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ABSTRACT: Peak Ground Velocity (PGV) is one of the most important ground motion
parameters that has been widely used as a damage potential indicator, as well as in seismic
design of structures and assessment of buried pipelines and liquefaction potential analysis.
Therefore, estimating a precise value for this parameter is of great importance. In this paper,
Genetic Programming (GP), a well-known Artificial Intelligence method is utilized to develop
an attenuation relationship for PGV based on the strong ground motion database released by
Pacific Earthquake Engineering Research center (PEER). Different PGV attenuation relation-
ships are proposed for strike-slip, normal, and reverse faulting mechanisms as functions of
earthquake magnitude, source to site distance, and local site geotechnical condition. The
values of coefficient of determination, root mean square error and mean absolute error are
calculated for the developed PGV attenuation relationships and reveal the accuracy of pro-
posed model. Results of the parametric study demonstrate that PGV is higher for larger earth-
quake magnitudes while it is lower for sites which are located farther from the source and
have lower shear wave velocities.

1 INTRODUCTION

Earthquakes are among the most major natural catastrophes that can cause significant damage
to buildings and infrastructure. The seismological effects of earthquakes are generally function
of earthquake characteristics such as magnitude, duration, fault-to site distance, faulting mech-
anism, and site conditions, and can be effectively described using strong ground motion param-
eters, which include Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak
Ground Displacement (PGD), and PGV/PGA ratio (Alavi & Gandomi, 2011, Kia & Sensoy,
2014). PGA and PGV are two most important amplitude/intensity ground motion parameters
and has many applications in geotechnical and earthquake engineering. For instance, PGA is
widely used in dynamic or pseudo-static analysis of structures, slopes, embankments and lique-
faction problems (Kermani et al., 2009b). PGV on the other hand has been used in seismic ana-
lysis (de-sign and assessments) of buried pipelines, assessment of liquefaction potential, and as
an indirect indicator of potential of damage to structures (Bommer & Alarcon, 2006). Further-
more, it should be noted that PGV is less sensitive to the higher components of earthquake
motion com-pare to PGA, hence, it can potentially characterize ground motion amplitude at
intermediate frequencies (Kramer, 1996, Kermani et al., 2009a).

A common challenge in seismology is to establish relationships to predict the value of the
strong ground motion parameters at a given site to use for aforementioned application, known
as attenuation relationships. This can be achieved through physical modeling, or by analysis of
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Figure 1. Schematic representative of GP tree

available earthquake data which. The latter has been traditionally conducted through regression
analysis (e.g., Cagnan et al. 2017; Sedaghati & Pezeshki 2017). However, regression analysis is
usually accompanied by notable errors, which are due to various simplifications and approxima-
tions involved (Alavi & Gandomi, 2011). More recently using Artificial Intelligence (Al) in ana-
lysis of earth-quake data has gained significant attention in this context, and various researchers
have used different Al techniques (e.g., Artificial Neural Networks, Genetic Algorithm, Fuzzy
Logic, Neuro Fuzzy, Genetic Programming, etc.) to develop attenuation/predictive equations
for strong ground motion parameters (e.g. Jafarian et al., 2010; Kermani et al., 2009a; Ahumada
et al., 2015; Yilmaz, 2011; Thomas et al., 2013; Thomas et al. 2016). Despite the importance and
extensive applications of PGV, much less focus has been directed toward developing attenuation
relationships for PGV compare to PGA. Most notably, Alavi & Gandomi (2011), Amiri et al.
(2012), Kia & Sensoy (2014), Maleki et al. (2014), and Khosravikia et al. (2018) have used differ-
ent Al methods to propose attenuation relationships for PGV based on different earthquake
databases and ground properties.

This study aims to propose a closed-form attenuation relationship for PGV as a function of
earthquake magnitude, source to site distance, faulting mechanics and shear wave velocity by
using Genetic Programming (GP), a novel and robust Al technique. The database of Pacific
Earth-quake Engineering Research Center (PEER) has been used for this purpose.

2 GENETIC PROGRAMMING

Genetic programming (GP) is a special form of Genetic Algorithm (GA), initially developed
by Koza (1992). GA is as an optimization technique to search for the minimum of a function
through evolution of a populations of individual solutions based on their fitness values over
numbers of generations. The GP populations are computer programs consisting of functions
(e.g., +, -, LOG, SIN, etc.) and terminals (e.g., arguments/parameters, numerical constants,
etc.), presented in form of GP trees (e.g. Figure 1).

Initially GP generates a random population of computer programs and based on a set of
input data and the fitness values (difference between predicted and actual values), it breeds
these computer programs through numbers of generations using genetic operators (e.g., Cross-
over and mutations). Finally, it may lead to providing predictive equations for unknown con-
ditions based on the general trend of the input data. More detailed information about Genetic
Programming procedure and method can be found in Kermani et al. (2009a) and Jafarian
et al. (2010). In this study, GPLAB, a genetic programming toolbox for MATLAB written by
Silva (2018) was utilized in this study.

