

Evolution of Subsumption Using Genetic Programming

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305 USA

E-MAIL: Koza@Sunburn.Stanford.Edu
PHONE: 415-941-0336 FAX: 415-941-9430

The recently developed genetic
programming paradigm is used to evolve
emergent wall following behavior for an
autonomous mobile robot using the subsumption
architecture.

1. INTRODUCTION AND OVERVIEW
The repetitive application of seemingly

simple rules can lead to complex overall
emergent behavior. Emergent functionality
means that overall functionality is not achieved
in the conventional tightly coupled, centrally
controlled way, but, instead, indirectly by the
interaction of relatively primitive components
with the world and among themselves [Steels
1991]. Emergent functionality is one of the
main themes of research in artificial life
[Langton 1989].

In this paper, we use the genetic
programming paradigm to evolve a computer
program that exhibits emergent behavior and
enables an autonomous mobile robot to follow
the walls of an irregularly shaped room. The
evolutionary process is driven only by the
fitness of the programs in solving the problem.

2. BACKGROUND ON GENETIC
ALGORITHMS
John Holland's pioneering 1975 Adaptation

in Natural and Artificial Systems described how
the evolutionary process in nature can be
applied to artificial systems using the genetic
algorithm operating on fixed length character
strings [Holland 1975].

Holland demonstrated that a population of
fixed length character strings (each representing
a proposed solution to a problem) can be

genetically bred using the Darwinian operation
of fitness proportionate reproduction and the
genetic operation of recombination. The
recombination operation combines parts of two
chromosome-like fixed length character strings,
each selected on the basis of their fitness, to
produce new offspring strings.

Current work in the field of genetic
algorithms is reviewed in Goldberg [1989],
Belew and Booker [1991], Davis [1987, 1991],
Rawlins [1991] and Meyer and Wilson [1991].

3. BACKGROUND ON GENETIC
PROGRAMMING
For many problems, the most natural

representation for solutions are computer
programs whose size, shape, and content have
not been determined in advance. It is unnatural
and difficult to represent computer programs of
dynamically varying size and shape with fixed
length character strings.

Although one might think that computer
programs are so epistatic that they could only be
genetically bred in a few especially congenial
problem domains, we have shown that computer
programs can be genetically bred to solve a
surprising variety of problems in many different
areas [Koza 1992], including
• emergent behavior (e.g. discovering a

computer program which, when executed by
all the ants in an ant colony, enables the ants
to locate food, pick it up, carry it to the nest,
and drop pheromones along the way so as to
produce cooperative emergent behavior)
[Koza 1991a],

• planning (e.g. navigating an artificial ant

along an irregular trail) [Koza 1990b],

• finding minimax strategies for games (e.g.
differential pursuer-evader games; discrete
games in extensive form) by both evolution
and co-evolution [Koza 1991b],

• optimal control (e.g. centering a cart and
balancing a broom in minimal time by
applying a bang-bang force to the cart)
(Koza and Keane 1990a, 1990b],

• machine learning of functions (e.g. learning
the Boolean 11-multiplexer function) [Koza
1991d],

• generation of random numbers (using
entropy as fitness) [Koza 1991c],

• symbolic regression, integration, differentia-
tion, and symbolic solution to general
functional equations for a solution in the
form of a function (including differential
equations with initial conditions, and
integral equations) [Koza 1990], and

• simultaneous architectural design and
training of neural nets [Koza and Rice
1991a].
A videotape visualization of the application

of genetic programming to planning, emergent
behavior, empirical discovery, inverse
kinematics, and game playing can be found in
the Artificial Life II Video Proceedings [Koza
and Rice 1991b].

3.1. OBJECTS IN GENETIC
PROGRAMMING

In genetic programming, the individuals in
the population are compositions of functions
and terminals appropriate to the particular
problem domain. The set of functions used
typically includes arithmetic operations,
mathematical functions, conditional logical
operations, and domain-specific functions. The
set of terminals used typically includes inputs
(sensors) appropriate to the problem domain and
possibly various constants. Each function in the
function set should be well defined for any
combination of elements from the range of
every function that it may encounter and every
terminal that it may encounter.

One can now view the search for a solution
to the problem as a search in the hyperspace of
all possible compositions of functions and

terminals (i.e. computer programs) that can be
recursively composed of the available functions
and terminals.

