
John R. Koza

This chapter provides an introduction to genetic algorithms, the LISP programming language,
genetic programming, and automatic function definition. This chapter also outlines additional
sources of information about genetic algorithms and genetic programming.

2.1 Introduction to Genetic Algorithms

John Holland's pioneering book Adaptation in Natural and Artificial Systems [1975,
1992] showed how the evolutionary process can be applied to solve a wide variety of
problems using a highly parallel technique that is now called the genetic algorithm.

The genetic algorithm transforms a population of individual objects, each with an
associated fitness value, into a new generation of the population using the Darwinian
principle of reproduction and survival of the fittest and naturally occurring genetic
operations such as crossover (recombination) and mutation. Each individual in the
population represents a possible solution to a given problem. The genetic algorithm
attempts to find a very good or best solution to the problem by genetically breeding the
population of individuals.

In preparing to use the conventional genetic algorithm operating on fixed-length
character strings to solve a problem, the user must

1. determine the representation scheme,
2. determine the fitness measure,
3. determine the parameters and variables for controlling the algorithm, and
4. determine a way of designating the result and a criterion for terminating a run.

In the conventional genetic algorithm, the individuals in the population are usually
fixed-length character strings patterned after chromosome strings. Thus, specification of
the representation scheme in the conventional genetic algorithm starts with a selection of
the string length L and the alphabet size K. Often the alphabet is binary, so K equals 2.
The most important part of the representation scheme is the mapping that expresses each
possible point in the search space of the problem as a fixed-length character string (i.e.,
as a chromosome) and each chromosome as a point in the search space of the problem.
Selecting a representation scheme that facilitates solution of the problem by the genetic
algorithm often requires considerable insight into the problem and good judgment.

The evolutionary process is driven by the fitness measure. The fitness measure assigns
a fitness value to each possible fixed-length character string in the population.

The primary parameters for controlling the genetic algorithm are the population size,
M, and the maximum number of generations to be run, G. Populations can consist of
hundreds, thousands, tens of thousands or more individuals. There can be dozens,
hundreds, thousands, or more generations in a run of the genetic algorithm.

Each run of the genetic algorithm requires specification of a termination criterion for
deciding when to terminate a run and a method of result designation. One frequently
used method of result designation for a run of the genetic algorithm is to designate the
best individual obtained in any generation of the population during the run (i.e., the best-
so-far individual) as the result of the run.

Once the four preparatory steps for setting up the genetic algorithm have been
completed, the genetic algorithm can be run.

The three steps in executing the genetic algorithm operating on fixed-length character
strings are as follows:

I. Randomly create an initial population of individual fixed-length character strings.
II. Iteratively perform the following substeps on the population of strings until the

termination criterion has been satisfied:
A. Assign a fitness value to each individual in the population using the fitness

measure.
B. Create a new population of strings by applying the following three genetic

operations. The genetic operations are applied to individual string(s) in the
population chosen with a probability based on fitness.
1 Reproduce an existing individual string by copying it into the new

population.
2 Create two new strings from two existing strings by genetically recombining

substrings using the crossover operation (described below) at a randomly
chosen crossover point.

3 Create a new string from an existing string by randomly mutating the
character at one randomly chosen position in the string.

III. The string that is identified by the method of result designation (e.g., the best-so-far
individual) is designated as the result of the genetic algorithm for the run. This
result may represent a solution (or an approximate solution) to the problem.

The genetic algorithm involves probabilistic steps for at least three points in the
algorithm, namely

• creating the initial population,
• selecting individuals from the population on which to perform each genetic operation
(e.g., reproduction, crossover), and

• choosing a point (i.e., the crossover point or the mutation point) within the selected
individual at which to perform the genetic operation.

Moreover, there is often additional randomness involved in the genetic algorithm. For
example, the value of fitness may be measured for randomly chosen fitness cases.

As a result of the probabilistic nature of the genetic algorithm, it may be necessary to
make multiple independent runs of the algorithm in order to obtain a satisfactory result
for a given problem. Thus, the above three steps are embedded in an outer loop
representing the runs.

Figure 2.1 is a flowchart of these steps for the conventional genetic algorithm. The
variable RUN refers to the current run number. The variable GEN refers to the current
generation number. The index i refers to the current individual in a population.

The genetic operation of reproduction is based on the Darwinian principle of
reproduction and survival of the fittest. In the reproduction operation, an individual is
probabilistically selected from the population based on its fitness (with reselection
allowed) and then the individual is copied, without change, into the next generation of
the population. The selection is done in such a way that the better an individual's fitness,
the more likely it is to be selected. An important aspect of this probabilistic selection is
that every individual, however poor its fitness, has some probability of selection.

The genetic operation of crossover (sexual recombination) allows new individuals
(i.e., new points in the search space) to be created and tested. The operation of crossover
starts with two parents independently selected probabilistically from the population based
on their fitness (with reselection allowed). As before, the selection is done in such a way
that the better an individual's fitness, the more likely it is to be selected. The crossover
operation produces two offspring. Each offspring contains some genetic material from
each of its parents.

The table below illustrates the crossover operation being applied to the two parental
strings 10110 and 01101 of length L = 5 over an alphabet of size K = 2.

