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Abstract

This thesis focuses on applications of Computational Intelligence techniques to Fi-
nance and Economics. First of all, we build upon a Genetic Programming (GP)-based
financial forecasting tool called Evolutionary Dynamic Data Investment Evaluator
(EDDIE), which was developed, and reported on in the past, by researchers at the Uni-
versity of Essex. The novelty of the new version we present, which we call EDDIE 8,
is its extended grammar, which allows the GP to search in the space of the technical
indicators in order to form its trees. In this way, EDDIE 8 is not constrained into using
pre-specified indicators, but it is left up to the GP to choose the optimal ones. Results
show that, thanks to the new grammar, new and improved solutions can be found by
EDDIE 8. Furthermore, we present work on the Market Fraction Hypothesis (MFH).
This hypothesis is based on observations in the literature about the fraction dynamics
of the trading strategy types that exist in financial markets. However, these observa-
tions have never been formalized before, nor have they been tested under real data. We
therefore first formalize the hypothesis, and then propose a model, which uses a two-
step approach, for testing the hypothesis. This approach consists of a rule-inference
step and a rule-clustering step. We employ GP as the rule inference engine, and apply
Self-Organizing Maps (SOMs) to cluster the inferred rules. After running experi-
ments on real datasets, we are able to obtain valuable information about the fraction
dynamics of trading strategy types, and their long and short term behavior. Finally,
we present work on the Dinosaur Hypothesis (DH), which states that the behavior of
financial markets constantly changes and that the population of trading strategies con-
tinually co-evolves with their respective market. To the best of our knowledge, this
observation has only been made and tested under artificial datasets, but not with real
data. We formalize this hypothesis by presenting its main constituents. We also test
it with empirical datasets, where we again use a GP system to infer rules and SOM
for clustering purposes. Results show that for the majority of the datasets tested, the
DH is supported. Thus this indicates that markets have non-stationary behavior and
that strategies cannot remain effective unless they continually adapt to the changes
happening in the market.
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Chapter 1

Introduction

Computational intelligence (CI) is a part of the Computer Science field, which attempts to ad-
dress complex problems of the real world applications by using nature-inspired computational
methodologies. A number of different algorithms exist, such as artificial neural-networks, decision
trees, support-vector machines, naive bayes, genetic programming, and reinforcement learning
(Mitchell, 1997). CI techniques have been extensively applied to a variety of real-world problems
and applications. This thesis focuses on three such cases, which come from the fields of finance
and economics. The next section presents our motivation for investigating these specific problems.

1.1 Motivation
As we mentioned above, this thesis applies CI techniques to economics and finance. The first
application comes from finance and is the well-known application of investment opportunities
forecasting (a.k.a. financial forecasting). Traditionally, forecasting algorithms use predefined indi-
cators from technical analysis (Edwards and Magee, 1992) to forecast the future movements of the
price, with a pre-specified period length. The problem that arises in these cases is with the choice
of the period length. No-one can guarantee that the length chosen is the optimal one. For instance,
if we are using indicators from technical analysis, how could we decide that a 12 days Moving
Average is preferable to a 15 days Moving Average? Experts could argue that the former has been
extensively used in the market and has been proven to be effective. However, nobody could assure
us that this length is actually the best. This thus motivates us to look for new methods, which
would dynamically search in the space of technical indicators to find better solutions.

The second application of this thesis is motivated by the field of economics. This work is
based on observations made under agent-based artificial financial models, regarding the fraction
dynamics of trading strategies that exist in markets. These observations state that the fractions of
trading strategy types keep swinging and as a result, in the long run, a “winner” type of trading
strategy does not exist. This has significant implications, because it implies that it is not meaningful
to look for forecasting rules in the market. However, the majority of these observations has not
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1.2 Thesis overview

been tested under real data. This thus motivates us to formulate these observations into a concrete
hypothesis, which we call the Market Fraction Hypothesis (MFH), and test them under different
international markets. Running these tests will provide us with valuable information about the
fraction dynamics of financial markets, which can offer a better understanding of how the markets
are structured.

The final application this thesis discusses is again from the field of economics, and is also
based on observations made under agent-based financial models. These observations have again
not been formalized before, which we attempt to do. The observations are related to the behavior
of financial markets, which is said to be non-stationary. However, as these observations were
made under an artificial market framework, this motivates us to test them under ‘real’ datasets and
thus investigate the nature of financial markets. After formulating these observations into another
hypothesis, called the Dinosaur Hypothesis (DH), we examine the markets’ behavior dynamics in
light of this hypothesis. This will then give us insight on how financial markets behave in the long
run.

1.2 Thesis overview
This thesis is divided into 6 parts. The first part contains one chapter, which is the introduction
of the thesis. Part II aims to provide a brief introduction on the two computational intelligence
techniques used in this thesis: Genetic Programming (GP) and Self-Organizing Map (SOM). It
contains two chapters, Chapter 2 and 3, and each chapter presents one technique. More specifically,
Chapter 2 starts with a general description of the GP algorithm. It then focuses on specific topics
such as GP representations, initialization methods, operators, breeding methods, and selection
strategies. Finally, there is a short discussion on the different data types in Genetic Programming.
Next, Chapter 3 focuses on SOM, which is the second computational intelligence technique used
in this thesis. The chapter starts by presenting some general information about SOM, along with
the main algorithm. Then it focuses on specific topics such as initialization methods, learning
parameters, update rules, and topologies.

Part III presents a review on topics related to financial markets. It is divided into two chapters,
Chapter 4 and 5. Chapter 4 provides information about financial forecasting and is related to the
work which will be presented in Chapter 6. Chapter 5 provides information about agent-based
financial models and is related to the work which will be presented in Chapters 7 and 8. More
specifically, Chapter 4 presents the Efficient Market Hypothesis (EMH), and then continues by
presenting a review on previous financial forecasting attempts. In addition, it presents the two
methods that are widely used for financial forecasting, fundamental and technical analysis. Fur-
thermore, this chapter discusses some computational intelligence techniques that have commonly
been used for the purposes of financial forecasting. Finally, the chapter presents EDDIE, which
is a Genetic Programming tool for financial forecasting. EDDIE is the GP tool used for the ex-
periments in this thesis. Chapter 5 presents the different types of agent-based financial models.
Observations from these models have led to the formulation of the MFH and the DH, the two hy-
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potheses tested in Chapters 7 and 8. Finally, Chapter 5 provides some background information on
these two hypotheses.

Moreover, it should be said that none of the chapters in Parts II and III pretend to be either an
extensive, or a complete review of their respective topics. Their objective is only to present the
topics that are closely related to this thesis.

Part IV presents the main contributions of the thesis, and is divided into three chapters: Chapter
6, Chapter 7, and Chapter 8. The first chapter, Chapter 6, focuses on the first problem we described
earlier, the one of pre-specified period lengths in the indicators of forecasting tools. It presents a
new version of the EDDIE algorithm, which we call EDDIE 8, which allows the GP to search in
the search space of the indicators. EDDIE 8 is then compared with a previous version, EDDIE 7,
under both empirical and artificial datasets. We finally present the results from these comparisons.
Chapter 7 formalizes the MFH, by presenting its main constituents. It also presents in detail a new
agent-based financial model, which we use in this thesis for testing the hypothesis. In addition,
Chapter 7 suggests a testing methodology for the MFH, runs tests under 10 empirical financial
datasets, and presents these results. Finally, Chapter 8 formalizes the DH, and also suggests a
testing methodology for it. Tests again take place under the same 10 empirical datasets used in the
previous chapter.