The symbolic expressions (S-expressions) of
the LISP programming language are an
especially convenient way to create and
manipulate the compositions of functions and
terminals described above. These S-expressions
in LISP correspond directly to the parse tree that
is internally created by most compilers.

3.2. OPERATIONS IN GENETIC
PROGRAMMING

The basic genetic operations for the genetic
programming paradigm are reproduction (e.g.
fitness proportionate reproduction) and
crossover (recombination).

The reproduction operation copies an
individual in the population into the new
population for the next generation.

The crossover (recombination) operation is a
sexual operation that operates on two parental
LISP S-expressions and produces two offspring
S-expressions using parts of each parent. The
crossover operation creates new offspring S-
expressions by exchanging sub-trees (i.e. sub-
lists) between the two parents. Because entire
sub-trees are swapped, this crossover operation
always produces syntactically and semantically
valid LISP S-expressions as offspring regardless
of the crossover points.

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 1: Two parental computer programs

shown as trees with ordered branches. Internal
points of the tree correspond to functions (i.e.
operations) and external points correspond to

terminals (i.e. input data).

NOT

D1

AND

NOT NOT

D0 D1

Figure 2: The two crossover fragments
OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 3: Offspring resulting from crossover

For example, consider the two parental S-
expressions:
(OR (NOT D1) (AND D0 D1))

(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

Figure 1 graphically depicts these two S-
expressions as rooted, point-labeled trees with
ordered branches. The numbers on the points of
the tree are for reference only.

Assume that the points of both trees are
numbered in a depth-first way starting at the
left. Suppose that point no. 2 (out of 6 points
of the first parent) is randomly selected as the
crossover point for the first parent and that point
no. 6 (out of 10 points of the second parent) is
randomly selected as the crossover point of the
second parent. The crossover points in the trees
above are therefore the NOT in the first parent
and the AND in the second parent.

Figure 2 shows the two crossover fragments
are two sub-trees. These two crossover
fragments correspond to the bold sub-
expressions (sub-lists) in the two parental LISP
S-expressions shown above.

Figure 3 shows the two offspring resulting
from the crossover.

Note that the first offspring in Figure 3 is an
S-expression for the Boolean even-parity (i.e.
equal) function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

3.3. EXECUTION OF GENETIC
PROGRAMMING

The genetic programming paradigm, like the
conventional genetic algorithm, is a domain
independent method. It proceeds by genetically
breeding populations of computer programs to
solve problems by executing the following three
steps:
(1) Generate an initial population of random

compositions of the functions and terminals
of the problem (computer programs).

(2) Iteratively perform the following sub-steps
until the termination criterion has been
satisfied:
(a) Execute each program in the

population and assign it a fitness value
according to how well it solves the
problem.

(b) Create a new population of computer
programs by applying the following
two primary operations. The
operations are applied to computer
program(s) in the population chosen
with a probability based on fitness.
(i) Reproduction: Copy existing

computer programs to the new
population.

(ii) Crossover: Create two new
computer programs by genetically
recombining randomly chosen
parts of two existing programs.

(3) The single best computer program in the
population at the time of termination is
designated as the result of the genetic
programming paradigm. This result may be
a solution (or approximate solution) to the
problem.

4. THE WALL FOLLOWING PROBLEM
Mataric [1990] described the problem of

controlling an autonomous mobile robot to
perform the task of following the walls of an
irregular room.

The robot is capable of executing the
following five primitive motor functions:
moving forward by a constant distance, moving
backward by a constant distance, turning right
by 30 degrees, turning left by 30 degrees, and

stopping.

The robot has 12 sonar sensors which report
the distance to the nearest wall. Each sonar
sensor covers a 30 degree sector around the
robot. In addition, there was a sensor for the
STOPPED condition of the robot.

Figure 4 shows an irregularly shaped room
and the distances reported by the 12 sonar
sensors. The robot is shown at point (12, 16)
near the center of the room. The north (top)
wall and west (left) wall are each 27.6 feet long.