Parent 1 Parent 2
10110 01101

The crossover operation begins by randomly selecting a number between 1 and L–1
using a uniform probability distribution. There are L–1 = 4 interstitial locations lying
between the positions of a string of length five. Suppose that the third interstitial
location is selected. This location becomes the crossover point. Each parent is then split
at this crossover point into a crossover fragment and a remainder. The table below
shows the crossover fragments of parents 1 and 2.

Crossover fragment 1 Crossover fragment 2
101 – – 011 – –

Create Initial Random
Population for Run

No
Evaluate Fitness of Each
Individual in Population

Yes

No
Gen := Gen + 1

Gen := 0

Select Two Individuals
Based on Fitness

Perform
Crossover

Insert Two
Offspring
into New

Population

Perform Mutation

Insert Mutant into
New Population

i := i + 1
Perform Reproduction

Copy into New
Population

i := i + 1

Termination Criterion
Satisfied for Run?

i := 0

Select One
Individual

Based on Fitness

Select One
Individual

Based on Fitness

Pr

Pc

PmSelect Genetic Operation

i = M?

Yes

No

Run := Run +

Designate
Result for Run

Run = N?

End
Yes

Run := 0

Figure 2.1
Flowchart of the conventional genetic algorithm.

After the crossover fragment is identified, something remains of each parent. The
table below shows the remainders of parents 1 and 2.

Remainder 1 Remainder 2
– – – 10 – – – 01

The crossover operation combines remainder 1 (i.e., – – – 1 0) with crossover fragment
2 (i.e., 011 – –) to create offspring 2 (i.e., 01110). The crossover operation similarly
combines remainder 2 (i.e., – – – 01) with crossover fragment 1 (i.e., 101 – –) to create
offspring 1 (i.e., 10101). The following table shows the two offspring.

Offspring 1 Offspring 2
10101 01110

The two offspring are usually different from their two parents and different from each
other.

The operation of mutation allows new individuals to be created. It begins by selecting
an individual from the population based on its fitness (with reselection allowed). A point
along the string is selected at random and the character at that point is randomly changed.
The altered individual is then copied into the next generation of the population. Mutation
is used very sparingly in genetic algorithm work.

The genetic algorithm works in a domain-independent way on the fixed-length
character strings in the population. The genetic algorithm searches the space of possible
character strings in an attempt to find high-fitness strings. The fitness landscape may be
very rugged and nonlinear. To guide this search, the genetic algorithm uses only the
numerical fitness values associated with the explicitly tested strings in the population.
Regardless of the particular problem domain, the genetic algorithm carries out its search
by performing the same disarmingly simple operations of copying, recombining, and
occasionally randomly mutating the strings.

In practice, the genetic algorithm is surprisingly rapid in effectively searching
complex, highly nonlinear, multidimensional search spaces. This is all the more
surprising because the genetic algorithm does not know anything about the problem
domain or the internal workings of the fitness measure being used.

2.2 Program Trees and the LISP Programming Language

All computer programs – whether they are written in FORTRAN, PASCAL, C, assembly
code, or any other programming language – can be viewed as a sequence of applications
of functions (operations) to arguments (values). Compilers use this fact by first

internally translating a given program into a parse tree and then converting the parse tree
into the more elementary assembly code instructions that actually run on the computer.
However this important commonality underlying all computer programs is usually
obscured by the large variety of different types of statements, operations, instructions,
syntactic constructions, and grammatical restrictions found in most programming
languages.

Genetic programming is most easily understood if one thinks about it in terms of a
programming language that overtly and transparently views a computer program as a
sequence of applications of functions to arguments.

Moreover, since genetic programming initially creates computer programs at random
and then manipulates the programs by various genetically motivated operations, genetic
programming may be implemented in a conceptually straightforward way in a
programming language that permits a computer program to be easily manipulated as data
and then permits the newly created data to be immediately executed as a program.

For these two reasons, the LISP (LISt Processing) programming language [Steele
1990] is especially well suited for genetic programming. However, it should be
recognized that genetic programming does not require LISP for its implementation and is
not in any way based on LISP or dependent on LISP. Indeed, the majority of
the authors in this book implemented genetic programming in
C, rather than LISP. Nonetheless, even when researchers do not actually use
LISP for writing their programs to implement genetic programming, most (including
most of the authors in this book) find it convenient to use the style of the
LISP programming language for presenting and discussing the
programs evolved by genetic programming.

LISP has only two main types of entities: atoms and lists. The constant 7 and the
variable TIME are examples of atoms in LISP. A list in LISP is written as an ordered
collection of items inside a pair of parentheses. (A B C D) and (+ 1 2) are
examples of lists in LISP.

Both lists and atoms in LISP are called symbolic expressions (S-expressions). The S-
expression is the only syntactic form in pure LISP. There is no syntactic distinction
between programs and data in LISP. In particular, all data in LISP are S-expressions
and all programs in LISP are S-expressions.

The LISP system works so as to evaluates whatever it sees. When seen by LISP, a
constant atom (e.g., 7) evaluates to itself, and a variable atom (e.g., TIME) evaluates to
the current value of the variable. When a list is seen by LISP, the list is evaluated by
treating the first element of the list (i.e., whatever is just inside the opening parenthesis)

as a function and then causing the application of that function to the results of evaluating
the remaining elements of the list. That is, the remaining elements are treated as
arguments to the function. If an argument is a constant atom or a variable atom, this
evaluation is immediate; however, if an argument is a list, the evaluation of such an
argument involves a recursive application of the above steps.

