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The recently developed genetic 
programming paradigm is used to evolve 
emergent wall following behavior for an 
autonomous mobile robot using the subsumption 
architecture. 

1. INTRODUCTION AND OVERVIEW 
The repetitive application of seemingly 

simple rules can lead to complex overall 
emergent behavior.  Emergent functionality 
means that overall functionality is not achieved 
in the conventional tightly coupled, centrally 
controlled way, but, instead, indirectly by the 
interaction of relatively primitive components 
with the world and among themselves [Steels 
1991].  Emergent functionality is one of the 
main themes of research in artificial life 
[Langton 1989]. 

In this paper, we use the genetic 
programming paradigm to evolve a computer 
program that exhibits emergent behavior and 
enables an autonomous mobile robot to follow 
the walls of an irregularly shaped room.  The 
evolutionary process is driven only by the 
fitness of the programs in solving the problem.   

2. BACKGROUND ON GENETIC 
ALGORITHMS 
John Holland's pioneering 1975 Adaptation 

in Natural and Artificial Systems described how 
the evolutionary process in nature can be 
applied to artificial systems using the genetic 
algorithm operating on fixed length character 
strings [Holland 1975]. 

Holland demonstrated that a population of 
fixed length character strings (each representing 
a proposed solution to a problem) can be 

genetically bred using the Darwinian operation 
of fitness proportionate reproduction and the 
genetic operation of recombination.  The 
recombination operation combines parts of two 
chromosome-like fixed length character strings, 
each selected on the basis of their fitness, to 
produce new offspring strings.  

Current work in the field of genetic 
algorithms is reviewed in Goldberg [1989], 
Belew and Booker [1991], Davis [1987, 1991], 
Rawlins [1991] and Meyer and Wilson [1991]. 

3. BACKGROUND ON GENETIC 
PROGRAMMING 
For many problems, the most natural 

representation for solutions are computer 
programs whose size, shape, and content have 
not been determined in advance.  It is unnatural 
and difficult to represent computer programs of 
dynamically varying size and shape with fixed 
length character strings.  

Although one might think that computer 
programs are so epistatic that they could only be 
genetically bred in a few especially congenial 
problem domains, we have shown that computer 
programs can be genetically bred to solve a 
surprising variety of problems in many different 
areas [Koza 1992], including  
• emergent behavior (e.g. discovering a 

computer program which, when executed by 
all the ants in an ant colony, enables the ants 
to locate food, pick it up, carry it to the nest, 
and drop pheromones along the way so as to 
produce cooperative emergent behavior) 
[Koza 1991a], 

• planning (e.g. navigating an artificial ant 



 
along an irregular trail) [Koza 1990b],  

• finding minimax strategies for games (e.g. 
differential pursuer-evader games; discrete 
games in extensive form) by both evolution 
and co-evolution [Koza 1991b], 

• optimal control (e.g. centering a cart and 
balancing a broom in minimal time by 
applying a bang-bang force to the cart)  
(Koza and Keane 1990a, 1990b], 

• machine learning of functions (e.g. learning 
the Boolean 11-multiplexer function) [Koza 
1991d], 

• generation of random numbers (using 
entropy as fitness) [Koza 1991c], 

• symbolic regression, integration, differentia-
tion, and symbolic solution to general 
functional equations  for a solution in the 
form of a function (including differential 
equations with initial conditions, and 
integral equations) [Koza 1990], and 

• simultaneous architectural design and 
training of neural nets [Koza and Rice 
1991a]. 
A videotape visualization of the application 

of genetic programming to planning, emergent 
behavior, empirical discovery, inverse 
kinematics, and game playing can be found in 
the Artificial Life II Video Proceedings [Koza 
and Rice 1991b]. 