S00 = 12.4

S01 = 16.4 S02 = 12.0 S03 = 12.0 S04 = 16.4

S05 = 9.0

S06 = 16.2

S07 = 22.1S08 = 16.6

S09 = 9.4

S10 = 17.0

S11 = 12.4

Figure 4: Irregular room with robot with 12

sonar sensors located near middle of the room
One can envision solving the wall following

problem in one of three approaches, namely
(1) the conventional approach to building

control systems for for autonomous mobile
robots,

(2) the subsumption architecture, and
(3) genetic programming.

Regardless of which of these three
approaches is used to solve the wall following
problem, the 13 sensors can be viewed as the
input to an as-yet unwritten computer program
in a style appropriate to the three approaches.
This as-yet unwritten program will process
these inputs and will cause the activation, in
some order, of the various primitive motor
functions. This as-yet-unwritten program will
be a composition of the five available primitive
motor functions and the 13 available sensors.

Note that the 13 sensors and five primitive

motor functions are the starting point of all three
approaches. They are given as part of the
statement of the problem.

5. THE CONVENTIONAL ROBOTIC
APPROACH
The conventional approach to building

control systems for autonomous mobile robots
is to decompose the overall problem into a
series of functional units that perform functions
such as perception, modeling, planning, task
execution, and motor control. A central control
system then executes each functional unit in this
decomposition and then passes the results on to
the next functional unit in an orderly, closely
coupled, and synchronized manner. For
example, the perception unit senses the world
and the results of this sensing are then passed to
a modeling module which attempts to build an
internal model of the perceived world. The
internal model resulting from this modeling is
then passed on to a planning unit which
computes a plan. The plan might be devised by
a consistent and logically sound technique (e.g.
resolution and unification) or it might be
devised by one of the many heuristic techniques
of symbolic artificial intelligence. In any event,
the resulting plan is passed on to the task
execution unit which then executes the plan by
calling on the motor control unit. The motor
control unit then acts directly on the external
world.

In this conventional approach, only a few of
the functional units (e.g. the perception unit and
motor control unit) typically are in direct
communication with the world. All functional
units must typically be executed in their
intended orderly, closely coupled, and
synchronized manner in order to make the robot
do anything.

6. THE SUBSUMPTION
ARCHITECTURE
The subsumption architecture decomposes

the problem into a set of asynchronous task
achieving behaviors [Brooks 1986, 1989]. The
task achieving behaviors for an autonomous
mobile robot might include behaviors such as
avoiding objects, wandering, exploring,

identifying objects, building maps, planning
changes to the world, monitoring changes, and
reasoning about behavior of the objects. The
task achieving behaviors operate locally and
asychronously and are only loosely coupled to
one another. In contrast to the conventional
approach, each of the task achieving behaviors
is typically in direct communication with the
world (and each other). The task achieving
behaviors in the subsumption architecture are
typically much more primitive than the
functional units of the conventional approach.

In the subsumption architecture, various
subsets of the task achieving behaviors typically
exhibit some partial competence in solving a
simpler version of the overall problem. Thus,
the solution to a more complex version of a
problem can potentially be built up by
incrementally adding new independent acting
parts to existing parts. In addition, the system
may be fault tolerant in the sense that the failure
of one part does not cause complete failure, but,
instead, causes a gracefully degradation of
performance to some lower level. In contrast, in
the conventional approach, the various
functional units have no functionality when
operating separately and there is a complete
suspension of all performance when one
functional unit fails.

In the subsumption architecture, the task
achieving behaviors each consist of an
applicability predicate, a gate, and a behavioral
action. If the current environment satisfies the
applicability predicate of a particular behavior,
the gate allows the output of the behavioral
action to feed out onto the output line of that
behavior. Potential conflicts among behavioral
actions are resolved by a hierarchical
arrangement of suppressor nodes. As a simple
example, suppose that there are three task
achieving behaviors with strictly decreasing
priority. The applicability predicates and the
suppressor nodes of these three behaviors are
equivalent to the following composition of
ordinary IF conditional functions:
(IF A-P-1 BEHAVIOR-1
 (IF A-P-2 BEHAVIOR-2
 (IF A-P-3 BEHAVIOR-3)

In particular, if the first applicability predicate

(A-P-1) is satisfied, then BEHAVIOR-1 is
executed. Otherwise, if A-P-2 is satisfied,
BEHAVIOR-2 is executed. Otherwise, the
lowest priority behavior (i.e. BEHAVIOR-3) is
executed.