For example, in the LISP S-expression (+ 1 2), the addition function + appears just
inside the opening parenthesis. The S-expression (+ 1 2) calls for the application of
the addition function + to two arguments (i.e., the constant atoms 1 and 2). Since both
arguments are atoms, they can be immediately evaluated to their values (i.e., 1 and 2).
Thus, the value returned as a result of the evaluation of the entire S-expression (+ 1
2) is 3.

If any of the arguments in an S-expression are themselves lists (rather than constant
atoms or variable atoms that can be immediately evaluated), LISP first evaluates these
arguments. In Common LISP, this evaluation is done in a recursive, depth-first way,
starting from the left). For example, the S-expression (+ (* 2 3) 4) calls for the
application of the addition function + to two arguments, namely the sub-S-expression (*
2 3) and the constant atom 4. In order to evaluate the entire S-expression, LISP must
first evaluate the sub-S-expression (* 2 3). This argument (* 2 3) calls for the
application of the multiplication function * to the two constant atoms 2 and 3, so it
evaluates to 6 and the entire S-expression evaluates to 10. LISP S-expressions are
examples of prefix notation. FORTRAN, PASCAL, and C are similar to ordinary
mathematical notation in that they use ordinary ("infix") notation, so the above program
in LISP would be written as 2*3+4 in those languages.

For example, the LISP S-expression

(+ 1 2 (IF (> TIME 10) 3 4))

further illustrates how LISP views conditional and relational elements of computer
programs as applications of functions to arguments. In the sub-S-expression (> TIME
10), the relation > is viewed as a function and > is then applied to the variable atom
TIME and the constant atom 10. The subexpression (> TIME 10) then evaluates to
either T (True) or NIL (False), depending on the current value of the variable atom
TIME. The conditional operator IF is then viewed as a function and IF is then applied
to three arguments: the logical value (T or NIL) returned by the subexpression (>
TIME 10), the constant atom 3, and the constant atom 4. If its first argument
evaluates to T (more precisely, anything other than NIL), the function IF returns the
result of evaluating its second argument (i.e., the constant atom 3), but if its first
argument evaluates to NIL, the function IF returns the result of evaluating its third

argument (i.e., the constant atom 4). Thus, the S-expression evaluates to either 6 or 7,
depending on whether the current value of the variable atom TIME is or is not greater
than 10. Most other programming languages create differing syntactic forms and
statement types for functions such as *, >, and IF whereas LISP treats all of these
functions in the same way.

Any LISP S-expression can be graphically depicted as a rooted point-labeled tree with
ordered branches. Figure 2.2 shows the parse tree (program tree) corresponding to the
above S-expression.

In this graphical depiction, the three internal points of the tree are labeled with
functions (i.e., +, IF, and >). The six external points (leaves) of the tree are labeled with
terminals (i.e., the variable atom TIME and the constant atoms 1, 2, 10, 3, and 4). The
root of the tree is labeled with the function appearing just inside the leftmost opening
parenthesis of the S-expression (i.e., the +).

Note that this tree form of a LISP S-expression is equivalent to the parse tree that many
compilers construct internally to represent a given computer program.

An important feature of LISP is that all LISP computer programs have just one
syntactic form (i.e., the S-expression). The programs of the LISP programming language
are S-expressions, and an S-expression is, in effect, the parse tree of the program.

+

>

10

43

21

TIME

IF

Figure 2.2
The LISP S-expression (+ 1 2 (IF (> TIME 10) 3 4)) depicted as a rooted, point-labeled tree with
ordered branches.

2.3 Genetic Programming

Genetic programming is an extension of the conventional genetic algorithm in which
each individual in the population is a computer program.

The search space in genetic programming is the space of all
possible computer programs composed of functions and terminals appropriate to the
problem domain. The functions may be standard arithmetic operations, standard
programming operations, standard mathematical functions, logical functions, or domain-
specific functions.

Genetic programming is an attempt to deal with one of the central questions in
computer science, namely
How can computers learn to solve problems without being explicitly programmed? In
other words, how can computers be made to do what needs to be done, without being
told exactly how to do it?

The book Genetic Programming: On the Programming of Computers by Means of
Natural Selection [Koza 1992] demonstrated a result that many found surprising and
counterintuitive, namely that an automatic, domain-independent method can genetically
breed computer programs capable of solving, or approximately solving, a wide variety of
problems from a wide variety of fields.

In applying genetic programming to a problem, there are five major preparatory steps.
These five steps involve determining
1. the set of terminals,
2. the set of primitive functions,
3. the fitness measure,
4. the parameters for controlling the run, and
5. the method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is to identify the set of
terminals. The terminals can be viewed as the inputs to the as-yet-undiscovered
computer program. The set of terminals (along with the set of functions) are the
ingredients from which genetic programming attempts to construct a computer program
to solve, or approximately solve, the problem.

The second major step in preparing to use genetic programming is to identify the set of
functions that are to be used to generate the mathematical expression that attempts to fit
the given finite sample of data.