3.1. OBJECTS  IN GENETIC 
PROGRAMMING 

In genetic programming, the individuals in 
the population are compositions of functions 
and terminals appropriate to the particular 
problem domain.  The set of functions used 
typically includes arithmetic operations, 
mathematical functions, conditional logical 
operations, and domain-specific functions.  The 
set of terminals used typically includes inputs 
(sensors) appropriate to the problem domain and 
possibly various constants.  Each function in the 
function set should be well defined for any 
combination of elements from the range of 
every function that it may encounter and every 
terminal that it may encounter. 

One can now view the search for a solution 
to the problem as a search in the hyperspace of 
all possible compositions of functions and 

terminals (i.e. computer programs) that can be 
recursively composed of the available functions 
and terminals.  

The symbolic expressions (S-expressions) of 
the LISP programming language are an 
especially convenient way to create and 
manipulate the compositions of functions and 
terminals described above.  These S-expressions 
in LISP correspond directly to the parse tree that 
is internally created by most compilers. 

3.2. OPERATIONS IN GENETIC 
PROGRAMMING 

The basic genetic operations for the genetic 
programming paradigm are reproduction (e.g. 
fitness proportionate reproduction) and 
crossover (recombination).   

The reproduction operation copies an 
individual in the population into the new 
population for the next generation.   

The crossover (recombination) operation is a 
sexual operation that operates on two parental 
LISP S-expressions and produces two offspring 
S-expressions using parts of each parent.  The 
crossover operation creates new offspring S-
expressions by exchanging sub-trees (i.e. sub-
lists) between the two parents.  Because entire 
sub-trees are swapped, this crossover operation 
always produces syntactically and semantically 
valid LISP S-expressions as offspring regardless 
of the crossover points.  
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Figure 1:  Two parental computer programs 

shown as trees with ordered branches.  Internal 
points of the tree correspond to functions (i.e. 
operations) and external points correspond to 

terminals (i.e. input data). 
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Figure 2:  The two crossover fragments 
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Figure 3:  Offspring resulting from crossover 

For example, consider the two parental S-
expressions:  
(OR (NOT D1) (AND D0 D1)) 
 
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

Figure 1 graphically depicts these two S-
expressions as rooted, point-labeled trees with 
ordered branches.  The numbers on the points of 
the tree are for reference only. 

Assume that the points of both trees are 
numbered in a depth-first way starting at the 
left.   Suppose that point no. 2 (out of 6 points 
of the first parent) is randomly selected as the 
crossover point for the first parent and that point 
no. 6 (out of 10 points of the second parent) is 
randomly selected as the crossover point of the 
second parent.  The crossover points in the trees 
above are therefore the NOT in the first parent 
and the AND in the second parent.   

Figure 2 shows the two crossover fragments 
are two sub-trees.  These two crossover 
fragments correspond to the bold sub-
expressions (sub-lists) in the two parental LISP 
S-expressions shown above. 

Figure 3 shows the two offspring resulting 
from the crossover.   

Note that the first offspring in Figure 3 is an 
S-expression for the Boolean even-parity (i.e. 
equal) function, namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

3.3. EXECUTION OF GENETIC 
PROGRAMMING 

The genetic programming paradigm, like the 
conventional genetic algorithm, is a domain 
independent method.  It proceeds by genetically 
breeding populations of computer programs to 
solve problems by executing the following three 
steps: 
(1) Generate an initial population of random 

compositions of the functions and terminals 
of the problem (computer programs). 

(2) Iteratively perform the following sub-steps 
until the termination criterion has been 
satisfied: 
(a) Execute each program in the 

population and assign it a fitness value 
according to how well it solves the 
problem. 

(b) Create a new population of computer 
programs by applying the following 
two primary operations.  The 
operations are applied to computer 
program(s) in the population chosen 
with a probability based on fitness. 
(i) Reproduction: Copy existing 

computer programs to the new 
population. 

(ii) Crossover: Create two new 
computer programs by genetically 
recombining randomly chosen 
parts of two existing programs. 

(3) The single best computer program in the 
population at the time of termination is 
designated as the result of the genetic 
programming paradigm.  This result may be 
a solution (or approximate solution) to the 
problem. 

