 16-sorter consisting of around
60 steps on 65,536 different 16-bit input vectors is a
formidable amount of computation when it appears in the
inner loop of a genetic algorithm.

7. Preparatory Steps
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population consists of
computer programs of varying sizes and shapes (Koza 1992,
1994a, 1994b; Koza and Rice 1992). Sources of
information on recent work on genetic programming
include Kinnear 1994, Angeline and Kinnear 1996, and
conference proceedings such as Koza, Goldberg, Fogel, and
Riolo 1996, and Koza et al. 1997.

Before applying genetic programming to a problem, the
user must perform six major preparatory steps, namely (1)
identifying the terminals, (2) identifying the primitive
functions, (3) creating the fitness measure, (4) choosing
control parameters, (5) setting the termination criterion and
method of result designation, and (6) determining the
architecture of the program trees in the population.

For the problem of evolving a sorting network for 16
items, the terminal set, T, is
T = {D1, ..., D16, NOOP}.
Here NOOP is the zero-argument "No Operation" function.

The function set, F, is
F = {COMPARE–EXCHANGE, PROG2, PROG3, PROG4}.

Note that none of these functions have return values.
Each individual in the population consists of a

constrained syntactic structure composed of primitive
functions from the function set, F, and terminals from the
terminal set, T such that the root of each program tree is a
PROG2, PROG3, or PROG4; each argument to PROG2,
PROG3, and PROG4 must be a NOOP or a function from F;
and both arguments to every COMPARE–EXCHANGE
function must be from T (but not NOOP).

The PROG2, PROG3, and PROG4 functions respectively
evaluate each of their two, three, or four arguments
sequentially.

The two-argument COMPARE–EXCHANGE function
changes the order of the to-be-sorted bits. The result of

executing a (COMPARE–EXCHANGE i j) is that the bit
currently in position i of the vector is compared with the bit
currently in position j of the vector. If the first bit is greater
than the second bit, the two bits are exchanged. That is, the
effect of executing a(COMPARE–EXCHANGE i j) is that
the two bits are sorted into non-decreasing order. Table 1
shows the two results Ri and produced by executing a
(COMPARE–EXCHANGE i j). Note that column Ri is
the Boolean AND function and column Rj is the Boolean
OR function.
Table 1 The COMPARE–EXCHANGE function.

Two Arguments Two Results
Ai Aj Ri Rj
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
The fitness of each individual program in the population

is based on the correctness of its sorting of 216 = 65,536
fitness cases consisting of all possible vectors of 16 bits. If,
after an individual program is executed on a particular
fitness case, all the 1's appear below all the 0's), the program
is deemed to have correctly sorted that particular fitness
case.

Because our goal is to evolve small (and preferably
minimal) sorting networks, we ignore exchanges where i = j
and exchanges that are identical to the previous exchange.
Moreover, during the depth-first execution of a program
tree, only the first Cmax = 65 COMPARE–EXCHANGE
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby
relegating the remainder of the program to be unused code).

Hits are defined as the number of fitness cases for which
the sort is performed correctly.

The fitness measure for this problem is multi-objective
in that it involves both the correctness and size of the
sorting network. Standardized fitness is defined in a lexical
fashion to be the number of fitness cases (0 to 16 ∞ 216) for
which the sort is performed incorrectly plus 0.01 times the
number (1 to Cmax) of COMPARE–EXCHANGE functions
that are actually executed. For example, the fitness of a 16-
sorter with 60 COMPARE–EXCHANGE functions (such as
Green's) is 0.60 while the fitness of an imperfect network
with 60 COMPARE–EXCHANGE functions that correctly
handles all but 12 fitness cases (out of 16 ∞ 216) is 12.60.
Note that we used tournament selection.

The population size was 1,000. The percentage of
genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.
The maximum size, Hrpb, for the result-producing branch
was 300 points. The other parameters for controlling the
runs were the default values specified in Koza 1994a
(appendix D). The architecture of the overall program
consisted of one result-producing branch.

8. Mapping the Sorting Network
Problem onto the XC6216 Chip

The problem of evolving sorting networks was run on a host
PC Pentium type computer with a Virtual Computer
Corporation "HOT Works" PCI board containing a Xilinx
XC6216 field-programmable gate array. This combination
permits the field-programmable gate array to be
advantageously used for the computationally burdensome
fitness evaluation task while permitting the general-purpose
host computer to perform all the other tasks.