Part V contains one chapter, Chapter 9, which is the conclusion of the thesis. It summarizes
the work done in this thesis and also discusses future work.

Part VI is the final part of the thesis, and is composed of the appendix.
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Methods
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Chapter 2

Genetic Programming

This section gives some background information for the first of the two main techniques used for
the experiments of this thesis, which is Genetic Programming. We should highlight that we are
not aiming at offering a long and extended review of this method. The scope of this chapter is to
introduce the technique to the reader, and also to present the main parts of it, which we used to
facilitate our experiments. When other methods than the ones we have used in this thesis exist,
we briefly mention them and refer the reader to the relevant literature. The rest of this chapter is
organized as follows: Section 2.1 presents some general information about Genetic Programming,
and Section 2.2 discusses different Genetic Programming representations. Section 2.3 presents
different initialization methods, Section 2.4 presents Genetic Programming operators, and Section
2.5 discusses different breeding methods. Section 2.6 presents the different selection strategies
available, Section 2.7 presents the different data types in Genetic Programming, and Section 2.8
briefly discusses the different choices of grammar that a GP system can use. Finally, 2.9 concludes
this chapter.
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2.1 General Information

2.1 General Information
GP (Koza, 1992, 1994; Koza et al, 1999, 2003; Banzhaf et al, 1998; Poli et al, 2008) is an evolu-
tionary technique inspired by natural evolution, where computer programs act as the individuals of
a population. The GP process has several steps. To begin with, a random population is created by
using terminals and functions appropriate to the problem domain, where the former are variables
and constants of the programs, and the latter are responsible for processing the values of the system
(either terminals or other functions’ output). Some examples of functions are:

• Arithmetic operations (+, -, *, etc.)

• Mathematical functions (sin, cos, exp, log)

• Boolean operations (AND, OR, NOT)

• Conditional operator (If-Then-Else)

• Functions causing iteration (Do-Until)

• Comparison operators (>, <, ≥, ≤, ̸=, =)

• Other domain-specific functions may also be defined

In the next step, each individual is measured in terms of a pre-specified fitness function. The
purpose of assigning a fitness to each individual is to measure how well it solves the problem.
In the following step, individuals are chosen to produce new offspring programs. A typical way
of doing this is by using the fitness-proportionate selection, where an individual’s probability to
be selected is equal to its normalized fitness value (Koza, 1992). The individuals chosen from
the population are manipulated by genetic operators such as crossover and mutation, in order to
produce offspring. The new offspring constitute the new population. Finally, each individual in
the new population is again assigned a fitness and the whole process is repeated again, until a
termination criterion is met (usually a number of generations). At the end of this procedure (last
generation), the program with the highest fitness is considered as the result of that run.

Koza (1992) summarized the above procedure in three main steps:

• Population initialization.

• Evaluation of each individual and fitness assignment.

• Selection of individuals in order to produce new offspring by the means of different opera-
tors. These offspring form the new population.

As we mentioned earlier, the last two steps are iterated for a number of generations.
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Figure 2.1: An example of a tree created with the Full method. Source: Garcia Almanza (2008)

2.2 GP Representations
Representation is the way to symbolize the genotype of the individuals. Originally, individuals
were represented in the form of LISP S-expressions. Later, Koza used a tree-based GP represen-
tation, where a set of functions and constants form the individuals. This representation is widely
used nowadays, especially after Koza demonstrated its efficiency in Koza (1992). In this work
we use the tree-based GP representation, due to its popularity amongst researchers. Finally, other
representations that can be found in the literature are linear GP (Cramer, 1985; Banzhaf, 1993),
graph-based GP (Teller and Veloso, 1995), and Cartesian GP (Miller, 1999; Miller and Thomson,
2000) (Cartesian GP is actually a development of the graph-based GP).

2.3 Initialization of the population
Three widely used ways for initializing a GP population exist: Full, Grow and Ramped-Half-
And-Half, and they were established by Koza (1992). In the first method, a tree root is randomly
selected from the set of functions. Then this selected function takes other functions as children;
this process is repeated until we reach one level before the maximum depth for the trees. Finally
terminals are randomly selected, to form the leaves of that tree. As a result, trees created by this
method have a regular shape. In other words, the length along any path from the tree root to any
leaf is always the same. An example of a tree created by the Full method is shown in Figure 2.1. In
the second method, Grow, a tree root is again randomly selected; however, this time selection can
happen from either the functions or the terminals set. If the root is a function, then the arguments
are filled with random functions or terminals. The same happens for any consecutive functions,
until all branches are ending with terminals, as long as the maximum depth has not been reached.
Obviously, the shape of trees created with the Grow method is now different, as they can have a
variety of shapes. An example of such tree is presented in Figure 2.2.

Finally, the Ramped half-and-half method is a method that combines the previous two. More
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specifically, for every depth (i.e. from two up to the maximum initial depth), half of the trees are
created by using the full method and the other half by using the grow method. In this way, the
population has both irregular and full tree shapes.

Figure 2.2: An example of a tree created with the Grow method. Source: Garcia Almanza (2008)

We should also mention that apart from Koza’s initialization methods, trees can also be initial-
ized by other methods, such as the uniform initialization (not used in this thesis). If the reader is
interested in this method, we refer him to Iba (1996); Bohm and Geyer-Schulz (1996).

2.4 Genetic Operators
Banzhaf et al (1998) mentions that the three main genetic operators are: crossover, mutation, and
reproduction. The latter is quite simple, since all it does is take an identical copy of an individual
and put it into the new population. Crossover creates offspring by combining parts from two
individuals, also called parents. After choosing the two parents, a node from each one of them
is randomly selected. This point is called the cross-point. An example of the cross-point can be
viewed in Figure 2.3. As a result, each tree can be divided into two parts: the subtree from the
root to the cross-point, and the subtree from the cross-point and after. Therefore, two offspring can
be produced as a consequence of the above crossover. The first offspring will be formed by the
rooted subtree of the first parent and the subtree after the cross-point from the second parent. The
remaining subtrees from the two parents form the second offspring. Figure 2.4 shows an example
of a crossover.

The mutation differs from the crossover, in the sense that only one parent is needed instead
of two. After selecting a node of a tree that is going to be mutated, the subtree after this point is
removed and is replaced by a randomly generated subtree. Figure 2.5 presents a mutation example.

Other examples of operators are also Poli and Langdon’s uniform crossover and one-point
mutation (Poli and Langdon, 1998; Page et al, 1999), Chelapilla’s multi-mutation (Chellapilla,
1997), and Lee and Yao’s Lévy mutation (Lee and Yao, 2004). These operators are not used in this
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Figure 2.3: An example of a cross-point and the division in that tree. Source: Garcia Almanza
(2008)

52

of two individuals to create new offspring. The idea behind the crossover is that if both

parents are good enough to deal with a problem, these new individuals that combine

parts of those parents can outperform the parents fitness.