4. THE WALL FOLLOWING PROBLEM 
Mataric [1990] described the problem of 

controlling an autonomous mobile robot to 
perform the task of following the walls of an 
irregular room. 

The robot is capable of executing the 
following five primitive motor functions: 
moving forward by a constant distance, moving 
backward by a constant distance, turning right 
by 30 degrees, turning left by 30 degrees, and 



 
stopping.   

The robot has 12 sonar sensors which report 
the distance to the nearest wall.  Each sonar 
sensor covers a 30 degree sector around the 
robot.  In addition, there was a sensor for the 
STOPPED condition of the robot. 

Figure 4 shows an irregularly shaped room 
and the distances reported by the 12 sonar 
sensors.  The robot is shown at point (12, 16) 
near the center of the room.  The north (top) 
wall and west (left) wall are each 27.6 feet long.    
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Figure 4: Irregular room with robot with 12 

sonar sensors located near middle of the room 
One can envision solving the wall following 

problem in one of three approaches, namely  
(1) the conventional approach to building 

control systems for for autonomous mobile 
robots, 

(2) the subsumption architecture, and 
(3) genetic programming. 

Regardless of which of these three 
approaches is used to solve the wall following 
problem, the 13 sensors can be viewed as the 
input to an as-yet unwritten computer program 
in a style appropriate to the three approaches.  
This as-yet unwritten program will process 
these inputs and will cause the activation, in 
some order, of the various primitive motor 
functions.  This as-yet-unwritten program will 
be a composition of the five available primitive 
motor functions and the 13 available sensors. 

Note that the 13 sensors and five primitive 

motor functions are the starting point of all three 
approaches.  They are given as part of the 
statement of the problem. 

5. THE CONVENTIONAL ROBOTIC 
APPROACH 
The conventional approach to building 

control systems for autonomous mobile robots 
is to decompose the overall problem into a 
series of functional units that perform functions 
such as perception, modeling, planning, task 
execution, and motor control.  A central control 
system then executes each functional unit in this 
decomposition and then passes the results on to 
the next functional unit in an orderly, closely 
coupled, and synchronized manner.  For 
example, the perception unit senses the world 
and the results of this sensing are then passed to 
a modeling module which attempts to build an 
internal model of the perceived world.  The 
internal model resulting from this modeling is 
then passed on to a planning unit which 
computes a plan.  The plan might be devised by 
a consistent and logically sound technique (e.g.  
resolution and unification) or it might be 
devised by one of the many heuristic techniques 
of symbolic artificial intelligence.  In any event, 
the resulting plan is passed on to the task 
execution unit which then executes the plan by 
calling on the motor control unit.  The motor 
control unit then acts directly on the external 
world.   

In this conventional approach, only a few of 
the functional units (e.g. the perception unit and 
motor control unit) typically are in direct 
communication with the world.  All functional 
units must typically be executed in their 
intended orderly, closely coupled, and 
synchronized manner in order to make the robot 
do anything. 

6. THE SUBSUMPTION 
ARCHITECTURE 
The subsumption architecture decomposes 

the problem into a set of asynchronous task 
achieving behaviors [Brooks 1986, 1989].  The 
task achieving behaviors for an autonomous 
mobile robot might include behaviors such as 
avoiding objects, wandering, exploring, 



 
identifying objects, building maps, planning 
changes to the world, monitoring changes, and 
reasoning about behavior of the objects.  The 
task achieving behaviors operate locally and 
asychronously and are only loosely coupled to 
one another.  In contrast to the conventional 
approach, each of the task achieving behaviors 
is typically in direct communication with the 
world (and each other).  The task achieving 
behaviors in the subsumption architecture are 
typically much more primitive than the 
functional units of the conventional approach.   

In the subsumption architecture, various 
subsets of the task achieving behaviors typically 
exhibit some partial competence in solving a 
simpler version of the overall problem.  Thus, 
the solution to a more complex version of a 
problem can potentially be built up by 
incrementally adding new independent acting 
parts to existing parts.  In addition, the system 
may be fault tolerant in the sense that the failure 
of one part does not cause complete failure, but, 
instead, causes a gracefully degradation of 
performance to some lower level.  In contrast, in 
the conventional approach, the various 
functional units have no functionality when 
operating separately and there is a complete 
suspension of all performance when one 
functional unit fails.     