Each computer program (i.e., mathematical expression, LISP S-expression, parse tree)
is a composition of functions from the function set F and terminals from the terminal set
T.

Each of the functions in the function set should be able to accept, as its arguments, any
value and data type that may possibly be returned by any function in the function set and
any value and data type that may possibly be assumed by any terminal in the terminal set.
That is, the function set and terminal set selected should have the closure property.

These first two major steps correspond to the step of specifying the representation
scheme for the conventional genetic algorithm. The remaining three major steps for
genetic programming correspond to the last three major preparatory steps for the
conventional genetic algorithm.

In genetic programming, populations of hundreds, thousands, tens of thousands or
more computer programs are genetically bred. This breeding is done using the
Darwinian principle of survival and reproduction of the fittest along with a genetic
crossover operation appropriate for mating computer programs. As will be seen in the
numerous chapters of this book, a computer program that solves (or approximately
solves) a given problem may emerge from this combination of Darwinian natural
selection and genetic operations.

Genetic programming starts with an initial population of randomly generated computer
programs composed of functions and terminals appropriate to the problem domain. The
creation of this initial random population is, in effect, a blind random search of the search
space of the problem represented as computer programs.

Each individual computer program in the population is measured in terms of how well
it performs in the particular problem environment. This measure is called the fitness
measure. The nature of the fitness measure varies with the problem.

For many problems, fitness is naturally measured by the error produced by the
computer program. The closer this error is to zero, the better the computer program. In a
problem of optimal control, the fitness of a computer program may be the amount of time
(or fuel, or money, etc.) it takes to bring the system to a desired target state. The smaller
the amount of time (or fuel, or money, etc.), the better. If one is trying to recognize
patterns or classify examples, the fitness of a particular program may be measured by
some combination of the number of instances handled correctly (i.e., true positive and
true negatives) and the number of instances handled incorrectly (i.e., false positives and
false negatives). On the other hand, if one is trying to find a good randomizer, the fitness
of a given computer program might be measured by means of entropy, satisfaction of the
gap test, satisfaction of the run test, or some combination of these factors. For some
problems, it may be appropriate to use a multiobjective fitness measure incorporating a
combination of factors such as correctness, parsimony, or efficiency.

Typically, each computer program in the population is run over a number of different
fitness cases so that its fitness is measured as a sum or an average over a variety of

representative different situations. These fitness cases sometimes represent a sampling of
different values of an independent variable or a sampling of different initial conditions of
a system. For example, the fitness of an individual computer program in the population
may be measured in terms of the sum of the absolute value of the differences between the
output produced by the program and the correct answer to the problem (i.e., the
Minkowski distance) or the square root of the sum of the squares (i.e., Euclidean
distance). These sums are taken over a sampling of different inputs (fitness cases) to the
program. The fitness cases may be chosen at random or may be chosen in some
structured way (e.g., at regular intervals or over a regular grid).

The computer programs in the initial generation (i.e., generation 0) of the process will
generally have exceedingly poor fitness. Nonetheless, some individuals in the population
will turn out to be somewhat more fit than others. These differences in performance are
then exploited.

The Darwinian principle of reproduction and survival of the fittest and the genetic
operation of crossover are used to create a new offspring population of individual
computer programs from the current population of programs.

The reproduction operation involves selecting a computer program from the current
population of programs based on fitness (i.e., the better the fitness, the more likely the
individual is to be selected) and allowing it to survive by copying it into the new
population.

The crossover operation is used to create new offspring computer programs from two
parental programs selected based on fitness. The parental programs in genetic
programming are typically of different sizes and shapes. The offspring programs are
composed of subexpressions (subtrees, subprograms, subroutines, building blocks) from
their parents. These offspring programs are typically of different sizes and shapes than
their parents.

Intuitively, if two computer programs are somewhat effective in solving a problem,
then some of their parts probably have some merit. By recombining randomly chosen
parts of somewhat effective programs, we sometimes produce new computer programs
that are even more fit at solving the given problem than either parent.

The mutation operation may also be used in genetic programming.
After the genetic operations are performed on the current population, the population of

offspring (i.e., the new generation) replaces the old population (i.e., the old generation).
Each individual in the new population of computer programs is then measured for

fitness, and the process is repeated over many generations.
At each stage of this highly parallel, locally controlled, decentralized process, the state

of the process will consist only of the current population of individuals.

The force driving this process consists only of the observed fitness of the individuals in
the current population in grappling with the problem environment.

As will be seen, this algorithm will produce populations of computer programs which,
over many generations, tend to exhibit increasing average fitness in dealing with their
environment. In addition, these populations of computer programs can rapidly and
effectively adapt to changes in the environment.

The best individual appearing in any generation of a run (i.e., the best-so-far
individual) is typically designated as the result produced by the run of genetic
programming.

The hierarchical character of the computer programs that are produced is an important
feature of genetic programming. The results of genetic programming are inherently
hierarchical. In many cases the results produced by genetic programming are default
hierarchies, prioritized hierarchies of tasks, or hierarchies in which one behavior
subsumes or suppresses another.