In this arrangement, the host PC begins the run by
creating the initial random population (with the XC6216
waiting). Then, for generation 0 (and each succeeding
generation), the PC creates the necessary configuration bits
to enable the XC6216 to measure the fitness of the first
individual program in the population (with the XC6216
waiting). Thereafter, the XC6216 measures the fitness of
one individual. Note that the PC can simultaneously
prepare the configuration bits for the next individual in the
population and poll to see if the XC6216 is finished. After
the fitness of all individuals in the current generation of the
population is measured, the genetic operations
(reproduction, crossover, and mutation) are performed (with
the XC6216 waiting). This arrangement is beneficial
because the computational burden of creating the initial
random population and of performing the genetic operations
is small in comparison with the fitness evaluation task.

The clock rate at which a field-programmable gate array
can be run on a problem is considerably slower than that of
a contemporary serial microprocessor (e.g., Pentium or
PowerPC) that might run a software version of the same
problem. Thus, in order to advantageously use the Xilinx
XC6216 field-programmable gate array, it is necessary to
find a mapping of the fitness evaluation task onto the
XC6216 that exploits at least some of the massive
parallelism of the 4,096 cells of the XC6216.

Figure 7 shows our placement on 32 horizontal rows and
64 vertical columns of the XC6216 chip of eight major
computational elements (labeled A through H). Broadly,
fitness cases are created in area B, are sorted in areas C, D,
and E, and are evaluated in F and G. The figure does not
show the ring of input-output blocks on the periphery of the
chip that surround the 64 ∞ 64 area of cells or the physical
input-output pins that connect the chip to the outside. The
figure does not reflect the fact that two such 32 ∞ 64 areas
operate in parallel on the same chip.

H G F E
D

CBA

Figure 7 Arrangement of elements A through H on a 32
∞ 64 portion of the XC6216 chip.

For a k-sorter (k ≤ 16), a 16-bit counter B (near the

upper left corner of the chip) counts down from 2k - 2 to 0
under control of control logic A (upper left corner). The
vector of k bits resident in counter B on a given time step
represents one fitness case of the sorting network problem.
The vector of bits from counter B is fed into the first
(leftmost) 16 ∞ 1 vertical column of cells of the large 16 ∞
40 area C. Counter B is an example of a task that is easily
performed on a conventional serial microprocessor, but
which occupies considerable space (but does not consume
not considerable time) on the FPGA.

Each 16 ∞ 1 vertical column of cells in C (and each cell
in similar area E) corresponds to one COMPARE–
EXCHANGE operation of an individual candidate sorting
network. The vector of 16 bits produced by the 40th
(rightmost) sorting step of area C then proceeds to area D.
Area D is a U-turn area that channels the vector of 16 bits
into the first (rightmost) column of 16 ∞ 40 area E.

The final output from area E is checked by answer logic
G for whether the individual candidate sorting network has
correctly rearranged the original incoming vector of bits so
that all the 0's are above all the 1's. The 16-bit accumulator
G is incremented by one if the bits are correctly sorted.
Note that the 16 bits of accumulator G are sufficient for
tallying the number of correctly sorted fitness cases because

the host computer starts counter B at 2k - 2, thereby
skipping the uninteresting fitness case of consisting of all
1's (which cannot be incorrectly sorted by any network).
The final value of raw fitness is reported in 16-bit register H

after all the 2k - 2 fitness cases have been processed.
The logical function units and interconnection resources

of areas A, B, D, F, G, and H are permanently configured to
handle the sorting network problem for k ≤ 16.

The two large areas, C and E, together represent the
individual candidate sorting network. The configuration of
the logical function units and interconnection resources of

the 1,280 cells in areas C and E become personalized to the
current individual candidate sorting network.

For area C, each cell in a 16 ∞ 1 vertical column is
configured in one of three main ways. First, the logical
function unit of exactly one of the 16 cells is configured as
a two-argument Boolean AND function (corresponding to
result Ri of table 1). Second, the logical function unit of
exactly one other cell is configured as a two-argument
Boolean OR function (corresponding to result Rj of table
1). Bits i and j become sorted into the correct order by
virtue of the fact that the single AND cell in each 16 ∞ 1
vertical column always appears above the single OR cell.
Third, the logical function units of 14 of the 16 cells are
configured as "pass through" cells that horizontally pass
their input from one vertical column to the next.