In the subsumption architecture, the task 
achieving behaviors each consist of an 
applicability predicate, a gate, and a behavioral 
action.  If the current environment satisfies the 
applicability predicate of a particular behavior, 
the gate allows the output of the behavioral 
action to feed out onto the output line of that 
behavior.  Potential conflicts among behavioral 
actions are resolved by a hierarchical 
arrangement of suppressor nodes.  As a simple 
example, suppose that there are three task 
achieving behaviors with strictly decreasing 
priority.  The applicability predicates and the 
suppressor nodes of these three behaviors are 
equivalent to the following composition of 
ordinary IF conditional functions: 
(IF A-P-1 BEHAVIOR-1  
          (IF A-P-2 BEHAVIOR-2 
                    (IF A-P-3 BEHAVIOR-3) 

In particular, if the first applicability predicate 

(A-P-1) is satisfied, then BEHAVIOR-1 is 
executed.  Otherwise, if A-P-2 is satisfied, 
BEHAVIOR-2 is executed.  Otherwise, the 
lowest priority behavior (i.e. BEHAVIOR-3) is 
executed.   

Mataric (1990) has implemented the 
subsumption architecture for controlling an 
autonomous mobile robot by conceiving and 
writing a set of four programs for performing 
four task achieving behaviors.  The four 
behaviors together enable a mobile robot called 
TOTO to follow the walls in an irregular room.   

Starting with the five primitive motor 
functions and the 13 sensors that are part of the 
definition of the problem, Mataric applied her 
intelligence and ingenuity and conceived of a 
set of four task achieving behaviors which 
together enable a mobile robot to follow the 
walls in an irregular room.  As a matter of 
preference, Mataric specifically selected her 
four task achieving behaviors so that their 
applicability predicates were mutually exclusive 
(thus eliminating the need for a conflict 
resolution architecture allowing one task 
achieving behavior to suppress the behavior of 
another).  

Mataric then wrote a set of four LISP 
programs for performing the four task achieving 
behaviors.  Mataric's four LISP programs 
corresponded to the four task achieving 
behaviors and were called STROLL, AVOID, 
ALIGN, and CORRECT.  Each of these four 
task achieving behaviors interacted directly with 
the world and each other.   

Various subsets of Mataric's four behaviors 
exhibited some partial competence in solving 
part of the overall problem.  For example, the 
robot became capable of collission free 
wandering with only the STROLL and AVOID 
behaviors.  The robot became capable of tracing 
convex boundaries with only the addition of 
only the ALIGN  behavior to these first two 
behaviors.  Finally, the robot became capable of 
general boundary tracing with the further 
addition of the CORRECT behavioral unit.   

Mataric's four LISP programs included nine 
LISP functions (namely, COND, AND, NOT, 
IF, >, >=, =, <=, and >).  In addition, her four 
programs internally made use of three constant 



 
parameters (defining an edging distance EDG, 
minimum safe distance MSD, and danger zone 
DZ), the minimum of all 12 sonar distances 
(called "Shortest Sonar" or SS), and eight other 
internally defined variables representing the 
minimum of various thoughtfully chosen 
subsets of the 12 sonar distances (e.g. the 
dynamically computed minimum of a particular 
three forward facing sensors).   

In total, Mataric's four LISP programs 
consisted a composition of 151 functions and 
terminals.   

The fact that Mataric was able to write four 
programs enabling an autonomous robot to 
perform the task of following the wall of an 
irregular room is evidence (based on this 
particular problem) for one of the claims of the 
subsumption architecture, namely, that it is 
possible to build a control system for an 
autonomous mobile robot using loosely 
coupled, asynchronous task achieving 
behaviors.   