Figure 3.3: The cross-point and the division of the decision tree made by the cut

Figure 3.4: A recombination of two parents in order to create a new individual

Mutation

The mutation in an asexual operator, it introduces random changes in the structure of

the individuals. The mutation starts selecting a node mutation-point in the individual,

Figure 2.4: An example of the crossover operator. Source: Garcia Almanza (2008)

thesis and we thus do not discuss them here. If the reader is interested in them, we refer him to the
relevant literature.

2.5 Breeding methods
Breeding methods are strategies that define which individuals are allowed to mate and also or-
ganize how the operators are going to be applied. There are two main criteria that are used for
distinguishing among the different breeding methods:

• Mating restrictions between population members

• Type of operators used to create offspring, and the probability of their application

Let us start with the first criterion, which says that there can be mating restrictions between the
population members. There are several categorizations, which can be organized into two different
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53

the subtree lying in this mutation-point is removed and this is replaced by a subtree

generated at random. Figure 3.5 shows an example of a decision tree that was mutated.

Figure 3.5: Figure shows a mutated decision tree

3.3.1 GP closure and Sufficiency properties

As we have previously mentioned, GP is an evolutionary technique that uses dynamic

structures that change in shape and size. For that reason, there are some properties that

are exclusively for GP and these are not competence of other evolutionary algorithms,

such as the closure and the sufficiency properties. These properties are relevant for this

research, for that reason this section provides a brief introduction about the mentioned

properties.

Closure of the function and terminal sets

Given that GP deals with variable structures that have to be combined, it is important

that the function and terminal sets have the closure property. This property states that

the each function should be able to deal with all the values that it may receive as input

[4]. To understand the closure property, let F be the set of functions and T be the

Figure 2.5: An example of the mutation operator. Source: Garcia Almanza (2008)

layers. In the outermost layer, breeding can be either generational or steady state (Reynolds, 1992;
Syswerda, 1990). In generational breeding, the generations do not overlap with each other. First,
all offspring are generated and form an intermediate population; this population then replaces the
old one. In the case of steady state breeding, the new offspring are continuously added to the
population; as a result, they can immediately be selected as parents in order to form new individ-
uals. However, the fact that each new offspring is immediately added to the existing population
does not mean that this population expands. Usually an existing member is removed and taken
over by the new offspring. In this way, the population always remains the same size. In the next
layer, breeding can be either panmictic (Godlberg, 1989) or have some form of restricted mating
(Langdon, 1998). Panmictic means that every individual of the population is allowed to mate with
any other individual from this population. Examples of forms of restricted mating can be demic
sub-populations (Langdon, 2009), pygmy algorithms (Ryan, 1994), and genetic lineage strategies
(McPhee and Hopper, 1999). In demic sub-populations the population is divided into demes. Then
the majority of recombination happens between members of the same demes. A pygmy algorithm
divides the population into two sub-populations. Crossover is then allowed only between individu-
als that do not belong in the same sub-population. Finally, genetic lineage strategies select parents
based on their genetic lineage. For our work, we are using the generational, panmictic breeding
method for its simplicity and its popularity in the GP literature (Agapitos, 2010).

Let us now move to the second criterion, where we can use different types of operators which
are used depending on some probability settings (Poli et al, 2008). We saw earlier in Section 2.4 a
few examples of genetic operators. The main distinction here is whether the operator uses a single
parent (like mutation) or a set of parents (like crossover). The following section firstly presents the
widely used breeding method of Koza’s crossover extended with mutation, which is the breeding
method used in this thesis; it also briefly presents other popular operator setups.
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2.5.1 Koza’s Crossover Extended with Mutation
A very typical breeding strategy is Koza’s crossover operator, combined with mutation. Although
Koza does not use mutation in his experiments (Koza, 1992), it has been shown to be beneficial
using mutation with a low percentage, because it helps in ‘refreshing’ the population’s genotypic
content (Agapitos, 2010). Thus it is quite common to use a combination of crossover with muta-
tion. Usually the probability for crossover is quite high (e.g. 90%) and the remaining percentage
(e.g. 10%) is the probability for mutation. Individuals are selected via a tournament selection.
There is no reproduction in this method, but there is elitism. This means that the best individual
from every generation is directly copied to the next generation.

2.5.2 Other breeding methods
The previous breeding method is by no means the only one used in Genetic Programming. Other
methods can be used as well, such as those based on different operators, such as Chellapilla’s
Multi-mutation, and Poli and Langdon’s uniform crossover and point-mutation. Another breeding
method that can be found in the literature is broad-selection (Altenberg, 1994). A good discussion
of these breeding methods can be found in Agapitos (2010).

2.6 Selection Strategy
Selection strategies are used to select the individuals to whom we are going to apply genetic oper-
ators. It is based on the fitness of each program, in relation to the other members of the population.
A common selection strategy is the roulette wheel selection, where the probability of an individual
to be chosen is in proportion to its fitness value. Another commonly used selection strategy is
the tournament selection. Here a subset of the population is chosen, according to a pre-defined
tournament size. Then the members of this subset compete with each other and the best one (i.e.
the one with the highest fitness) is selected. In this work, we use the tournament as our selection
strategy.

2.7 Data Types in Genetic Programming
Koza states in Koza (1992) that in order for a GP to be applied to a specific problem, the concept
of closure must be satisfied. This means that the arguments for functions, as well as the values
returned from these functions, must be of the same data type. In this way, all functions can deal
with any values that they receive as input. As a result, early works in this area required that only
one type of function is used for generating trees. For instance, all functions should only return and
accept boolean values.

In order to address the issue of closure, Koza suggested using constrained syntactic structures.
These syntactic rules describe the terminals and non-terminals that can be used as the children
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nodes of each non-terminal. Koza then enforced these syntactic constraints by applying them
during tree initialization and while genetic operations were taking place. Similarly, structure-
preserving crossover makes sure that any crossover between trees is legal. For instance, once
the point of crossover from the first parent is chosen, the crossover point from the second parent
is randomly chosen among points of the same type. In this way, subtrees that are going to be
exchanged are going to be of the same type and thus any offspring derived from this crossover will
be valid.

Soon after, more work took place in order to introduce further constraints in the data types in
order to improve the performance of the GP. Montana (1995) extended Koza’s idea by proposing
the Strong Typed Genetic Programming (STGP). As Montana says, Koza’s GP and STGP are
similar approaches, with the difference that the latter does not need to directly specify which
children each non-terminal can have. Instead, this is done indirectly in STGP, by specifying the
data types of the arguments of each non-terminal and the data types returned by terminals and
non-terminals.

Finally, other works on data typing include branch typing and strong typing. More information
about both of them can be found in Koza (1994).

2.8 Grammar-based GP
We mentioned in the previous section that in order to satisfy the issue of closure, Koza used con-
strained syntactic structures. Another way to provide a formal specification of syntactic constraints
is to use ‘grammar’. Grammar is a set of rules used to specify the syntax of a language, and thus
specify syntactic constraints when building trees with GP. Some popular grammars that have
been used for building GP trees are the Disjunctive Normal Form (DNF) (Gruau, 1996), the Con-
text Free Grammar GP (CFG-GP) (Whigham, 1995), and the Backus Naur Form (BNF) (Backus,
1959) grammar. The last one, the BNF, is the grammar we have used for generating trees in this
thesis. More details about the BNF grammar we have used can be found in Chapters 4 and 6.