For area E, each cell in a 16 ∞ 1 vertical column is
configured in one of three similar main ways.

There are four subtypes each of AND and OR cells and
four types of "pass through" cells. Half of these subtypes
are required because all the cells in area E differ in chirality
(handedness) from those in area C in that they receive their
input from their right and deliver output to their left.

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, the last few vertical columns of area
E each contain 16 "pass through" cells. Note that the
genetic operations are constrained so as to not produce
networks with more than 80 steps and, as previously
mentioned, only the first Cmax < 80 steps are actually
executed.

Within each cell of areas C and E, the one-bit output of
the cell's logical function unit is stored into a flip-flop. The
contents of the 16 flip-flops in one vertical column become
the inputs to the next vertical column on the next time step.

The overall arrangement operates as an 87-stage
pipeline (the 80 stages of areas C and E, the three stages of
answer logic F, and four stages of padding at both ends of
C and E).

Figure 8 shows the bottom six cells of an illustrative
vertical column from area C whose purpose is to implement
a (COMPARE–EXCHANGE 2 5) operation. As can be
seen, cell 2 (second from top of the figure) is configured as
a two-argument Boolean AND function (*) and cell 5 is
configured as a two-argument OR function (+). All the
remaining 14 cells of the vertical column (of which only
four are shown in this abbreviated figure) are "pass
through" cells. These "pass through" cells horizontally
convey the bit in the previous vertical column to the next
vertical column. Every cell in the Xilinix XC6216 has the
additional capacity of being able to convey one signal in
each direction as a "fly over" signal that plays no role in the
cell's own computation. Thus, the two "intervening" "pass
through" cells (3 and 4) that lie between the AND and OR
cells (1 and 5) is configured so that it conveys one signal
vertically upwards and one signal vertically downwards as
"fly over" signals. These "fly overs" of the two intervening
cells (3 and 4) enable cell 2's input to be shared with cell 5
and cell 5's input to be shared with cell 2. Specifically, the
input coming into cell 2 horizontally from the previous

vertical column (i.e., from the left in figure 8) is bifurcated
so that it feeds both the two-argument AND in cell 2 and the
two-argument OR in cell 5 (and similarly for the input
coming into cell 5).

Notice that when a 1 is received from the previous
vertical column on horizontal row 2 and a 0 is received on
horizontal row 5 (i.e., the two bits are out of order), the
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted
as output on horizontal row 2 and a 1 to be emitted as
output on horizontal row 5 (i.e., the two bits have become
sorted into the correct order).

The remaining "pass through" cells (i.e., cells 1 and 6 in
figure 8 and cells 7 through 16 in the full 1 ∞ 16 vertical
column) are of a subtype that does not have the "fly over"
capability of the two "intervening" cells (3 and 4). The
design of this subtype prevents possible reading of signals
(of unknown voltage) from the input-output blocks that
surround the main 64 ∞ 64 area of the chip. All AND and
OR cells are similarly designed since they necessarily
sometimes occur at the top or bottom of a vertical column.

Figure 8 Implementation of (COMPARE–EXCHANGE 2
5).

Note that the intervening "pass through" cells (cells 3
and 4 in figure 8) invert their "fly over" signals. Thus, if
there is an odd number of "pass through" cells intervening
vertically between the AND cells and OR cells, the signals
being conveyed upwards and downwards in a vertical
column will arrive at their destinations in inverted form.
Accordingly, special subtypes of the AND cells and OR
cells reinvert (and thereby correct) such arriving signals.

When the XC6216 begins operation for a particular
individual sorting network, all the 16 ∞ 80 flip-flops in C
and E (as well as the flip-flops in three-stage answer logic
F, the four insulative stages, and the "done bit" flip-flop) are
initialized to zero. Thus, the first 87 output vectors received
by the answer logic F each consist of 16 0's. Since the
answer logic F treats a vector of 16 0's as incorrect,
accumulator G is not incremented for these first 87 vectors.

A "past zero" flip-flop is set when counter B counts
down to 0. As B continues counting, it rolls over to 216 –
1, and continues counting down. When counter B reaches
216 – 87 (with the "past zero" flip-flop being set), control
logic A stops further incrementation of accumulator G. The
raw fitness from G appears in reporting register H and the
"done bit" flip-flop is set to 1. The host computer polls this
"done bit" to determine that the XC6216 has completed its
fitness evaluation task for the current individual.