Note that if Mataric had wanted to write a 
computer program for wall following using 
conventional coupled synchronous robotic 
techniques, her program would have taken in 
the same 13 sensors as inputs and caused the 
activation, in some order, of the same five 
primitive motor functions as the output of the 
program. 

The conception and design of suitable task 
achieving behaviors for the subsumption 
architecture requires considerable ingenuity and 
skill on the part of the human programmer. 

7. APPLICATION OF GENETIC 
PROGRAMMING TO THE WALL 
FOLLOWING PROBLEM 
The question arises as to whether an 

autonomous mobile robot can learn to perform 
wall following in an evolutionary way, and, in 
particular, by using genetic programming.  This 
learning would include learning both the 
necessary task achieving behaviors (including 
the applicability predicates and behavioral 
actions) and the conflict resolution hierarchy. 

There are five major steps in preparing to 
use the genetic programming paradigm, namely, 
determining: 

(1) the set of terminals, 
(2) the set of functions,  
(3) the fitness function, 
(4) the parameters and variables for controlling 

the run, and 
(5) the criterion for designating a result and 

terminating a run. 
The first major step in preparing to use 

genetic programming is to identify the set of 
terminals.  The genetic programming paradigm 
genetically creates a computer program that 
takes certain inputs and produces outputs in 
order to successfully perform a specified task.  
The inputs to this program usually come from 
the statement of the problem.  For the wall 
following problem, the potential inputs to the 
computer program consist of the 13 available 
sensors.  These are the same 13 sensors which 
one would use if one were attempting to 
perform wall following with the conventional 
robotic approach or the subsumption 
architecture. 

In reviewing the 13 sensors, we concluded 
that we had no use for the STOPPED sensor 
since our simulated robot could not be damaged 
by running into a wall in the course of a 
computer simulation.  Moreover, we did not 
want our simulated robot to ever stop.  Thus, we 
deleted the STOPPED sensor, the STOP 
primitive function, and the constant parameter 
for the danger zone DZ.   

We retained Mataric's other two constant 
numerical parameters (i.e. the edging distance 
EDG and the minimum safe distance MSD).  
We retained Mataric's overall minimum sensor 
SS.  However, we did not use any of her eight 
derived values representing specific subsets of 
sonar sensors.  Human programmers find it 
convenient to create and refer to such 
intermediate variables in their programs. 

Thus, our terminal set consisted of 15 items, 
namely, 

T = {S00, S01, S02, S03, 
..., S11, SS, MSD, EDG} 

In other words, at each time step of the 
simulation, our simulated robot will have access 
to these 15 floating point values.   



 
The second major step in preparing to use 

genetic programming is to identify a set of 
functions for the problem.   

We start with the five given primitive motor 
functions that are part of the statement of this 
problem.  As previously mentioned, we had no 
use for the STOP function.  Since we want to 
evolve a subsumption architecture and we 
observed above that the subsumption 
architecture can be viewed as a composition of 
ordinary IF conditional functions, we included a 
single simple decision making function (IFLTE) 
in the function set.  The function IFLTE (If-
Less-Than-Or-Equal) takes four arguments.  If 
the value of the first argument is less than or 
equal the value of the second argument, the 
third argument is evaluated and returned.  
Otherwise, the fourth argument is evaluated and 
returned.   

We also included a connective function 
(PROGN2) in our function set.  The connective 
function PROGN2 taking two arguments 
evaluates both of its arguments, in order, and 
returns the result of evaluating its second 
argument. 

Thus, the function set F for this problem 
consists of four of the five given primitive 
motor functions (i.e. TR, TL, MF, and MB as 
described below), the decision function IFLTE, 
and the connective PROGN2.  That is, the 
function set F is 

F = {TR, TL, MF, MB, IFLTE, 
PROGN2} 

The function TR (Turn Right) turns the 
robot 30 degrees to the right (i.e. clockwise). 

The function TL (Turn Left) turns the robot 
30 degrees to the left (i.e. counter-clockwise). 