However, what is important to say at this point is that apart from the obvious advantage of
dealing with closure, the choice of grammar can limit the solutions of a system. This is because,
depending on the details of the grammar, different types of trees (and thus solutions) are generated.
Hence, there might be better solutions that a GP would never visit and thus detect, because of the
limitations of its grammar. EDDIE (Tsang et al, 1998, 2000; Li and Tsang, 1999a; Tsang et al,
2005), which is a GP system developed at the University of Essex and used BNF grammar, faced
these kinds of limitations due to the grammar it was using. Chapter 6 presents this problem in detail
and also explains in what way we extended EDDIE’s grammar and thus improved the performance
of its trees.
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2.9 Chapter Summary
In this chapter we presented Genetic Programming, which is a technique used for all of the re-
search chapters in this thesis. We started by presenting some general information about the al-
gorithm, and then continued by giving some more information on specific GP topics, such as GP
representations, operators, breeding methods, selection strategies, data types, and grammar. The
next chapter presents the second method that we have used in our experiments, Self Organizing
Maps.
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Chapter 3

Self Organizing Maps

This chapter presents the second technique used in this thesis, Self-Organizing Maps (SOM). We
start with a short introduction, and then continue with the main parts of the algorithm. Finally,
we present some well-known variants of SOM’s learning parameters. We should again remind the
reader, as we did in the previous chapter, that the goal of this chapter is not to offer an extensive
tutorial and review of Self Organizing Maps. The purpose of this chapter is to introduce the
algorithm, along with its main methods that have been used in this thesis in order to facilitate our
experiments. The material presented in this chapter has mainly been based on Kohonen’s work
about SOM (Kohonen, 2001, 1982). Other useful works that present SOM are Fausett (1994);
Ham and Kostanic (2001); Haykin (1999); Garson (1998); Deboeck and Kohonen (1998). The
rest of the chapter is organized as follows: Section 3.1 presents some general information about
SOM, while Section 3.2 presents the main SOM algorithm. Furthermore, Section 3.3 presents
and discusses the different initialization methods of SOM, and Section 3.4 presents the different
learning parameters and explains their variants. In addition, Section 3.5 discusses the different
update rules used in the SOM algorithm, then Section 3.6 presents the different topologies used
for visualization of the maps, and Section 3.7 presents the MathWorks Neural Network Toolbox,
which is used for parts of the experimental work in this thesis. Finally, Section 3.8 summarizes
this chapter.

3.1 General Information
SOM is a type of artificial neural networks (Bishop, 1995; Hassoun, 1995; Gurney, 1997) which
takes an input data with high dimensionality, and returns a low-dimensional representation of these
data, along with their topological representation. This representation is called a map. A self-
organizing map consists of components called neurons. Associated with each neuron is a weight
vector, which has the same dimensions as the input data.1 During the SOM procedure, the weight

1Input data can be represented as vectors, matrices, continuous functions or even other SOMs. In this thesis, the
input data consists of vectors. Thus, this chapter presents SOM under the assumption that the input data is vectors.
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vector of each neuron is dynamically adjusted via a competitive learning process. Eventually, each
weight vector becomes the center (a.k.a. centroid) of a cluster of input vectors. Thus, at the end
of the SOM procedure, all input vectors have been assigned to different clusters of a map. One of
the advantages of SOM is the preservation of topology, where inputs that are similar are grouped
in the same clusters. In addition, points that are near each other in the input space are mapped to
nearby clusters of the SOM. As a result, SOM can act both as a clustering tool and as a tool which
allows us to visualize high-dimensional data.

3.2 SOM incremental-learning Algorithm
This section presents, in detail, the SOM process, which was just described above. This process is
called the “SOM incremental-learning algorithm”.

The first thing that needs to be done is to initialize the weights of the neurons. This initializa-
tion can happen in different ways, which are presented in Section 3.3. The rest of the algorithm
constitutes two parts: learning and mapping. During learning, the input vectors are fed into the
network. Then, the distance2 of each input vector to all weight vectors is computed. The neuron
with a weight vector closest to the input vector is called the best matching unit (BMU), and is the
one that best represents the sample of weight vectors. The BMU neuron is, from this point on,
also going to be referred to as neuron c. The weight vector of neuron c is then rewarded by being
adjusted towards the input vector; the same adjustment also happens for the weight vectors of the
neighboring neurons of c. The magnitude of this adjustment decreases with time and with distance
from neuron c. This adjustment is given by Equation (3.1):

wi(t + 1) = wi(t) + hci(t)[x(t) − wi(t)] (3.1)

where wi is the weight vector of neuron i, x is the input vector, hci is the so-called neighborhood
function of neuron c, which decreases monotonically,3 and t is the discrete-time coordinate.

This process is repeated for λ number of times, for all input vectors. At the end of this learning
process, the resulting neurons are associated with groups of input vectors.

Finally, the mapping process takes place. Here each input vector is allocated to the neuron
whose weight vector has the smallest distance. Algorithm 1 summarizes this process.

3.3 Initialization
Initialization refers to the initial values of the weight vectors, before learning begins. As we have
said, a weight vector has the dimensionality of the input vector. Traditionally, there are three
different types of initialization: random, using initial samples, and linear. In addition to these

2There can be different ways of calculating this distance. More information about this can be found in Section
3.4.3.

3More details about the neighborhood function will follow in Section 3.4.1.
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Algorithm 1 The “incremental-learning” SOM algorithm

Initialize the SOM’s weight vectors, initialize neighborhood function
/* Learning process */

while t < λ do
for each input vector x do

for each neuron i in the SOM do
Calculate the distance between the input vector x and the weight vector wi of the cur-
rent neuron i

end
Return the weight vector of the neuron with the smallest distance from x (a.k.a. BMU
cluster)
Update the weight vector of the BMU and of the neurons in the neighborhood of BMU by
using the formula:
wi(t + 1) = wi(t) + hci(t)[x(t) − wi(t)]
Update the neighborhood function hci

end
Increment t by 1

end
/* Mapping process */
for each input vector x do

for each cluster i in the SOM do
Calculate the distance between the input vector x and the weight vector wi of the current
cluster i

end
Map (place) the input vector x to the weight vector with the smallest distance

end

initialization methods, we also present the midpoint initialization, which is a built-in method in
MATLAB’s toolbox, which we will be using for our experimental work. Further details about this
toolbox follow in Section 3.7.

3.3.1 Random Initialization
This is the simplest form of initialization. Each weight vector starts with random initial values.
Initially, the reason for using this type of initialization was to demonstrate the strength of SOM:
even with arbitrary values for the weight vectors, SOM will eventually manage to cluster the input
vectors. However, this method is not necessarily the best or the fastest (Kohonen, 2001).
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3.3.2 Initialization by using Initial Samples
In this type of initialization, we pick samples from the available input vectors x and use them as
the initial weight vectors. The samples we pick can be arbitrary.