3 DATABASE
The database released by Pacific Earthquake Engineering Research center (PEER), which

contains strong ground motion of shallow crustal earthquakes recorded at active tectonic
regions of the world has been used in this study (Power, 2006). This database consists of
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Table 1. Maximum and minimum of M, Ry, V3 for strike-slip, normal and reverse fault types.

. M Rjp, (km) V30 (m/s) In (PGV)
Faulting
mechanism min max min max min max min max
Strike-slip 4.53 7.9 0 199.27 116.35 1428 -2.003 4.763
(490 data)
Normal 4.92 6.9 0 133.34 196.25 1000 -2.044 3.847
(112 data)
Reverse 5.33 7.62 0 193.91 116.35 1525.85 -0.44 5.136
(834 data)

earthquake magnitude (moment magnitude) M, closets distance to the surface projection of
the fault plane (R;;), average shear wave velocity for the top 30 m of soil at the site (V3), and
faulting mechanisms (i.e., strike-slip, normal and reverse) for 1436 records of 60 mainshocks.
The maximum and minimum of these predictor variables are summarized in Table 1.

The input data for GP for predictor variables (i.e., magnitudes, distances and shear wave
velocities) is normalized based on the maximum and minimum for each faulting mechanism
using Equation (1):

_ X — /Ymin 1
Xn()rmalized -3y v ( )
Xmax - )(;ni11

All the data for each faulting mechanism is divided into two data subsets, called training set
(with 80% of data) and validation set (with 20% of data). The training set is used to train the
GP model, while the validation set is used to ensure the ability of the proposed attenuation
relationships to predict unseen cases.

4 THE PROPOSED ATTENUATION RELATIONSHIPS

Genetic programming is used to propose three attenuation relationships to predict PGV as a
function of moment magnitude, source to site distance and shear wave velocity for strike-slip,
normal and reverse faulting mechanisms (Equations 2-4).

PGYV attenuation relationship for strike-slip faulting mechanism:

I(PGV )y 1oy = —1OTIR + (=0.536V + 2.336) R2+
4 0.551 + [~ M?* + 1.264M — 1.903 + (—M +0.732)V|R (2)
+0.536 M — 0.25V £ Oln(PGV)
Where, Voo — 116.35 R M — 453
s30 — . i — 4.
_ Y0 = 1650 _ —02
V=148 11635 X~ 19927’ 79 453 nrev) = 0.20

IN(PGV) proicrea = —2-003 + 6.766In(PGV)

Normalized
PGV attenuation relationship for normal faulting mechanism:

In(PGV) 0.661R* 4 (0.175M* — 1.224)R+

0.193(M*V + M — V) + 0.731 % oy pgr)

Normalized —
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Wh
o Vo — 19625 R M1 —4.92

T1000—19625° " 13334 T 69—4.92°
IN(PGV) pyogored = —2.044 + 5.891In(PGV)

o'ln(PGV) =0.215

Normalized
PGYV attenuation relationship for reverse faulting mechanism:

PGV yormatized = — R 4 2.207R* + (0.609V — 1.796)R + 0.334M
—0.338V + 0.6 + O'In(PGV)

Where,
ere Viso — 11635 Ry Mr—533

V= R=10301' M =767 3533 Omrar) = 013

T 1525.85-116.357
In(PGV )pregicted = —0.44 + 5.576In(PGV)

Normalized
Where M, Rj, V39, are moment magnitude, Boore-Joyner distance, shear wav velocity over
the top 30m of site soil, and standard deviation of the equations, respectively.

To demonstrate the accuracy and robustness of the GP proposed attenuation relationships
for PGV, the values of coefficient of determination (R?), root mean square error (RMSE) and
mean absolute error (MAE) between predicted and measured/actual PGV values are calcu-
lated as:

NS (- X

‘ e ¥
2
RMSE — M (6)
21X — X
MAE = % (7)

Table 2 presents the calculated values of R°, RMSE and MAE for the proposed /n (PGV)
attenuation relationships for both training and validation sets.

Figures 2-4 show the predicted PGV values by GP versus the corresponding measured/
actual /n (PGV) values for both training and validation datasets for strike-slip, normal and
reverse fault types, respectively. As it can be seen, the results of the proposed attenuation rela-
tionships for validation sets are consistent with training sets and demonstrate the ability of
proposed PGV attenuation relation-ships in predicting unseen/untrained cases. Furthermore,
the proposed equations show rational accuracy in prediction of PGV.