The dynamic variability of the computer programs that are developed along the way to
a solution is also an important feature of genetic programming. It is often difficult and
unnatural to try to specify or restrict the size and shape of the eventual solution in
advance. Moreover, advance specification or restriction of the size and shape of the
solution to a problem narrows the window by which the system views the world and
might well preclude finding the solution to the problem at all.

Another important feature of genetic programming is the absence or relatively minor
role of preprocessing of inputs and postprocessing of outputs. The inputs, intermediate
results, and outputs are typically expressed directly in terms of the natural terminology of
the problem domain. The computer programs produced by genetic programming consist
of functions that are natural for the problem domain. The postprocessing of the output of
a program, if any, is done by a wrapper (output interface).

Finally, another important feature of genetic programming is that the structures
undergoing adaptation in genetic programming are active. They are not passive
encodings (i.e., chromosomes) of the solution to the problem. Instead, given a computer
on which to run, the structures in genetic programming are active structures that are
capable of being executed in their current form.

In summary, genetic programming breeds computer programs to solve problems by
executing the following three steps:
1. Generate an initial population of random compositions of the functions and terminals

of the problem (i.e., computer programs).
2. Iteratively perform the following substeps until the termination criterion has been

satisfied:

a. Execute each program in the population and assign it a fitness value using the
fitness measure.

b. Create a new population of computer programs by applying the following two
primary operations. The operations are applied to computer program(s) in the
population chosen with a probability based on fitness.
i Reproduce an existing program by copying it into the new population.
ii Create two new computer programs from two existing programs by

genetically recombining randomly chosen parts of two existing programs
using the crossover operation (described below) applied at a randomly
chosen crossover point within each program.

3. The program that is identified by the method of result designation (e.g., the best-so-
far individual) is designated as the result of the genetic algorithm for the run. This
result may represent a solution (or an approximate solution) to the problem.

The genetic crossover (sexual recombination) operation operates on two parental
computer programs selected with a probability based on fitness and produces two new
offspring programs consisting of parts of each parent.

For example, consider the following computer program (LISP S-expression):

(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as

0.234 Z + X – 0.789.

This program takes two inputs (X and Z) and produces a floating point output.
Also, consider a second program:

(* (* Z Y) (+ Y (* 0.314 Z))),

which is equivalent to

Z Y (Y + 0.314 Z).

In figure 2.3, these two programs are depicted as rooted, point-labeled trees with
ordered branches. Internal points (i.e., nodes) of the tree correspond to functions (i.e.,
operations) and external points (i.e., leaves, endpoints) correspond to terminals (i.e.,
input data). The numbers beside the function and terminal points of the tree appear for
reference only.

The crossover operation creates new offspring by exchanging sub-trees (i.e., sub-lists,
subroutines, subprocedures) between the two parents.

Assume that the points of both trees are numbered in a depth-first way starting at the
left. Suppose that the point number 2 (out of 7 points of the first parent) is randomly

selected as the crossover point for the first parent and that the point number 5 (out of 9
points of the second parent) is randomly selected as the crossover point of the second
parent. The crossover points in the trees above are therefore the * in the first parent and
the + in the second parent. The two crossover fragments are the two sub-trees shown in
figure 2.4.

These two crossover fragments correspond to the underlined sub-programs (sub-lists)
in the two parental computer programs.

The two offspring resulting from crossover are

(+ (+ Y (* 0.314 Z)) (- X 0.789))

and

(* (* Z Y) (* 0.234 Z)).

The two offspring are shown in figure 2.5.

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

Figure 2.3
Two Parental computer programs.

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z

Figure 2.4
Two Crossover Fragments.

Thus, crossover creates new computer programs using parts of existing parental
programs. Because entire sub-trees are swapped, the crossover operation always
produces syntactically and semantically valid programs as offspring regardless of the
choice of the two crossover points. Because programs are selected to participate in the
crossover operation with a probability based on fitness, crossover allocates future trials to
regions of the search space whose programs contains parts from promising programs.

The videotape Genetic Programming: The Movie [Koza and Rice 1992] provides a
visualization of the genetic programming process and of solutions to various problems.

2.4 Automatic Function Definition in Genetic Programming

Several of the papers in this book deal with the issue of scaling up genetic programming
to more difficult problems by means of the automatic discovery of functional subunits.
This section discusses one such approach, namely automatically defined functions
(ADFs).

A human programmer writing a program containing a common calculation involving
the exponential of two numbers would probably write a subroutine (defined function,
subprogram, procedure) for the common calculation and then call the subroutine twice
from the main program. The six lines of code below show a one-line main LISP program
for finding the difference e3 – e2 and a three-line defined function called exp-approx
for calculating an approximation to the value of the exponential function:

1. ;;;---main program---

2. (values (- (exp-approx 3.0) (exp-approx 2.0)))

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y2

Figure 2.5
Two Offspring.

3. ;;;---definition of the function "exp-approx"---

4. (defun exp-approx (arg0)

5. (values (+ 1.0 arg0 (* 0.5 arg0 arg0)

6. (* 0.1667 arg0 arg0 arg0))))

Lines 1 and 3 contain comments to identify the main program in line 2 and the
definition of the function in lines 4, 5, and 6.

Line 2 contains the main program that calls the function exp-approx twice and then
computes the difference (–) between the two. The single value to be returned by the
main program in line 2 is highlighted with an explicit invocation of the values function
(which ordinarily would not be used).