3.3.3 Linear Initialization
This type is based on linear algebraic principles, such as eigenvalues and eigenvectors. As present-
ing a full account of this method falls outside the scope of this thesis, this method is not further
discussed. The reader is referred to the relevant literature, such as Kohonen (1982, 2001).

3.3.4 Midpoint Initialization
This weight initialization function is used by MathWorks Neural Network Toolbox (MathWorks,
2011), which is the SOM toolbox used in this thesis. More details about the toolbox follow in
Section 3.7.

Midpoint initialization sets the weight vectors to the center of the input ranges. It takes two
arguments: S, which denotes the number of neurons, and PR, which denotes an R × 2 matrix of
input value ranges equal to [Pmin, Pmax]. R is the number of elements of the input vector. Midpoint
initialization returns an S × R matrix with weights set to (Pmin + Pmax)/2. For instance, let us
assume we wanted to calculate the initial weight values for a 5-neuron layer of input vectors with
2×1 dimension, where the first element of the vectors ranges over [0 1], and the second one ranges
over [-2 2]. We could then set the 2 weights4 of each neuron to take the midpoint of this range:
0+1
2

= 1
2

and −2+2
2

= 0, respectively. Therefore, each one of the 5 neurons would have its weight
vector equal to [1

2
, 0].

3.4 Learning Parameters and their Variations

3.4.1 Neighborhood Function
As we saw earlier, during learning the weight vectors of the neurons that are topographically
close to the BMU (i.e. in the neighborhood of BMU) are updated according to Equation (3.1).
The purpose of this is that all these neurons will learn something from input x. This results in a
smoothing effect on the weight vectors of these neurons. During this smoothing the important role
of the smoothing kernel is given to the neighborhood function hci(t). In the literature, there are
two types of neighborhood functions that frequently occur: the first one refers to a neighborhood
set of neurons around the BMU (neuron c), and the second one refers to a Gaussian function.

4A reminder that the dimensionality of the weight vector is the same as the dimensionality of the input vectors.
Thus, in this example the weight vector is a 2 × 1 array.
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Let us start with the first type. Each neuron that lies within a radius σ around neuron c belongs
to a neighborhood that can be denoted by Nc. Figure 3.1 presents the neighborhood of Neuron 13
for radius σ = 1 (left) and for radius σ = 2 (right). Thus, the function takes values as follows: if
i ∈ Nc, then hci(t) = α(t), where α(t) is the learning coefficient (0 < α(t) < 1),5 and decreases
monotonically; if on the other hand i /∈ Nc, then hci(t) = 0. Therefore, Equation (3.1) takes the
form of w(t + 1) = w(t) for neurons that are not in the neighborhood of the BMU. This basically
means that these neurons that are not neighbors of BMU will continue to have the same weight
vector in time t + 1. The radius σ also decreases monotonically in time. Hence, as time passes the
number of neighbors that get updated (if any), decreases.

Figure 3.1: Neighborhood examples. In the first case the radius σ = 1. In the second case, the
radius σ = 2. (Source: MathWorks (2011))

The second type of neighborhood function can be written in terms of the Gaussian function.
Equation (3.2) presents the neighborhood function for a neuron i:

hci(t) = α(t)exp(−||wc − wi||2

2σ2(t)
) (3.2)

where wc and wi are the weight vectors of neurons c and i, respectively, || · || is the Euclidean
distance between the two weight vectors, and σ is the radius of the neighborhood Nc. As earlier,
the learning coefficient α(t) and the radius σ decrease monotonically in time. Thus, the smaller
these values get, the more hci decreases, and less and less neighbors of the BMU get updated, as
time passes.

Kohonen states that for small SOM networks (i.e. not more than a few hundred neurons)
selection of process parameters is not crucial, and thus we can use the simple neighborhood-set
definition of hci(t) (Kohonen, 2001, p. 88).

5The learning coefficient is presented in detail in Section 3.4.2.
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3.4.2 Learning Coefficient
The learning coefficient a(t) is a monotonically decreasing function of time. During learning,
a(t) should start with a high value, which then decreases monotonically in the subsequent time
periods. An accurate function is not important for small SOMs (Kohonen, 2001). Thus a(t) could
take different forms, such as: linear function, exponential decay function, and a function that is
inversely proportional to time t. A linear function can be of the form α(t) = α0(1− t

B
) (Kohonen,

2001), where is α0 is the initial value of α at time t = 1, B is a constant and t is time. The second
type of function uses an exponential decay for α, where α(t) = α0e

− t
T2 (Haykin, 1999), where α0

is the initial learning rate, T2 is a time constant, and t is time. Finally, the corresponding formula
for the inverse of the time function was suggested by Mulier and Cherkassky (1994) and is equal
to α(t) = A

t+B
, where A and B are again constants, and t is time.

For very large maps, it is crucial to select an optimal a(t) function. Kohonen (2001) also
discusses other examples of learning coefficients, which can be used for optimizing the learning
coefficient. Nevertheless, as in our experiments we will be using small SOMs, it is outside the
scope of this thesis to present and explain, in detail, these coefficients. We thus refer the reader to
the relevant books of Kohonen (2001, 1982).

3.4.3 Distance
As we have seen, during the SOM procedure we need to calculate the distance of the input vectors
x from the weight vectors w. There are different ways of doing this. The most common distance
is the well-known Euclidean distance. For instance, if there is an input vector x = (x1, x2, ..., xn)
and a weight vector w = (w1, w2, ..., wn), and both of them have the same dimension 1 × n, then
the Euclidean distance of x from w is equal to

d(x,w) = ||x − w|| =
√

(x1 − w1)2 + (x2 − w2)2 + ... + (xn − wn)2 =

√√√√ n∑
i=1

(xi − wi) (3.3)

The neuron that is thus the BMU is the one with the smallest Euclidean distance from the input
vector. This can also by expressed by Equation (3.4):

||x(t) − wc(t)|| = min
i
{||x(t) − wi(t)||} (3.4)

Another distance metric that can be used is the dot-product. Given the same vectors x and w,
their dot-product is given by Equation (3.5):

x · w =
n∑

i=1

xiwi = x1w1 + x2w2 + ... + xnwn (3.5)

Here it is the opposite case from the Euclidean distance, and thus the BMU is the neuron with
the maximum vector dot-product:
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x(t) · wc(t) = max
i

{x(t) · wi(t)} (3.6)

However, as the distance and the updating rule of the weight vectors should be mutually com-
patible with respect to the same metric (Kohonen, 2001, p. 91), Equation 3.1 should also change.
We will present this other equation in the next section, where we discuss alternatives to the weight
vectors’ updating rule.

3.5 Update Rules
So far we have presented the incremental-learning algorithm, which uses Equation 3.1 as the up-
dating rule for the weights of the neurons in SOM. However, there are other rules, too, which can
be used for updating the weighting vectors. Two well known rules are the “Dot-Product” and the
“Batch Map”.