Mataric (1990) has implemented the
subsumption architecture for controlling an
autonomous mobile robot by conceiving and
writing a set of four programs for performing
four task achieving behaviors. The four
behaviors together enable a mobile robot called
TOTO to follow the walls in an irregular room.

Starting with the five primitive motor
functions and the 13 sensors that are part of the
definition of the problem, Mataric applied her
intelligence and ingenuity and conceived of a
set of four task achieving behaviors which
together enable a mobile robot to follow the
walls in an irregular room. As a matter of
preference, Mataric specifically selected her
four task achieving behaviors so that their
applicability predicates were mutually exclusive
(thus eliminating the need for a conflict
resolution architecture allowing one task
achieving behavior to suppress the behavior of
another).

Mataric then wrote a set of four LISP
programs for performing the four task achieving
behaviors. Mataric's four LISP programs
corresponded to the four task achieving
behaviors and were called STROLL, AVOID,
ALIGN, and CORRECT. Each of these four
task achieving behaviors interacted directly with
the world and each other.

Various subsets of Mataric's four behaviors
exhibited some partial competence in solving
part of the overall problem. For example, the
robot became capable of collission free
wandering with only the STROLL and AVOID
behaviors. The robot became capable of tracing
convex boundaries with only the addition of
only the ALIGN behavior to these first two
behaviors. Finally, the robot became capable of
general boundary tracing with the further
addition of the CORRECT behavioral unit.

Mataric's four LISP programs included nine
LISP functions (namely, COND, AND, NOT,
IF, >, >=, =, <=, and >). In addition, her four
programs internally made use of three constant

parameters (defining an edging distance EDG,
minimum safe distance MSD, and danger zone
DZ), the minimum of all 12 sonar distances
(called "Shortest Sonar" or SS), and eight other
internally defined variables representing the
minimum of various thoughtfully chosen
subsets of the 12 sonar distances (e.g. the
dynamically computed minimum of a particular
three forward facing sensors).

In total, Mataric's four LISP programs
consisted a composition of 151 functions and
terminals.

The fact that Mataric was able to write four
programs enabling an autonomous robot to
perform the task of following the wall of an
irregular room is evidence (based on this
particular problem) for one of the claims of the
subsumption architecture, namely, that it is
possible to build a control system for an
autonomous mobile robot using loosely
coupled, asynchronous task achieving
behaviors.

Note that if Mataric had wanted to write a
computer program for wall following using
conventional coupled synchronous robotic
techniques, her program would have taken in
the same 13 sensors as inputs and caused the
activation, in some order, of the same five
primitive motor functions as the output of the
program.

The conception and design of suitable task
achieving behaviors for the subsumption
architecture requires considerable ingenuity and
skill on the part of the human programmer.

7. APPLICATION OF GENETIC
PROGRAMMING TO THE WALL
FOLLOWING PROBLEM
The question arises as to whether an

autonomous mobile robot can learn to perform
wall following in an evolutionary way, and, in
particular, by using genetic programming. This
learning would include learning both the
necessary task achieving behaviors (including
the applicability predicates and behavioral
actions) and the conflict resolution hierarchy.

There are five major steps in preparing to
use the genetic programming paradigm, namely,
determining:

(1) the set of terminals,
(2) the set of functions,
(3) the fitness function,
(4) the parameters and variables for controlling

the run, and
(5) the criterion for designating a result and

terminating a run.
The first major step in preparing to use

genetic programming is to identify the set of
terminals. The genetic programming paradigm
genetically creates a computer program that
takes certain inputs and produces outputs in
order to successfully perform a specified task.
The inputs to this program usually come from
the statement of the problem. For the wall
following problem, the potential inputs to the
computer program consist of the 13 available
sensors. These are the same 13 sensors which
one would use if one were attempting to
perform wall following with the conventional
robotic approach or the subsumption
architecture.

In reviewing the 13 sensors, we concluded
that we had no use for the STOPPED sensor
since our simulated robot could not be damaged
by running into a wall in the course of a
computer simulation. Moreover, we did not
want our simulated robot to ever stop. Thus, we
deleted the STOPPED sensor, the STOP
primitive function, and the constant parameter
for the danger zone DZ.