The flip-flop toggle rate of the chip (220 MHz for the
XC6216) provides an upper bound on the speed at which a
field-programmable gate array can be run. In practice, the
speed at which an FPGA can be run is determined by the
longest routing delay. We run the current unoptimized
version of the FPGA design for the sorting network problem
at 20 MHz. This clock rate is approximately ten times
slower than a contemporary serial microprocessor devices
such as the Pentium or PowerPC chip (and a little less than
one tenth of the FPGA's 220 MHz flip-flop toggle rate).

Note that counter B and accumulator G are examples of
tasks that are more easily performed on a conventional
serial microprocessor than on the FPGA. Nonetheless,
these two tasks do not significantly slow the operation of
the FPGA because sufficient space has been allocated to
them.

The above approach exploits the massive parallelism of
the XC6216 chip in six different ways.

First, the tasks performed by areas A, B, C, D, E, F, G,
and H are examples of performing disparate tasks in parallel
in physically different areas of the FPGA.

Second, the two separate 32 ∞ 64 areas operating in
parallel on the chip are an example (at a higher level) of
performing identical tasks in parallel in physically different
areas of the FPGA.

Third, the XC6216 evaluates the 2k fitness cases
independently of the activity of the host PC Pentium type
computer (which simultaneously can prepare the next
individual(s) for the XC6216). This is an example (at the
highest level) of performing disparate tasks in parallel.

Fourth, the Boolean AND functions and OR functions
of each COMPARE–EXCHANGE operation are performed in
parallel (in each of the vertical columns of C and E). This
is an example of recasting a key operation (the COMPARE–
EXCHANGE operation) as a bit-level operation so that the
FPGA can be advantageously used. It is also an example
of performing two disparate operations (AND and OR) in
parallel in physically different areas of the FPGA (i.e.,
different locations in the vertical columns of areas C and
E).

Fifth, numerous operations are performed in parallel in
control logic A, counter B, answer logic F, accumulator G,
and reporting register H. Answer logic F of the FPGA is
especially advantageous because numerous sequential steps
on a conventional serial microprocessor to determine
whether k bits are properly sorted. Answer logic F is an
example of a multi-step task that is both successfully
parallelized and pipelined on the FPGA.

Sixth, most importantly, the 87-step pipeline (80 steps
for areas C and E and 7 steps for answer logic F and
accumulator G) enables 87 fitness cases to be processed in
parallel in the pipeline.

9. Results
A 16-step 7-sorter (figure 9) was evolved that has two fewer
steps than the sorting network described in the 1962
O'Connor and Nelson patent on sorting networks and that
has the same number of steps as the minimal 7-sorter that
was devised by Floyd and Knuth subsequent to the patent
and described in Knuth 1973.

Figure 9 Genetically evolved 7-sorter.

10. Discussion and Future Work
A default hierarchy is a set of problem-solving rules in
which one (or possibly more) default rules satisfactorily
handles the vast majority of instances of a problem, while a
set of exception-handling rules then makes the corrections
necessary to satisfactorily handle the remaining instances.
A familiar example of a default hierarchy is the spelling rule
"I before E, except after C." It has been observed that
human problem-solving often employs the style of default
hierarchies (Holland 1986, 1987; Holland et al. 1986).

Figure 10 shows the percentage of the 2k = 128 fitness
cases that become correctly sorted on each of its 16 steps of
the genetically evolved minimal sorting network for seven

items of figure 9. Once the k bits of any one of the 2k
fitness cases are arranged into the correct order, no
COMPARE–EXCHANGE operation occurring later in the
sorting network can change the ordering of the k bits. Thus,
the percentage of fitness cases that are correctly sorted is a
non-decreasing function of the number of executed steps of
the network. As can be seen, the graph is approximately
linear. That is, the number of fitness cases that become
correctly sorted after each time step is approximately equal
for each of the 16 steps. The largest single increase is 15
(about twice the average of 8 fitness cases per step). The
graphs for all three of our other genetically evolved 16-step
7-sorters were similar approximately linear progressions.
That is, each step of all four genetically evolved 7-sorters
makes steady incremental progress toward the goal of
correctly sorting the given items.