3.5.1 Dot-product
As we mentioned in Section 3.4.3, one of the possible distance functions can be the dot-product.
However, if we change the distance rule, we should also change the weight vectors update rule, so
that they are compatible with respect to the same metric. As a result, Equation (3.1) is changed to:

wi(t + 1) =

{
wi(t)+hci(t)x(t)

||wi(t)+hci(t)x(t)|| if i ∈ Nc(t)

wi(t) if i /∈ Nc(t)
(3.7)

The advantage of this approach is that the weight vectors are normalized at each step.6 In terms of
algorithmic speed, the normalization slows down the algorithm; nevertheless, this can be compen-
sated by the use of the dot-product distance metric, which is quite fast (Kohonen, 2001, p. 91-92).
Algorithm 2 presents the pseudo code for the dot-product SOM.

3.5.2 Batch Map
As we have seen, the incremental-learning algorithm assumes that the weight vectors are updated
for every input/output training pair. The batch map process differs at this stage. First of all, several
input vectors are presented, together, to the network (or possibly all input vectors, if there are not
too many). The algorithm then finds the BMU for each input vector. Then, each weight vector is
updated by moving to the average position of all of the input vectors for which it is the BMU, or for
which it is in the neighborhood of a BMU. Thus every weight vector is updated by the following
rule, as shown in Equation (3.8):

6Although normalization is not necessary in SOM, it allows the weight vectors to be in the same range, and can
thus improve numerical accuracy

21



3.5 Update Rules

Algorithm 2 The “Dot-Product” SOM algorithm

Initialize the SOM’s weight vectors, initialize neighborhood function
/* Learning process */

while t < λ do
for each input vector x do

for each neuron i in the SOM do
Calculate the dot-product between the input vector x and the weight vector wi of the
current neuron i

end
Return the weight vector of the neuron with the biggest dot-product
Update the weight vector of the BMU and of the neurons in the neighborhood of BMU by
using the formula:

wi(t + 1) =

{
wi(t)+hci(t)x(t)

||wi(t)+hci(t)x(t)|| if i ∈ Nc(t)

wi(t) if i /∈ Nc(t)

Update the neighborhood function hci

end
Increment t by 1

end
/* Mapping process */
for each input vector x do

for each cluster i in the SOM do
Calculate the distance between the input vector x and the weight vector wi of the current
cluster i

end
Map (place) the input vector x to the cluster with the smallest distance

end

wi(t + 1) =

∑n
j=1 hc(j)i(t)xj(t)

n(hc(j)i(t)xj(t))
(3.8)

where c(j) is the BMU of the sample of input vectors xj , and n is the number of input vectors
mapped in the BMU or are in its neighborhood. The algorithm is essentially the same as Algorithm
1, with the only difference being in the update rule.

The Batch Map produces essentially similar results with the iterative SOM algorithm, but an
order of magnitude faster. This is specifically true if we use tools like MATLAB, where matrix
operations can be utilized efficiently and thus produce much faster results (Vesanto et al, 1999;
Deboeck and Kohonen, 1998). For this reason, it is considered to be an improvement to the other
methods.
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3.6 Topologies

Figure 3.2: An example of a rectangular SOM topology (Source: MathWorks (2011))

The usual arrangement of the neurons in a SOM is in a rectangular or in a hexagonal grid.
Results are not affected by the topology chosen. However, the latter topology is usually preferred
for visual inspection (Kohonen, 2001). In a hexagonal grid, the distance of all neighboring neurons
from the BMU is always the same, whereas this is not the case with the rectangular one. Let us have
a look in Figures 3.2 and 3.3, which present a rectangular and a hexagonal topology, respectively.
Any selected neuron from the rectangular grid has 8 other neurons around it (apart from the ones
at the four corners of the grid), but only 6 of them are at a distance equal to 1. This can also be
clearly seen by the left graph of Figure 3.1. On the other hand, a neuron in a hexagonal grid has a
distance equal to 1 with all of its 6 neighboring neurons.

Figure 3.3: An example of a hexagonal SOM topology (Source: MathWorks (2011))
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3.7 The MathWorks Neural Network Toolbox
MATLAB is a powerful programming language, which includes a number of toolboxes for dif-
ferent applications. Two well-known toolboxes for SOM are the MathWorks’ Neural Network
(MathWorks, 2011), and the toolbox from the Laboratory of Computer and Information Science at
the Helsinki University of Technology (Vesanto et al, 1999). The former comes pre-installed with
MATLAB, and is the toolbox that we use in our experimental work. The purpose of this section
is to introduce the reader to this specific toolbox. We specifically focus on presenting the default
parameters of the toolbox. If readers are interested in the other functions of this toolbox, we refer
them to the toolbox’s documentation.

Let us first start with the training algorithm. The default training algorithm is the batch algo-
rithm, which uses the batch map process as its update rule. In MATLAB, this algorithm is called
trainbuwb, and the weight updating function is denoted by learnsomb. The default initialization
algorithm in the toolbox is midpoint, which was presented in Section 3.3. The default neighbor-
hood function is the same as the one we presented earlier, which uses the set of neurons around
the BMU. Its initial value is a radius σ = 3. The distance function which will be used in our
experiments is the Euclidean distance, and is denoted by dist. Furthermore, the toolbox has two
default values for the learning coefficient, one for during the learning phase and one for during the
mapping phase. The former is set to 0.9 and the latter to 0.02. According to MathWorks documen-
tation (MathWorks, 2011), during the learning phase the learning coefficient is “adjusted down”
from 0.9 to 0.02.7 This phase lasts for as many steps as the learning lasts (specified by the user).
In addition, during the mapping phase, the coefficient further “decreases slowly” from the value of
0.02. Finally, the default topology used is the hexagonal one, and it is denoted by hextop.

3.8 Chapter Summary
In this chapter, we presented the Self-Organizing Map (SOM) method, which is going to be used
as part of our experiments in Chapters 7 and 8. We started by presenting a general version of SOM,
and then continued by presenting some common variants of the learning parameters. Of course,
this was by no means a full description of the method. Our aim was to present the reader with some
basic and important information about SOM. If readers are interested in more details about SOM,
or more information about other SOM variants, we refer them to the relevant literature mentioned
in the early sections of this chapter. Kohonen (2001) also presents a very detailed overview on
SOM literature. Another example of good literature of the different SOM variants can be found in
Salah Salhi et al (2009).

This concludes Part II, which presented the two main techniques used in the experimental

7The MathWorks documentation does not give details on how exactly this adjustment takes place. This fact should
not alarm us, however, because in our experiments in Chapters 7 and 8 we will be dealing with very small SOMs
(maximum 9 clusters), and as Kohonen says in Kohonen (2001), an accurate learning coefficient function is not
important for small SOMs.
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work of this thesis. The next part, Part III, presents a literature review on different topics that are
related to the works of the thesis. Such topics are financial markets, and more specifically, financial
forecasting, market models and market behavior.
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Literature Review
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Chapter 4

Financial Forecasting

4.1 General Information
The predictability of financial markets has been attracting the interest of many market profession-
als, academics and even ‘amateur’ investors for many years. In this chapter, we attempt to provide
a brief review on the forecasting of the financial markets, also known as financial forecasting.
We can find, in the literature, early attempts to look for temporal patterns in data that could al-
low people to make predictions, which date back to 1662. At that time John Graunt, a London
cloth merchant, published several social and epidemiological comparisons using bills of mortality
(Mills, 2002a). If the readers are interested in those early attempts at forecasting, we refer them to
Klein (1997), who provides detailed discussion on this topic.