We retained Mataric's other two constant
numerical parameters (i.e. the edging distance
EDG and the minimum safe distance MSD).
We retained Mataric's overall minimum sensor
SS. However, we did not use any of her eight
derived values representing specific subsets of
sonar sensors. Human programmers find it
convenient to create and refer to such
intermediate variables in their programs.

Thus, our terminal set consisted of 15 items,
namely,

T = {S00, S01, S02, S03,
..., S11, SS, MSD, EDG}

In other words, at each time step of the
simulation, our simulated robot will have access
to these 15 floating point values.

The second major step in preparing to use

genetic programming is to identify a set of
functions for the problem.

We start with the five given primitive motor
functions that are part of the statement of this
problem. As previously mentioned, we had no
use for the STOP function. Since we want to
evolve a subsumption architecture and we
observed above that the subsumption
architecture can be viewed as a composition of
ordinary IF conditional functions, we included a
single simple decision making function (IFLTE)
in the function set. The function IFLTE (If-
Less-Than-Or-Equal) takes four arguments. If
the value of the first argument is less than or
equal the value of the second argument, the
third argument is evaluated and returned.
Otherwise, the fourth argument is evaluated and
returned.

We also included a connective function
(PROGN2) in our function set. The connective
function PROGN2 taking two arguments
evaluates both of its arguments, in order, and
returns the result of evaluating its second
argument.

Thus, the function set F for this problem
consists of four of the five given primitive
motor functions (i.e. TR, TL, MF, and MB as
described below), the decision function IFLTE,
and the connective PROGN2. That is, the
function set F is

F = {TR, TL, MF, MB, IFLTE,
PROGN2}

The function TR (Turn Right) turns the
robot 30 degrees to the right (i.e. clockwise).

The function TL (Turn Left) turns the robot
30 degrees to the left (i.e. counter-clockwise).

We achieved the same effect as the STOP
function by letting our robot push up against the
wall, and, if no change of state occurs after one
time step, the robot is viewed as having stopped.
Because we were not concerned with physically
damaging our simulated robot, we did not
include Mataric's primitive motor function
STOP for stopping the robot (e.g. when it is
about to invade the danger zone DZ and
possibly damage itself).

The function MF (Move Forward) causes
the robot to move 1.0 feet forward in the
direction it is currently facing. If any of the six
forward looking sonar sensors (i.e. S00 through
S05) report a distance to any wall of less than
110% of the distance to be moved, no
movement occurs.

The function MB (Move Backward) causes
the robot to move 1.3 feet backwards. If any of
the six backward looking sonar sensors (i.e. S06
though S11) report a distance to any wall of less
than 110% of the distance to be moved, no
movement occurs.

All sonar distances are dynamically
recomputed after each execution of a move or
turn. Each of the moving and turning functions
returns the minimum of the two distances
reported by the two sensors (i.e. S02 and S03)
that look in the direction of forward movement
(i.e. S02 representing the 11:30 o'clock direction
and S03 representing the 12:30 o'clock
direction).

The functions MF, MB, TR, and TL each
take one time step (i.e. 1.0 seconds) to execute.

The third major step in preparing to use
genetic programming is identification of the
fitness function for evaluating how good a given
computer program is at solving the problem at
hand.

A wall following robot may be viewed as a
robot that travels along the entire perimeter of
the irregularly shaped room. Noting that the
edging distance is 2.3 feet, we proceed to define
the fitness measure for this problem by placing
2.3 foot square tiles along the perimeter of the
room. Twelve such tiles fit along the 27.6 foot
north wall and 12 such tiles fit along the 27.6
foot west wall. A total of 56 tiles are required
to cover the entire periphery of the room.

Figure 5 shows the room with the 56 tiles
(each with a filled circle at its center). The
robot is shown in the middle of the room at its
starting position (12, 16) facing in its starting
direction (i.e. south).

Figure 5: Room with 56 tiles on periphery

showing robot at its starting position (12,16)
facing south.

We defined the fitness of an individual S-
expression in the population to be the number of
tiles (from 0 to 56) that are touched by the robot
within the allotted period of time (i.e. 400 time
steps).

The fourth major step in preparing to use
genetic programming is selecting the values of
certain parameters. The population size is 1000
here. Each new generation is created from the
preceding generation by applying the fitness
proportionate reproduction operation to 10% of
the population and by applying the crossover
operation to 90% of the population (with both
parents selected with a probability proportionate
to fitness). In selecting crossover points, 90%
were internal (function) points of the tree and
10% were external (terminal) points of the tree.
For the practical reason of conserving computer
time, the depth of initial random S-expressions
was limited to 4 and the depth of S-expressions
created by crossover was limited to 15.