Table 2. The values of R?, RMSE and MAE for the proposed In (PGV) attenuation relationships
derived by GP

GP results
Faulting mechanisms Groups R? RMSE (sec) MAE (sec)
Strike-slip Training 0.934 0.55 0.420
Validation 0.932 0.51 0.425
Normal Training 0.87 0.480 0.36
Validation 0.92 0.375 0.27
Reverse Training 0.96 0.55 0.430
Validation 0.95 0.60 0.45
All faulting mechanisms All data 0.947 0.548 0.425
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Figure 2. The predicted In (PGV) by GP versus the measured In (PGV) for strike-slip faulting mechanism
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Figure 3. The predicted In (PGV) by GP versus the measured /n (PGV)for normal faulting mechanism
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Figure 4. The predicted In (PGV) by GP versus the measured /n (PGV) for reverse faulting mechanism
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Table 3. The values of R, RMSE and MAE for the proposed derived by GP

GP results
Faulting mechanisms Methods R? RMSE (sec) MAE (sec)
Strike-slip GP 0.937 0.55 0.424
Boore and Atkinson 0.923 0.56 0.441
Normal GP 0.92 0.406 0.28
Boore and Atkinson 0.90 0.52 0.41
Reverse GP 0.954 0.561 0.437
Boore and Atkinson 0.94 0.57 0.446
All faulting mechanisms GP 0.952 0.55 0.429
Boore and Atkinson 0.95 0.57 0.44

To demonstrate the ability of GP in developing attenuation relationships for PGV, the pro-
posed equations are compared with results of PGV attenuation relationship by Boore &
Atkinson (2007), which were proposed based on regression analysis. Boore & Atkinson (2007)
employed the same database but their equations are limited to (1) M = 5 —8; (2) Ry, <200 km
and (3) V3o =180 — 1300 m/s. Therefore, the comparison is only performed on 1261 data.

Table 3 presents the calculated values of R”, RMSE and MAE for /n (PGV) attenuation
relationships proposed in the present study and Boore & Atkinson (2007).

As can be noticed in Table 3, in general both methods are in good agreement. However, GP
equations result in higher R’ values and lower RSME and MAE errors, which is indication of
higher accuracy of the GP-proposed models in comparison to Boore & Atkinson (2007)’s
results.

5 PARAMETRIC STUDY

A parametric study is conducted using the proposed PGV attenuation relationships in order
to study the dependency of PGV on M, Rj and V3. For each case, the variation of PGV
with respect to one of the predictor variables are studied while the other two are kept con-
stant. Figures 5, 6 and 7 show parametric study on effects of Ry M and V3 on PGV,
respectively.

As it was expected, PGV increases as earthquake magnitude increases while it decreases by
increase in source to site distance and shear wave velocity.

e Strike-Slip (M=6.5)
——— Strike-Slip (M=5.5)
== == Reverse (M=6.5)
— — =Reverse (M=5.5)
e= « Normal (M=6.5)

=+ = Normal (M=5.5)

PGV (cm/s)

100 150 200 250
Rp(km)

Figure 5. Variations of PGV with respect to Rj, for strike-slip, normal and reverse faulting mechanism;
M=5.5, 6.5 and V9 = 500 mls
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Figure 6. Variations of PGV with respect to M for strike-slip, normal and reverse faulting mechanism;
Ry, =70 km and V39 = 500 mls
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Figure 7. Variations of PGV with respect to V3, for strike-slip, normal and reverse faulting mechanism;
Ry, =70 km and M=6.5

Furthermore, it can be seen in Figure 5 that the changes in PGV due to changes in distance
follow the same general trend for strike-slip, normal and reverse fault mechanisms. As it was
expected, for all three faulting mechanisms the rate of change in the predicted PGV is max-
imum within the distance of 50 km from the source and becomes negligible beyond that point.
In addition, according to Figure 7 the rate of change of PGV due to change in V3, for strike-
slip fault type is higher compared to the other faulting mechanisms.

6 CONCLUSIONS

Peak Ground Velocity (PGV) is one of the most important ground motion parameters used in
many applications such as seismic analysis (design and assessments) of structures and buried
pipelines, assessment of liquefaction potential, and as an indirect indicator of potential of
damage to structures. Therefore, the precise prediction of PGV is of great importance in geo-
technical and earthquake engineering.

In this study, Genetic Programming (GP) has been used to develop PGV attenuation relation-
ships as functions of earthquake magnitude, source to site distance and shear wave velocity for
three fault types (i.e., strike slip, normal and reverse). The database of strong ground motion of
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shallow crustal earthquakes for 1436 records of 60 mainshocks released by Pacific Earthquake
Engineering Research center (PEER) has been used. The values of coefficient of determination,
root mean square error and mean absolute error calculated for the proposed equations for each
training and validation sets are consistent and demonstrate the ability of GP proposed models
in predicting unseen/untrained cases. Furthermore, the comparison with the other PGV attenu-
ation relationships in literature demonstrates the superior performance of the proposed GP
models. The results of parametric study reveal that PGV increases as earthquake magnitude
increases while it decreases by increase in source to site distance and shear wave velocity.
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