However, not everybody agrees that forecasting can be extended to financial markets. More
specifically, the Efficient Market Hypothesis (EMH) tells us that the market cannot be predicted.
In the next section (Section 4.2) we present this well-known hypothesis, and also offer a short
discussion on it. We then continue by presenting a review on financial forecasting attempts, in
Section 4.3, and then present two methods widely used for financial forecasting: fundamental
analysis (Section 4.4), and technical analysis (Section 4.5). Furthermore, we discuss some compu-
tational intelligence techniques that have commonly been used for financial forecasting, in Section
4.6. Section 4.6 also comments on the limitations of many of these techniques and thus briefly
discusses our motivation for the work in Chapter 6. Moreover, Section 4.7 presents EDDIE, which
is a genetic programming tool for financial forecasting. EDDIE is the main tool used throughout
this thesis for our experimental work. Section 4.7 briefly discusses the limitations of the current
EDDIE versions. Finally, Section 4.8 concludes this chapter.

4.2 Efficient Market Hypothesis
Fama (1965) defined the concept of efficient capital markets, which says that if a market is “ef-
ficient”, prices will fully reflect the available information that relates to the financial asset being
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traded. Therefore, it is not possible to make predictions by using information that is available for
that market. This is known as the Efficient Market Hypothesis.

The EMH has three forms: weak-form, semi-strong-form, and strong-form. The first one
suggests that one cannot make a profit based on past stock prices and returns. The semi-strong-
form suggests that we cannot make a profit based on information that is publicly available, because
this (new) information will quickly be reflected in the price. Finally, the last form of the EMH
suggests that we cannot make a profit even if we have available all information, publicly or not
(i.e. insider information).

Thus the question that arises is whether it is futile to attempt to predict the market. There have
been a number of works that examine the EMH, both theoretical and empirical. In addition, empir-
ical results have been found both in favor of and against the hypothesis. Tsang (2009) states that
early research provided strong evidence in support of the EMH, whereas more recent works tend
to show anomalies. Tsang also mentions the example of Scleifer (2000), which poses challenges
to the weak-form of the hypothesis. In the following section, we present several examples where
forecasting has been applied in financial markets.

4.3 Financial Forecasting Attempts
We referred at the beginning of this chapter to John Graunt, who made an early attempt in fore-
casting. Since then, forecasting has been extended to different types of markets and a variety of
models have been used. Mills (2002a,b) provides an excellent collection of both early and more
recent works (up to 2002) on financial forecasting. Although these works could be considered
slightly old now, we still believe that Mills’ collection is worth mentioning, because the list of
works he includes is extensive and informative. Some examples of forecasting that Mills men-
tions are (Fama, 1972; Pesaran and Timmermann, 1995, 2000). Furthermore, De Gooijer and
Hyndman (2006) provide an extensive review on time series forecasting until 2006. In addition,
financial forecasting can also be extended to the foreign exchange market (Cheong et al, 2011;
McMillan and Speight, 2011), the bond market1 (Viceira, 2011) and the forward market2 (Liu and
Chou, 2003). Moreover, there have been several works related to volatility forecasting (Poon and
Granger, 2005, 2003), and forecasting of extreme events, such as a stock market crash (Garcia Al-
manza and Tsang, 2007). Finally, over the last few years, we have witnessed new forecasting
methods and applications, such as technical analysis (Brock et al, 1992; Taylor and Allen, 1992;
Lo et al, 2000) and high frequency forecasting (Matas and Reboredo, 2011).

In this thesis, we are interested in the forecasting of trading rules in the stock market. Tradi-
tionally, there have been two forecasting methods that are widely used: the fundamental analysis
and the technical analysis. Since, in this work, we are using indicators from the latter, we first

1The environment in which trading of debt securities takes place.
2Forward contracts take place between individual parties and thus are not frequently traded on exchanges. There-

fore, a forward market is a general term used to refer to the informal market in which these contracts take place.
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4.4 Fundamental Analysis

provide a short description of the fundamental analysis, and then continue with a more detailed
description of the technical analysis.

4.4 Fundamental Analysis
The aim of fundamental analysis is to examine a company’s financial statements and balance sheets
in order to predict future trends of their shares. Fundamental analysis thus depends on statistics;
it studies past records of assets, earnings, dividends, interest rates, sales, products, management
and markets. Fundamental analysts believe that a stock price will return to its real, fundamental
value. Thus, if they believe that the current price of a stock is below what they consider to be its
fundamental value, they recommend to buy, because they expect the asset’s price to rise. On the
other hand, when an asset is overvalued, they recommend to sell.

4.5 Technical Analysis
Financial analysts have been using historical data in order to try predict future events for many
years. It is believed that traders usually tend to react in the same way to the same types of events
(Kahn, 2006). Technical analysts thus believe that there can be patterns in the stock prices and that
these patterns repeat themselves (Murphy, 1999).

Technical analysis is a technique which allows someone to evaluate stocks by analysing the
statistics generated by the market activity, such as past prices and trading volume (Edwards and
Magee, 1992). Technical analysts believe that historical information about stocks and markets can
give them an indication of the future performance of that stock or market. Therefore, the goal of
technical analysis is to find any kind of patterns in the data (e.g. patterns in price changes or in
volume changes), so that the analysts can use this information in order to make a forecast regarding
the future movements of this stock or a market. It should also be mentioned that technical analysis
supposes that stock prices have trends; thus, the aim is to detect the direction and the strength of
the trend. The earlier the trend is detected the more profit a trader can make.

Lastly, it should be mentioned that there is a debate among financial theorists regarding the
value of technical analysis. Especially in previous years, technical analysis was not enjoying that
much popularity nor acceptance among practitioners or academics. Over the last few years, how-
ever, things seem to have changed; technical analysis is being used more and more. Some notable
examples are: Brock et al (1992); Taylor and Allen (1992); LeBaron (1998). Some additional and
more recent bibliography can also be found in the following works: Lo and Hasanhodzic (2010);
Keller (2007); Nordern (2006); Appel (2005); Kirkpatrick and Dahlquist (2006); Irwin and Park
(2007). The reader should bear in mind that this list is by no means exhaustive. Besides, it is not
the purpose of this thesis to provide neither theoretical nor empirical justification for the use of
technical analysis. Our purpose is to use indicators derived from technical analysis, which will
then be fed as input for our GP algorithm.
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4.5 Technical Analysis

4.5.1 Technical Indicators
There are many indicators derived from technical analysis. This section presents the technical
indicators that have been used for the experiments of this thesis. These indicators have also been
found to be quite popular among traders (Edwards and Magee, 1992; Murphy, 1999; Pring, 1991;
Brock et al, 1992; Martinez-Jaramillo and Tsang, 2009; Garcia Almanza, 2008). Nevertheless, the
techniques developed in this work are not limited to such indicators.

We have performed a sort of standardization in the indicators; the reason for this is because
when we later on use these indicators with GP, we do not want their results to be in a big range,
because this would mean that the GP’s search space would be increased. Given a price time series
[price P (t) at time t ≥ 0], and a period of length L, here are the indicators we used, along with
their formulas (Equations (4.1) to (4.6)).