We achieved the same effect as the STOP 
function by letting our robot push up against the 
wall, and, if no change of state occurs after one 
time step, the robot is viewed as having stopped.  
Because we were not concerned with physically 
damaging our simulated robot, we did not 
include Mataric's primitive motor function 
STOP for stopping the robot (e.g. when it is 
about to invade the danger zone DZ and 
possibly damage itself).   

The function MF (Move Forward) causes 
the robot to move 1.0 feet forward in the 
direction it is currently facing.  If any of the six 
forward looking sonar sensors (i.e. S00 through 
S05) report a distance to any wall of less than 
110% of the distance to be moved, no 
movement occurs. 

The function MB (Move Backward) causes 
the robot to move 1.3 feet backwards.  If any of 
the six backward looking sonar sensors (i.e. S06 
though S11) report a distance to any wall of less 
than 110% of the distance to be moved, no 
movement occurs.  

All sonar distances are dynamically 
recomputed after each execution of a move or 
turn.  Each of the moving and turning functions 
returns the minimum of the two distances 
reported by the two sensors (i.e. S02 and S03) 
that look in the direction of forward movement 
(i.e. S02 representing the 11:30 o'clock direction 
and S03 representing the 12:30 o'clock 
direction). 

The functions MF, MB, TR, and TL each 
take one time step (i.e. 1.0 seconds) to execute.   

The third major step in preparing to use 
genetic programming is identification of the 
fitness function for evaluating how good a given 
computer program is at solving the problem at 
hand.    

A wall following robot may be viewed as a 
robot that travels along the entire perimeter of 
the irregularly shaped room.  Noting that the 
edging distance is 2.3 feet, we proceed to define 
the fitness measure for this problem by placing 
2.3 foot square tiles along the perimeter of the 
room.  Twelve such tiles fit along the 27.6 foot 
north wall and 12 such tiles fit along the 27.6 
foot west wall.  A total of 56 tiles are required 
to cover the entire periphery of the room.   

Figure 5 shows the room with the 56 tiles 
(each with a filled circle at its center).  The 
robot is shown in the middle of the room at its 
starting position (12, 16) facing in its starting 
direction (i.e. south).  



 

 
Figure 5:  Room with 56 tiles on periphery 

showing robot at its starting position (12,16) 
facing south.  

We defined the fitness of an individual S-
expression in the population to be the number of 
tiles (from 0 to 56) that are touched by the robot 
within the allotted period of time (i.e. 400 time 
steps).  

The fourth major step in preparing to use 
genetic programming is selecting the values of 
certain parameters.   The population size is 1000 
here.  Each new generation is created from the 
preceding generation by applying the fitness 
proportionate reproduction operation to 10% of 
the population and by applying the crossover 
operation to 90% of the population (with both 
parents selected with a probability proportionate 
to fitness).  In selecting crossover points, 90% 
were internal (function) points of the tree and 
10% were external (terminal) points of the tree.  
For the practical reason of conserving computer 
time, the depth of initial random S-expressions 
was limited to 4 and the depth of S-expressions 
created by crossover was limited to 15.   

Finally, the fifth major step in preparing to 
use genetic programming is the selection of the 
criterion for terminating a run and accepting a 
result.  We will terminate a given run when 
either (i) genetic programming produces a 
computer program which achieves the maximal 
value for fitness (i.e. 56 out of 56), or (ii) 101 
generations have been run.   

Note that in performing these five 
preparatory steps, we made use only of the 
information provided in the basic statement of 
the problem (with the modifications needed 
because we did not intend to allow our 
simulated robot ever to stop during the course of 
our computer simulations).  We did not use any 
of Mataric's thoughtfully chosen subsets of 
sensors nor did we use any knowledge about the 
four task achieving behaviors which Mataric 
conceived and defined.  We did, however, 
define a way to measure fitness in performing 
wall following.  We did use the 12 sonar 
sensors, two of the three constant numerical 
parameters, and four of the five primitive motor 
functions that were part of the statement of the 
problem. 