Finally, the fifth major step in preparing to
use genetic programming is the selection of the
criterion for terminating a run and accepting a
result. We will terminate a given run when
either (i) genetic programming produces a
computer program which achieves the maximal
value for fitness (i.e. 56 out of 56), or (ii) 101
generations have been run.

Note that in performing these five
preparatory steps, we made use only of the
information provided in the basic statement of
the problem (with the modifications needed
because we did not intend to allow our
simulated robot ever to stop during the course of
our computer simulations). We did not use any
of Mataric's thoughtfully chosen subsets of
sensors nor did we use any knowledge about the
four task achieving behaviors which Mataric
conceived and defined. We did, however,
define a way to measure fitness in performing
wall following. We did use the 12 sonar
sensors, two of the three constant numerical
parameters, and four of the five primitive motor
functions that were part of the statement of the
problem.

8. RESULTS
In one run of the genetic programming

paradigm on this problem, 57% of the
individuals in the population in the initial
random generation (i.e. generation 0) scored a
fitness of zero (out of a possible 56). Many of
these zero-scoring S-expressions merely caused
the robot to turn without ever moving while
others caused the robot to wander aimlessly in
circles in the middle of the room. About 20% of
the individuals from generation 0 were wall-
bangers which scored precisely one because
they headed for a wall and continued to push up
against it.

The best single individual from generation 0
scored 17 (out of 56). This S-expression
consists of 17 points (i.e. functions and
terminals) and is shown below:
(IFLTE (PROGN2 MSD (TL))
 (IFLTE S06 S03 EDG (MF))
 (IFLTE MSD EDG S05 S06)
 (PROGN2 MSD (MF)))

Figure 6 shows the looping trajectory of the
robot while executing this best-of-generation
program for generation 0. The 39 filled circles
along the periphery of the room represent the 39
of the 56 tiles that were not touched by the robot
before it timed out. As can be seen, this
individual starts in the middle of the room and
circles on itself three times. It then begins a
series of 11 loops which cause the robot to
repeatedly hit the wall at irregular intervals.

This looping leaves many intervening points
along the wall untouched. This individual time
outs on the west wall after 400 time steps. By
generation 2, the best-of-generation individual
scored 27. This S-expression consisted of 57
points.

Start

End

Figure 6: Looping trajectory from generation 0

of the best-of-generation individual (scoring
17).

Start

End

Figure 7: Ricocheting trajectory from
generation 2 of the best-of-generation

individual (scoring 27).
Figure 7 shows the ricocheting trajectory of

the robot while executing this best-of-
generation program for generation 2. As can be

seen, this individual causes the robot to touch
occasional points on the periphery of the room
as the robot ricochets around the room 16 times.

Although this ricocheting individual from
generation 2 is far from perfect, it is
considerably better than the static and aimless
wandering individuals (both scoring zero) from
generation 0, the wall-banging individuals
(scoring one) from generation 0, and the best-
of-generation looping individual from
generation 0 (scoring 17).

By generation 14, the best-of-generation S-
expression scored 49 and consisted of 45 points.
Figure 8 shows the trajectory of the robot while
executing this best-of-generation program for
generation 14. After once reaching a wall, this
individual slithers in broad snake like motions
along the walls and never returns to the middle
of the room. In scoring 49 out of 56, it misses
five corners and two points in the middle of
walls.

End

Start

Figure 8: Broad snake like trajectory from

generation 14 of best-of-generation individual
(scoring 49 out of 56).