Lines 4, 5 and 6 contain the definition of the function exp-approx. This function
definition (called a defun in LISP) does four things.

First, this defun (line 4) assigns a name, exp-approx, to the function being
defined. The name permits subsequent reference to this function by the main (calling)
program (line 2).

Second, this defun identifies the argument list (line 4) of the function being defined.
In this defun, the argument list is (arg0) containing one dummy variable (formal
parameter) arg0.

Third, this defun contains a body (lines 5 and 6) that performs the work of the
function. In this defun, the work consists of the addition of the first three terms of the
Taylor series approximation for ex using the four-argument primitive function of addition
(+) and the three- and four-argument primitive function of multiplication (*). Note that
the body of the function uses the dummy variable arg0 that is localized within the
defun. This dummy variable does not appear in the main program.

Fourth, this defun identifies the value to be returned by the function. In this defun,
the single value to be returned is emphasized and highlighted with an explicit invocation
of the values function (line 5).

This particular illustrative defun has one local dummy variable, returns only a single
value, has no side effects, and refers only to its one local dummy variable (i.e., it does not
refer to any of the actual or "global" variables of the overall problem). However, in
general, defined functions may have any number of arguments (including no arguments),
may return multiple values (or no values), may or may not perform side effects, and may
or may not explicitly refer to the actual (global) variables of the overall problem.

Automatic function definition can be implemented within the context of genetic
programming by establishing a constrained syntactic structure for the individual
programs in the population as described in [Koza 1992]. Each program in the population
contains one (or more) function-defining branches and one (or more) main result-

producing branches. The result-producing branch usually has the ability to call one or
more of the defined functions. A function-defining branch may have the ability to refer
hierarchically to another already-defined function (and potentially even itself). When the
result-producing branch returns only a single value, we sometimes refer to it as the value-
returning branch.

Figure 2.6 shows the overall structure of a program consisting of one function-defining
branch and one main result-producing branch. The function-defining branch appears in
the left part of this figure and the result-producing branch appears on the right.

There are eight different "types" of points in this overall program. The first six types
are invariant and appear above the horizontal dotted line in this figure. The eight types
are as follows:
1. the root of the tree (which consists of the place-holding PROGN connective

function),
2. the top point, DEFUN, of the function-defining branch,
3. the name, ADF0, of the automatically defined function,
4. the argument list of the automatically defined function,
5. the VALUES function of the function-defining branch identifying, for emphasis, the

value(s) to be returned by the automatically defined function,
6. the VALUES function of the result-producing branch identifying, for emphasis, the

value(s) to be returned by the result-producing branch,
7. the body (i.e., work) of the automatically defined function ADF0, and
8. the body of the result-producing branch.

When the overall program is evaluated, the PROGN causes the sequential evaluation of
the two branches. The PROGN starts by evaluating the first branch, namely the function-
defining branch. The function-defining branch merely defines the automatically defined
function ADF0. When a defun is evaluated by the PROGN, the result returned (which
happens in LISP to be the name of the function being defined) is irrelevant. Since the
PROGN returns only the result of the evaluation of its last argument, the evaluation of the
function-defining branch does not cause the return of any value for the PROGN as a
whole. The PROGN now evaluates its second branch, namely the result-producing

DEFUN

PROGN

VALUES

Argument
ListADF0

Body of ADF0
Function Definition

VALUES

1

2

3 4 5

6

7
Body of R

Producing

8

Figure 2.6
An overall computer program consisting of one function-defining branch and one result-producing branch.

branch. The body of the result-producing branch may refer to the automatically defined
function ADF0. The value returned by the overall program consists only of the value
returned by the VALUES function associated with the result-producing branch. Note that
in this formulation all references to an automatically defined function are to the
automatically defined function within the same overall program (and not to the
automatically defined functions of other programs in the population).

Genetic programming will evolve a population of programs, each consisting of a
function definition in the function-defining branch and a result-producing branch. The
structures of both the function-defining branches and the result-producing branch are
determined by the combined effect, over many generations, of the selective pressure
exerted by the fitness measure and by the effects of the operations of Darwinian fitness
proportionate reproduction and crossover. The function defined by the function-defining
branch is available for use by the result-producing branch. Whether or not the defined
function will be actually called is not predetermined, but instead, determined by the
evolutionary process.

Since each individual program in the population of this example consists of one
function-defining branch and one result-producing branch, the initial random generation
must be created so that every individual program in the population has this particular
constrained syntactic structure. Specifically, every individual program in generation 0
must have the invariant structure represented by the six points of types 1 through 6
described above. Each function and terminal in the function-defining branch is of type 7.
The function-defining branch is a random composition of functions from the function set
Ffd for the function-defining branch and terminals from the terminal set Tfd for the
function-defining branch. The terminal set Tfd for the function-defining branch typically
contains the localized dummy variables (e.g., ARG0). Each function and terminal in the
result-producing branch is of type 8. The result-producing branch is a random
composition of functions from the function set Frp and terminals from the terminal set
Trp. The function set for the result-producing branch typically contains the available
defined functions (e.g., ADF0) and does not contain the dummy variables of the defined
function (e.g., ARG0). The result-producing branch typically contains the actual
variables of the problem. The actual variables of the problem usually do not appear in
the function-defining branch, although they may.