8. RESULTS 
In one run of the genetic programming 

paradigm on this problem, 57% of the 
individuals in the population in the initial 
random generation (i.e. generation 0) scored a 
fitness of zero (out of a possible 56).  Many of 
these zero-scoring S-expressions merely caused 
the robot to turn without ever moving while 
others caused the robot to wander aimlessly in 
circles in the middle of the room.  About 20% of 
the individuals from generation 0 were wall-
bangers which scored precisely one because 
they headed for a wall and continued to push up 
against it. 

The best single individual from generation 0 
scored 17 (out of 56).  This S-expression 
consists of 17 points (i.e. functions and 
terminals) and is shown below: 
(IFLTE (PROGN2 MSD (TL))  
       (IFLTE S06 S03 EDG (MF))  
       (IFLTE MSD EDG S05 S06)  
       (PROGN2 MSD (MF))) 

Figure 6 shows the looping trajectory of the 
robot while executing this best-of-generation 
program for generation 0.  The 39 filled circles 
along the periphery of the room represent the 39 
of the 56 tiles that were not touched by the robot 
before it timed out.  As can be seen, this 
individual starts in the middle of the room and 
circles on itself three times.  It then begins a 
series of 11 loops which cause the robot to 
repeatedly hit the wall at irregular intervals.  



 
This looping leaves many intervening points 
along the wall untouched.  This individual time 
outs on the west wall after 400 time steps.  By 
generation 2, the best-of-generation individual 
scored 27.  This S-expression consisted of 57 
points.   
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End

 
Figure 6: Looping trajectory from generation 0 

of the best-of-generation individual (scoring 
17).  

Start

End

 
Figure 7: Ricocheting trajectory  from 
generation 2 of the best-of-generation 

individual (scoring 27). 
Figure 7 shows the ricocheting trajectory of 

the robot while executing this best-of-
generation program for generation 2.  As can be 

seen, this individual causes the robot to touch 
occasional points on the periphery of the room 
as the robot ricochets around the room 16 times.   

Although this ricocheting individual from 
generation 2 is far from perfect, it is 
considerably better than the static and aimless 
wandering individuals (both scoring zero) from 
generation 0, the wall-banging individuals 
(scoring one) from generation 0, and the best-
of-generation looping individual from 
generation 0 (scoring 17). 

By generation 14, the best-of-generation S-
expression scored 49 and consisted of 45 points.  
Figure 8 shows the trajectory of the robot while 
executing this best-of-generation program for 
generation 14.  After once reaching a wall, this 
individual slithers in broad snake like motions 
along the walls and never returns to the middle 
of the room.  In scoring 49 out of 56, it misses 
five corners and two points in the middle of 
walls.    

End
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Figure 8: Broad snake like trajectory from 

generation 14 of best-of-generation individual 
(scoring 49 out of 56).  

Finally, in generation 57, the best-of-
generation S-expression scored a perfect 56 out 
of 56  This S-expression consisted of 145 points 
and is shown below: 
(IFLTE (IFLTE S10 S05 S02 S05) (IFLTE 
(PROGN2 S11 S07) (PROGN2 (PROGN2 (PROGN2 
S11 S05) (PROGN2 (PROGN2 S11 S05) (PROGN2 
(MF) EDG))) SS) (PROGN2 (PROGN2 (IFLTE S02 
(PROGN2 S11 S07) S04 (PROGN2 S11 S05)) 
(TL)) (MB)) (IFLTE S01 EDG (TR) (TL))) 