0
20
40
60
80
100

1 3 5 7 9 11 13 15

Figure 10 Percentage of correctly sorted fitness cases
after each step for genetically evolved minimal 7-sorter.

Figure 11 shows the percentage of the fitness cases that
are correctly sorted after deletion of single step i from the
genetically evolved minimal 16-step 7-sorter of figure 9.
Of course, the steps of a sorting network are intended to be
executed in consecutive order. Nonetheless, the deletion of
single steps gives a rough indication of the importance of
each step. As can be seen, the degradation caused by most
single deletions is relatively small. The graphs of the effect
of single deletions for all three of our other genetically
evolved minimal 16-step 7-sorters were similar to figure 11.

0
20
40
60
80
100

1 3 5 7 9 11 13 15

Figure 11 Percentage of fitness cases that remain
correctly sorted upon deletion of single steps from for
the genetically evolved minimal 7-sorter.

Figure 12 shows the shows the percentage of the 2k =
512 fitness cases that become correctly sorted on each of the
25 steps of a human-designed 9-sorter presented in Knuth
1973 (which does not show a minimal 7-sorter). As can be
seen, most steps of the sorting network satisfactorily
dispose of relatively few of the fitness cases; however, one
step disposes of 42% of the fitness cases (216 out of 512).

0
20
40
60
80
100

1 4 7 10 13 16 19 22 25

Figure 12 Percentage of correctly sorted fitness cases
after each step for human-designed 9-sorter. We
observed that the graphs for several other human-designed
minimal sorting networks displayed a similar highly non-
linear progression. The major non-linearity occurred at
different places in the sequence of steps. For example, over
99% of the 65,536 fitness cases of Green's 60-step 16-sorter
are handled by only half of the steps

Figure 13 shows the percentage of the 2k fitness cases
that are correctly sorted after deletion of single step i the
human-designed 9-sorter in Knuth 1973. As can be seen,
many of the single deletions cause comparatively greater
degradation than those of figure 11. The graphs for several
other human-designed minimal sorting networks displayed
similar large degradations caused by single deletions.

0
20
40
60
80
100

1 4 7 10 13 16 19 22 25

Figure 13 Percentage of fitness cases that remain
correctly sorted upon deletion of single steps for human-
designed 9-sorter.

Although the above observations are admittedly limited
to specific instances of one particular problem, the
observations raise the interesting question of whether there
is an general tendency of genetically evolved solutions to
problems to exhibit this kind of steady incrementalism
while human-written solutions to the same problem tend to
employ the style of default hierarchies.

11. Conclusion
This paper demonstrated how the massive parallelism of the
rapidly reconfigurable Xilinx XC6216 field-programmable
gate array can be exploited to accelerate the
computationally burdensome fitness evaluation task of
genetic programming.

Acknowledgments
Phillip Freidin of Silicon Spice provided invaluable
information concerning FPGAs and helpful comments on
this paper. Stefan Ludwig of DEC and Steve Casselman
and John Schewel of Virtual Computer Corporation
provided helpful assistance concerning operation of the
XC6216. Simon Handley made helpful comments on this
paper.

References
ACM. 1997. Proceedings of the ACM Fifth International

Symposium on Field Programmable Gate Arrays. New
York, NY: ACM Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Brown, Stephen D., Francis, Robert J., Rose, Jonathan, and
Vranesic, Zvonko G. 1992. Field Programmable Gate
Arrays. Boston, MA: Kluwer.

Chan, Pak K. and Mourad, Samiha. 1994. Digital Design
Using Field Programmable Gate Arrays. Englewood
Cliffs, NJ: PTR Prentice Hall.

Grunbacher, Herbert and Hartenstein, Reiner W. (Editors).
1993 Field Programmable Gate Arrays: Architectures
and Tools for Rapid Prototyping. Second International
Workshop on Field Programmable Gate Arrays and
Applications, Vienna, Austria, August/September 1992
Selected Papers. Lecture Notes in Computer Science,
Volume 705. Berlin: Springer-Verlag.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba,
Hitoshi, de Garis, Hugo, and Furuya, Tatsumi. 1993a. In
Meyer, Jean-Arcady, Roitblat, Herbert L. and Wilson,
Stewart W. (editors). From Animals to Animats 2:
Proceedings of the Second International Conference on
Simulation of Adaptive Behavior. Cambridge, MA: The
MIT Press. 1993. Pages 417 – 424.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba,
Hitoshi, de Garis, Hugo, and Furuya, Tatsumi. 1993b.
Evolvable Hardware – Genetic-Based Generation of
Electric Circuitry at Gate and Hardware Description
Language (HDL) Levels. Electrotechnical Laboratory
technical report 93-4. Tsukuba, Japan: Electrotechnical
Laboratory.