Finally, in generation 57, the best-of-
generation S-expression scored a perfect 56 out
of 56 This S-expression consisted of 145 points
and is shown below:
(IFLTE (IFLTE S10 S05 S02 S05) (IFLTE
(PROGN2 S11 S07) (PROGN2 (PROGN2 (PROGN2
S11 S05) (PROGN2 (PROGN2 S11 S05) (PROGN2
(MF) EDG))) SS) (PROGN2 (PROGN2 (IFLTE S02
(PROGN2 S11 S07) S04 (PROGN2 S11 S05))
(TL)) (MB)) (IFLTE S01 EDG (TR) (TL)))

(PROGN2 SS S08) (IFLTE (IFLTE (PROGN2 S11
S07) (PROGN2 (PROGN2 (PROGN2 S10 S05)
(PROGN2 (PROGN2 S11 S05) (PROGN2 (MF)
EDG))) SS) (PROGN2 (PROGN2 S01 (PROGN2
(IFLTE S07 (IFLTE S02 (PROGN2 (IFLTE SS EDG
(TR) (TL)) (MB)) S04 S10) S04 S10) (TL)))
(MB)) (IFLTE S01 EDG (TR) (TL))) (PROGN2
S05 SS) (PROGN2 (PROGN2 MSD (PROGN2 S11
S05)) (PROGN2 (IFLTE (PROGN2 (TR) (TR))
(PROGN2 S01 (PROGN2 (IFLTE S02 (TL) S04
(MB)) (TL))) (PROGN2 S07 (PROGN2 (PROGN2
(MF) EDG) EDG)) (IFLTE SS EDG (PROGN2
(PROGN2 (PROGN2 S02 S05) (PROGN2 (PROGN2
S11 S05) (PROGN2 (IFLTE S02 (TL) S04 S10)
EDG))) SS) (TL))) S08)) (IFLTE SS EDG (TR)
(TL))))

This program consists of a composition of
conditional statements which test various
sensors from the environment and invoke
various given primitive motor functions of the
robot in order to perform wall following. In
other words, this program is a program in the
subsumption architecture.

We can simplify this S-expression to the
following S-expression containing 59 points:
(IFLTE (IFLTE S10 S05 S02 S05)
 (IFLTE S07 (PROGN2 (MF) SS)
 (PROGN2 (TL) (MB))
 (IFLTE S01 EDG (TR) (TL)))
 *
 (IFLTE (IFLTE S07 (PROGN2 (MF) SS)
 (PROGN (IFLTE SS EDG (TR)
(TL))
 (MB) (TL) (MB))
 (IFLTE S01 EDG (TR) (TL)))
 SS
 (IFLTE (PROGN2 (TR) (TR))
 (PROGN2 (IFLTE S02 (TL) *
(MB))
 (TL))
 (MF)
 (TL))
 (IFLTE SS EDG (TR) (TL))))

In this S-expression, the asterisks indicate
subexpressions that are free of side-effects and
which are just returned as the value of the
expression (i.e. are executed, but are
inconsequential).

Figure 9 shows the trajectory of the robot
while executing this best-of-generation program
for generation 57. This individual starts by
briefly moving at random in the middle of the
room. However, as soon as it reaches the wall,
it moves along the wall and stays close to the
wall. It touches l00% of the 56 tiles along the
periphery of the room.

Note that the progressive change in size and
shape of the individuals in the population is a
characteristic of genetic programming. The size

(i.e. 145 points) and particular hierarchical
structure of the best-of-generation individual
from generation 57 was not specified in
advance. Instead, the entire structure evolved as
a result of reproduction, crossover, and the
relentless pressure of fitness. That is, fitness
caused the development of the structure.

Start

End

Figure 9: Wall following trajectory of the best-
of-generation individual (scoring 56 out of 56)

from generation 57.
Although a program written by a human

programmer cannot be directly compared to the
program generated using genetic programming,
it is, nonetheless, interesting to note that the 145
points of this S-expression is similar to the 151
points in Mataric's four LISP programs.

We have obtained similar results on other
runs of this problem.

9. CONCLUSIONS
We demonstrated that it is possible to use

the genetic programming paradigm to breed a
computer program to enable a robot to follow
the wall of an irregular room.

The program we discovered consisted of a
composition of conditional statements which
tested various sensors from the environment and
invoked various given primitive motor functions
of the robot in order to perform wall following.
In other words, this program is a program in the
subsumption architecture. Thus, we have
demonstrated the evolution of a program in the

subsumption architecture using an evolutionary
process that evolves structures guided only by a
fitness measure.

The fact that it is possible to evolve a
subsumption architecture to solve a particular
problem suggests that this approach to
decomposing problems may be useful in
building up solutions to difficult problems by
aggregating task achieving behaviors until the
problem is solved.