Since a constrained syntactic structure is involved, crossover must be performed so as
to preserve this syntactic structure in all offspring. Since each program must have the
invariant structure represented by the six points of types 1 through 6, crossover is limited
to points of types 7 and 8. Structure-preserving crossover is implemented by allowing
any point of type 7 or 8 to be the crossover point in the first parent. However, once the

crossover point in the first parent has been selected, the crossover point of the second
parent must be of the same type (i.e. type 7 or 8). In the context of this example, this
means that crossover will only exchange a sub-tree from the function-defining branch of
one parent with a sub-tree from the function-defining branch of the other parent or that
crossover will exchange a sub-tree from the result-producing branch of one parent with a
sub-tree from the result-producing branch of the other parent. This restriction on the
selection of the crossover point of the second parent ensures the preservation of the
constrained syntactic structure (originally created in generation 0) for all offspring in all
subsequent generations.

Automatic function definition is the main subject of the forthcoming book Genetic
Programming II [Koza 1994]. A visualization of automatic function definition and
numerous example problems can be found in the forthcoming videotape Genetic
Programming II Videotape: The Next Generation [Koza and Rice 1994]. There is one
example of automatic function definition in Genetic Programming: The Movie [Koza and
Rice 1992].

Angeline and Pollack [1993a, 1993b] have developed a "module acquisition" strategy
which is discussed elsewhere in this book.

2.5 Sources of Additional Information about Genetic Programming

An electronic mail mailing list on genetic programming has been established and is
currently maintained by James P. Rice of the Knowledge Systems Laboratory of Stanford
University. You may subscribe to this on-line mailing list at no charge by sending a
subscription request consisting of the message subscribe genetic-
programming to genetic-programming-request@cs.stanford.edu by
electronic mail.

An on-line public repository and FTP (file transfer protocol) site containing computer
code, papers on genetic programming, and frequently asked questions (FAQs) has been
established and is currently maintained by James McCoy of the Computation Center at
the University of Texas at Austin. This FTP site may be accessed by electronic mail by
anonymous FTP from the pub/genetic-programming directory from the site
ftp.cc.utexas.edu. This FTP site contains the original "Little LISP" computer
code written in Common LISP for genetic programming as described in Genetic
Programming: On the Programming of Computers by Means of Natural Selection [Koza
1992], the SGPC ("Simple Genetic Programming in C") computer code written in the C
programming language by Walter Alden Tackett and Aviram Carmi of Hughes Aircraft
Corporation for genetic programming, and computer code appearing in Genetic

Programming II [Koza 1994] in Common LISP for implementing automatic function
definition and constrained syntactic structures within genetic programming.

The proceedings of the Fifth International Conference on Genetic Algorithms contains
recent work on genetic programming by Angeline and Pollack [1993a, 1993b], Banzhaf
[1993], Gruau [1993], Handley [1993], Iba et. al [1993], Kinnear [1993b], Koza [1993],
Spencer [1993], and Tackett [1993]. The proceedings of the Second International
Conference on Simulation of Adaptive Behavior contains work by Reynolds [1993]. The
proceedings of the 1993 IEEE International Conference on Neural Networks contains
work by Kinnear [1993a]. The proceedings of the Third Workshop on Artificial Life
contains work by Reynolds [1994].

In addition, the proceedings of the IEEE World Congress on Computational
Intelligence to be held in Florida in June 1994 will contain additional papers on genetic
programming.

2.6 Sources of Additional Information about Genetic Algorithms

Additional information on genetic algorithms can be found in Goldberg [1989], Davis
[1987, 1991], Michalewicz [1992], Maenner and Manderick [1992], and Buckles and
Petry [1992]. Conference proceedings include Grefenstette [1985, 1987], Schaffer
[1989], Belew and Booker [1991], Forrest [1993], Rawlins [1991], and Whitley [1992].
Stender [1993] describes parallelization of genetic algorithms. Davidor [1992] describes
application of genetic algorithms to robotics. Schaffer and Whitley [1992] and Albrecht,
Reeves, and Steele [1993] describe work on combinations of genetic algorithms and
neural networks. Forrest [1991] describes application of genetic classifier systems to
semantic nets. Schwefel and Maenner [1991] and Maenner and Manderick [1992]
contain recent work on evolutionary strategies (ES). Fogel and Atmar [1992, 1993]
contain recent work on evolutionary programming (EP).

Additional information about genetic algorithms may be obtained from the GA-LIST
electronic mailing list to which you may subscribe at no charge by sending a subscription
request to GA-List-Request@AIC.NRL.NAVY.MIL. Additional information about
evolutionary programming may be obtained from the EP-LIST electronic mailing list to
which you may subscribe at no charge by sending a subscription request to EP-List-
Request@Magenta.Me.Fau.Edu.

Bibliography

Albrecht, R. F. (1993), C. R. Reeves, and N. C. Steele, Artificial Neural Nets and Genetic Algorithms.
Springer-Verlag.