Higuchi, Tetsuya (editor). 1997. Proceedings of
International Conference on Evolvable Systems: From
Biology to Hardware (ICES-96). Lecture Notes in
Computer Science. Volume 1259. Berlin: Springer-
Verlag.

Hillis, W. Daniel. 1990. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Forrest, Stephanie (editor). Emergent Computation: Self-
Organizing, Collective, and Cooperative Computing
Networks. Cambridge, MA: The MIT Press.

Hillis, W. Daniel. 1992. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Langton, Christopher, Taylor, Charles, Farmer, J. Doyne,
and Rasmussen, Steen (editors). Artificial Life II, SFI
Studies in the Sciences of Complexity. Volume X.
Redwood City, CA: Addison-Wesley. Pages 313-324.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

Holland, John H. l986. Escaping brittleness: The
possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In Michalski,
Ryszard S., Carbonell, Jaime G. and Mitchell, Tom M.
(editors). Machine Learning: An Artificial Intelligence
Approach, Volume II. Los Altos, CA: Morgan Kaufmann.
Pages 593-623.

Holland, John H. 1987. Classifier systems, Q-morphisms,
and Induction. In Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing. London: Pittman.
Pages 116-128.

Holland, John H, Holyoak, K. J., Nisbett, R. E., and
Thagard, P. A. l986. Induction: Processes of Inference,
Learning, and Discovery. Cambridge, MA: The MIT
Press.

IEEE. 1996. Proceedings of IEEE Symposium on FPGAs
for Custom Computing Machines, April 17–19, 1996,
Napa Valley, California. Los Alamitos, CA: IEEE
Computer Society Press.

Jenkins, Jesse H. 1994. Designing with FPGAs and
CPLDs. Englewood Cliffs, NJ: PTR Prentice Hall.

Juille, Hugues. 1995. Evolution of non-deterministic
incremental algorithms as a new approach for search in
state spaces. In Eshelman, L. J. (editor). Proceedings of
the Sixth International Conference on Genetic Algorithms.
San Francisco, CA: Morgan Kaufmann. 351 – 358.

Juille, Hugues. 1997. Personal communication.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic

Programming. Cambridge, MA: MIT Press.
Knuth, Donald E. 1973. The Art of Computer

Programming. Volume 3. Reading, MA: Addison-
Wesley.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L.
(editors). 1997. Genetic Programming 1997: Proceedings
of the Second Annual Conference, July 13–16, 1997,
Stanford University. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Moore, Will R. and Luk, Wayne (editors). 1995. Field
Programmable Logic and Applications: 5th International
Workshop, FLP '96, Oxford, United Kingdom,
August/September 1995 Proceedings. Lecture Notes in
Computer Science, Volume 975. Berlin: Springer-Verlag.

Murgai, Rajeev, Brayton, Robert K., and Sangiovanni-
Vincentelli, Alberto. 1995. Logic Synthesis for Field
Programmable Gate Arrays. Boston, MA: Kluwer.

O'Connor, Daniel G. and Nelson, Raymond J. 1962. Sorting
System with N-Line Sorting Switch. United States Patent
number 3,029,413. Issued April 10, 1962.

Oldfield, John V. and Dorf, Richard C. 1995. Field
Programmable Gate Arrays: Reconfigurable Logic for
Rapid Prototyping and Implementation of Digital Systems.
New York: John Wiley.

Sanchez, Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag.

Thompson, Adrian. 1996. Silicon evolution. In Koza, John
R., Goldberg, David E., Fogel, David B., and Riolo, Rick
L. (editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.

Trimberger, Stephen M. (Editor) 1994. Field
Programmable Gate Array Technology. Boston, MA:
Kluwer.

Xilinx. 1997. XC6000 Field Programmable Gate Arrays:
Advance Product Information. January 9, 1997. Version
1.8.