10. ACKNOWLEDGMENTS
James P. Rice of the Knowledge Systems

Laboratory at Stanford University made
numerous contributions in connection with the
computer programming of the above.

11. REFERENCES
Belew, Richard and Booker, Lashon (editors)

Proceedings of the Fourth International
Conference on Genetic Algorithms. San
Mateo, Ca: Morgan Kaufmann Publishers Inc.
1991.

Brooks, Rodney. A robust layered control
system for a mobile robot. IEEE Journal of
Robotics and Automation. 2(1) March 1986.

Brooks, Rodney. A robot that walks: emergent
behaviors from a carefully evolved network.
Neural Computation 1(2), 253-262. 1989.

Davis, Lawrence (editor) Genetic Algorithms
and Simulated Annealing London: Pittman
l987.

Davis, Lawrence. Handbook of Genetic
Algorithms. New York: Van Nostrand
Reinhold.1991.

Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley l989.

Holland, John H. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University
of Michigan Press 1975.

Koza, John R. Hierarchical genetic algorithms
operating on populations of computer
programs. In Proceedings of the 11th
International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan
Kaufmann 1989.

Koza, John R. Genetic Programming: A
Paradigm for Genetically Breeding

Populations of Computer Programs to Solve
Problems. Stanford University Computer
Science Dept. Technical Report STAN-CS-
90-1314. June 1990.

Koza, John R. Genetic evolution and co-
evolution of computer programs. In Langton,
Christopher, Taylor, Charles, Farmer, J.
Doyne, and Rasmussen, Steen (editors).
Artificial Life II, SFI Studies in the Sciences of
Complexity. Volume X. Redwood City, CA:
Addison-Wesley 1991. 603-629. 1991a.

Koza, John R. Evolution and co-evolution of
computer programs to control independent-
acting agents. In Meyer and Wilson below.
1991b.

Koza, John R. Evolving a computer program to
generate random numbers using the genetic
programming paradigm. In Belew and Booker
above. 1991c.

Koza, John R. A hierarchical approach to
learning the Boolean multiplexer function. In
Rawlins below. 1991d.

Koza, John R. Genetic Programming.
Cambridge, MA: MIT Press, 1992
(forthcoming).

Koza, John R. and Keane, Martin A. Genetic
breeding of non-linear optimal control
strategies for broom balancing. In
Proceedings of the Ninth International
Conference on Analysis and Optimization of
Systems. Berlin: Springer-Verlag, 1990a.

Koza, John R. and Keane, Martin. Cart
centering and broom balancing by genetically
breeding populations of control strategy
programs. In Proceedings of International
Joint Conference on Neural Networks,
Washington, January, 1990. Volume I.
Hillsdale, NJ: Lawrence Erlbaum 1990b.

Koza, John R. and Rice, James P. Genetic
generation of both the weights and
architecture for a neural network. In
Proceedings of International Joint Conference
on Neural Networks, Seattle, July 1991.
1991a

Koza, John R. and Rice, James P. A genetic
approach to artificial intelligence. In C. G.
Langton (editor) Artificial Life II Video
Proceedings. Addison-Wesley 1991. 1991b.

Meyer, Jean-Arcady and Wilson, Stewart W.

From Animals to Animats: Proceedings of the
First International Conference on Simulation
of Adaptive Behavior. Paris. September 24-28,
1990. MIT Press, Cambridge, MA, 1991.

Mataric, Maja J. A Distributed Model for
Mobile Robot Environment-Learning and
Navigation. MIT Artificial Intelligence
Laboratory technical report AI-TR-1228. May
1990.

Langton, Christopher G. Artificial Life, Santa
Fe Institute Studies in the Sciences of
Complexity. Volume VI. Redwood City, CA:
Addison-Wesley. 1989.

Rawlins, Gregory (editor). Proceedings of
Workshop on the Foundations of Genetic
Algorithms and Classifier Systems.
Bloomington, Indiana. July 15-18, 1990. San
Mateo, CA: Morgan Kaufmann 1991.

Steels, Luc. Towards a theory of emergent
functionality. In Meyer, Jean-Arcady and
Wilson, Stewart W. From Animals to
Animats: Proceedings of the First
International Conference on Simulation of
Adaptive Behavior. Paris. September 24-28,
1990. Cambridge, MA: MIT Press 1991.