 
(PROGN2 SS S08) (IFLTE (IFLTE (PROGN2 S11 
S07) (PROGN2 (PROGN2 (PROGN2 S10 S05) 
(PROGN2 (PROGN2 S11 S05) (PROGN2 (MF) 
EDG))) SS) (PROGN2 (PROGN2 S01 (PROGN2 
(IFLTE S07 (IFLTE S02 (PROGN2 (IFLTE SS EDG 
(TR) (TL)) (MB)) S04 S10) S04 S10) (TL))) 
(MB)) (IFLTE S01 EDG (TR) (TL))) (PROGN2 
S05 SS) (PROGN2 (PROGN2 MSD (PROGN2 S11 
S05)) (PROGN2 (IFLTE (PROGN2 (TR) (TR)) 
(PROGN2 S01 (PROGN2 (IFLTE S02 (TL) S04 
(MB)) (TL))) (PROGN2 S07 (PROGN2 (PROGN2 
(MF) EDG) EDG)) (IFLTE SS EDG (PROGN2 
(PROGN2 (PROGN2 S02 S05) (PROGN2 (PROGN2 
S11 S05) (PROGN2 (IFLTE S02 (TL) S04 S10) 
EDG))) SS) (TL))) S08)) (IFLTE SS EDG (TR) 
(TL)))) 

This program consists of a composition of 
conditional statements which test various 
sensors from the environment and invoke 
various given primitive motor functions of the 
robot in order to perform wall following.  In 
other words, this program is a program in the 
subsumption architecture.   

We can simplify this S-expression to the 
following S-expression containing 59 points: 
(IFLTE (IFLTE S10 S05 S02 S05) 
       (IFLTE S07 (PROGN2 (MF) SS) 
          (PROGN2 (TL) (MB)) 
          (IFLTE S01 EDG (TR) (TL))) 
   * 
   (IFLTE (IFLTE S07 (PROGN2 (MF) SS) 
             (PROGN (IFLTE SS EDG (TR) 
(TL)) 
                    (MB) (TL) (MB)) 
             (IFLTE S01 EDG (TR) (TL))) 
          SS 
      (IFLTE (PROGN2 (TR) (TR)) 
             (PROGN2 (IFLTE S02 (TL) * 
(MB)) 
                     (TL)) 
         (MF) 
         (TL)) 
      (IFLTE SS EDG (TR) (TL)))) 

In this S-expression, the asterisks indicate 
subexpressions that are free of side-effects and 
which are just returned as the value of the 
expression (i.e. are executed, but are 
inconsequential). 

Figure 9 shows the trajectory of the robot 
while executing this best-of-generation program 
for generation 57.  This individual starts by 
briefly moving at random in the middle of the 
room.  However, as soon as it reaches the wall, 
it moves along the wall and stays close to the 
wall.  It touches l00% of the 56 tiles along the 
periphery of the room.  

Note that the progressive change in size and 
shape of the individuals in the population is a 
characteristic of genetic programming. The size 

(i.e. 145 points) and particular hierarchical 
structure of the best-of-generation individual 
from generation 57 was not specified in 
advance.  Instead, the entire structure evolved as 
a result of reproduction, crossover, and the 
relentless pressure of fitness.  That is, fitness 
caused the development of the structure. 

Start

End

 
Figure 9: Wall following trajectory of the best-
of-generation individual (scoring 56 out of 56) 

from generation 57. 
Although a program written by a human 

programmer cannot be directly compared to the 
program generated using genetic programming, 
it is, nonetheless, interesting to note that the 145 
points of this S-expression is similar to the 151 
points in Mataric's four LISP programs.  

We have obtained similar results on other 
runs of this problem. 

9. CONCLUSIONS 
We demonstrated that it is possible to use 

the genetic programming paradigm to breed a 
computer program to enable a robot to follow 
the wall of an irregular room.   

The program we discovered consisted of a 
composition of conditional statements which 
tested various sensors from the environment and 
invoked various given primitive motor functions 
of the robot in order to perform wall following.  
In other words, this program is a program in the 
subsumption architecture.  Thus, we have 
demonstrated the evolution of a program in the 



 
subsumption architecture using an evolutionary 
process that evolves structures guided only by a 
fitness measure. 

The fact that it is possible to evolve a 
subsumption architecture to solve a particular 
problem suggests that this approach to 
decomposing problems may be useful in 
building up solutions to difficult problems by 
aggregating task achieving behaviors until the 
problem is solved. 
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