Angeline, P. J. (1993a) and J. B. Pollack. Coevolving high-level representations. Technical report 92-PA-
COEVOLVE. Laboratory for Artificial Intelligence. Ohio State University. July 1993.
Angeline, Peter J. and Pollack, Jordan B. Coevolving high-level representations. In C. G. Langton, Ed.
Artificial Life III. In Press.
Angeline, P. J. (1993b) and J. B. Pollack, Competitive environments evolve better solutions for complex tasks.
In S. Forrest, Ed. Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers Inc. Pages 264-270.
Banzhaf, W (1993) Genetic programming for pedestrians. In S. Forrest, Ed. Proceedings of the Fifth
International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers Inc.. Page
628.
Belew, R. (1991) and L. Booker, Eds., Proceedings of the Fourth International Conference on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann.
Buckles, B. P. (1992) and F. E. Petry, Genetic Algorithms. Los Alamitos, CA: The IEEE Computer Society
Press.
Davidor, Y. (1991) Genetic Algorithms and Robotics. Singapore: World Scientific.
Davis, L., Ed. (1987) Genetic Algorithms and Simulated Annealing. London: Pittman.
Davis, L. (1991), Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
Fogel, D. B. (1992) and W. Atmar, Eds., Proceedings of the First Annual Conference on Evolutionary
Programming. San Diego, CA: Evolutionary Programming Society .
Fogel, D. B. (1993) and W. Atmar, Eds., Proceedings of the Second Annual Conference on Evolutionary
Programming. San Diego, CA: Evolutionary Programming Society.
Forrest, S. (1991) Parallelism and Programming in Classifier Systems. London: Pittman.
Forrest, S. (1993) Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers Inc.
Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.
Grefenstette, J. J., Ed. (1985) Proceedings of an International Conference on Genetic Algorithms and Their
Applications. Hillsdale, NJ: Lawrence Erlbaum Associates.
Grefenstette, J. J., Ed. (1987) Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates.
Gruau, F. (1993) Genetic synthesis of modular neural networks. In S. Forrest, Ed. Proceedings of the Fifth
International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers Inc. Pages
318–325.
Handley, S. (1993) Automated learning of a detector for a-helices in protein sequences via genetic
programming. In S. Forrest, Ed. Proceedings of the Fifth International Conference on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann Publishers Inc. Pages 271-278.
Holland, J. H. (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of Michigan Press 1975. Also
Cambridge, MA: The MIT Press 1992.
Iba, H. (1993), T. Jurita, H. de Garis, and T. Sat, System identification using structured genetic algorithms. In
S. Forrest, Ed. Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers Inc. Pages 279-286.
Kinnear, K. E. Jr. (1993a) Evolving a sort: Lessons in genetic programming. 1993 IEEE International
Conference on Neural Networks, San Francisco. Piscataway, NJ: IEEE 1993. Volume 2. Pages 881-888.
Kinnear, K. E. Jr. (1993b) Generality and difficulty in genetic programming: Evolving a sort. In S. Forrest. Ed.
Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers Inc. Pages 287–294.

Koza, J. R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, MA: The MIT Press.
Koza, J. R. (1993) Simultaneous discovery of reusable detectors and subroutines using genetic programming.
In S. Forrest, Ed. Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers Inc. Pages 295–302.
Koza, J. R. (1994) Genetic Programming II. Cambridge, MA: The MIT Press. In Press.
Koza, J. R.(1992), and J. P. Rice Genetic Programming: The Movie. Cambridge, MA: The MIT Press.
Koza, J. R. (1994), and J. P. Rice Genetic Programming II Videotape: The Next Generation Cambridge, MA:
The MIT Press. In Press.
Maenner, R. (1992), and B. Manderick, Proceedings of the Second International Conference on Parallel
Problem Solving from Nature. North Holland.
Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer-
Verlag.
Rawlins, G., Ed. (1991) Foundations of Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers
Inc.
Reynolds, C. W. (1993) An evolved vision-based behavioral model of coordinated group motion. In Meyer,
Jean-Arcady, Roitblat, Herbert L. and S. Wilson, Ed. From Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive Behavior. Cambridge, MA: The MIT Press. Pages 384-
392..
Reynolds, C. W. (1994) An evolved vision-based model of obstacle avoidance behavior. In C. G. Langton, Ed.
Artificial Life III. In Press.
Schaffer, J. D., Ed. (1989). Proceedings of the Third International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann Publishers Inc.
Schaffer, J. D. (1992) and D. Whitley, Eds., Proceedings of the Workshop on Combinations of Genetic
Algorithms and Neural Networks 1992. Los Alamitos, CA: The IEEE Computer Society Press.
Schwefel, H.-P. (1991) and R. Maenner, Eds., Parallel Problem Solving from Nature. Berlin: Springer-Verlag.
Spencer, G. (1993) Automatic generation of programs for crawling and walking. In S. Forrest, Ed.
Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers Inc. Page 654.
Steele, Guy L. Jr. (1990) Common LISP. Digital Press. Second Edition.
Stender, J., Ed. Parallel Genetic Algorithms. IOS Publishing.
Tackett, W. A. (1993) Genetic programming for feature discovery and image discrimination. In S. Forrest, Ed.
Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers Inc. Pages 303–309.
Whitley, D. (editor) (1992) Foundations of Genetic Algorithms and Classifier Systems 2, Vail, Colorado 1992.
San Mateo, CA: Morgan Kaufmann Publishers Inc.