Moving Average (MA) Indicator
Nowadays there are many different types of MA. Some examples are the Simple MA, the Cumu-
lative MA, the Weighted MA, the Exponential MA, and the Modified MA. However, the basic one
is the Simple MA and this is the one we use in this work.

Thanks to the MA, traders are able to observe any changes in the trend of the prices of a stock.
Typically, when a short-term MA (e.g. 12 days) goes above a long-term MA (e.g. 60 days), this
indicates upward momentum. On the other hand, when a short-term MA goes below a long-term
one, this indicates downward momentum. The reason traders are usually using MAs with different
periodicity (usually a short-term and a long term, as above) is because this allows them to detect
changes in smaller and bigger trends, respectively.

The formula for MA is given by Equation (4.1):

MA(L,t) =

P (t) − 1
L

L∑
i=1

P (t − i)

1
L

L∑
i=1

P (t − i)

(4.1)

Filter (FLR) Indicator
This indicator is used to indicate buy or sell actions, depending on whether the price movement
goes in the opposite direction by a predefined percentage. For instance, if the price reverses from
a downward trend and rises by a specific percentage from the low price that it was previously, then
the trader would perform a ‘buy’ action.

Equation (4.2) presents our interpretation of the FLR indicator:

FLR(L,t) =
P (t) − min{P (t − 1), . . . , P (t − L)}

min{P (t − 1), . . . , P (t − L)}
(4.2)

Trade Break Out (TBR) Indicator
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In order to understand this indicator better, we first need to explain two terms: support and resis-
tance. Support is the point where the price stops going down any further, whereas resistance is the
point where the price does not go up any further. Technical analysts suggest that downward price
trends tend to reverse at support points, whereas upward trends tend to reverse at resistance points.
However, when these points are breached (breakout), perhaps because of some new information
regarding the market, it is likely that the price will continue in the same direction. Hence, traders
tend to observe these breakouts and when a stock goes above its point of resistance, they buy; when
on the other hand the stock price goes below its point of support, traders sell.

Equation (4.3) shows the formula for this indicator:

TBR(L,t) =
P (t) − max{P (t − 1), . . . , P (t − L)}

max{P (t − 1), . . . , P (t − L)}
(4.3)

Volatility (Vol) Indicator
A period of an increasing volatility could indicate a reversal in the trend or strong downward trends.
This would thus give an indication to a trader that he should be cautious. On the contrary, when
there is a period of decreasing volatility, this indicates upward trends and traders should buy.

Vol is equal to:

Vol(L,t) =
σ(P (t), . . . , P (t − L + 1))

1
L

L∑
i=1

P (t − i)

(4.4)

Momentum (Mom) Indicator
The Mom Indicator measures the acceleration or speed at which a stock’s price is changing. In
order to better understand this indicator, (Appel, 2005, p. 52) gives the following example:

“Consider a golf drive, for example. A well-hit ball leaves the tee quickly, rising and gaining
altitude quickly. Momentum is very high. Although it might be difficult to estimate the carry of the
drive in its initial rise from the tee, it is often possible to determine, from the initial rate of rise
of the ball, that this is a well-hit drive, likely to carry for some considerable distance. Sooner or
later, the rate of climb of the ball clearly diminishes and the ball loses momentum. At this time,
an estimate of the final distance of the drive can be be more readily made. The important concept
involved is that rates of rise diminish before declines actually get under way. The falling rate of
change of the drive provides advance warning that the ball is soon going to fall to the ground. In
its price movements, the stock market often demonstrates momentum characteristics that are very
similar to the momentum characteristics of the golf drive”.

Thus, when Mom is positive, this indicates an upward trend. If Mom starts decreasing, this could
be an indication that there is going to be a reverse in the previously upwards trend, and hence
the traders should be cautious. Finally, when Mom is negative, this indicates a downwards trend.
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Equation (4.5) provides the Mom formula:

Mom(L,t) =
P (t) − P (t − L)

P (t − L)
(4.5)

Finally, from Mom we can also calculate its MA, as shown in Equation (4.6).

Momentum Moving Average (MomMA) Indicator

MomMA(L,t) =
1

L

L∑
i=1

Mom(L, t − i) (4.6)

4.6 Computational Intelligence techniques for Financial Fore-
casting

Computational Intelligence focuses on the design and development of algorithms that are capa-
ble of producing new knowledge to improve their performance (Kodratoff et al, 1990). There are
several CI techniques that have been used for financial forecasting. Among the most popular and
successful ones we can find Artificial Neural Networks, Genetic Algorithms, Genetic Program-
ming and Grammatical Evolution. In this section we provide a brief presentation for each one of
the above techniques, along with references for some important works on them.

4.6.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) is a model that emulates the biological neural networks. An
ANN is characterized by three things, as Fausett (1994) explains: its pattern of connections be-
tween the neurons (i.e. its architecture), its method of determining the weights of the connections
(i.e. training) and its activation functions. ANNs are a very well-exploited CI technique in finan-
cial forecasting. The literature in this area is expansive; some early works on ANN are: Trippi and
Turban (1992); Refenes (1994); Azoff (1994); Zhang et al (1998). Some other more recent exam-
ples are Chang et al (2009); Hou and Duan (2009); Lam (2004); West et al (2005); Roh (2007).
Furthermore, Wong and Selvi (1998) and Shachmurove (2005) offer useful literature surveys on
the applications of Neural Networks in different fields of finance. Finally, ANNs have also been
used in combination with other techniques, like Evolutionary Algorithms (Kwon and Moon, 2007;
Hayward, 2006; Kim, 2006; Versace et al, 2004; Yao and Liu, 1997; Yao and Islam, 2008; Liu and
Yao, 2001).
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4.6.2 Genetic Algorithms
Genetic Algorithms (GAs) were invented by John H. Holland (Holland, 1975). An informative
introductory book to this area is Michalewicz (2002). GAs are search algorithms. They have
not been used only for financial forecasting applications, but also for optimization and machine
learning problems. Moreover, GAs have been used for the modeling of economic learning in
the context of agent-based computational economics and in the context of multi-agent systems in
general.

In the past, GAs had been used in several works to perform financial forecasting; some exam-
ples are Badawy et al (2005); Bauer (1994); Mani (1996); Allen and Karjalainen (1999); Leigh
et al (2002). However, they have been less popular recently due to certain limitations, such as
the fixed size structure3 of the individuals and their representations (Martinez-Jaramillo, 2007).
Nonetheless, GAs can be used in conjunction with other techniques like Neural Networks, as was
shown earlier.

4.6.3 Genetic Programming
Genetic Programming (GP) is also inspired by natural evolution and its individuals are computer
programs, as was shown earlier in Chapter 2. GP has been broadly used over the last years for
financial forecasting purposes. One main advantage of GP is its ‘transparency’, since it is not a
black box technique, and thus allows the user to see and understand the trees, i.e. the mechanism
that leads to a specific decision. In this way, a user/trader can have a better understanding of
the market mechanism. Some recent examples in this area are Bernal-Urbina and Flores-Méndez
(2008); Xie et al (2007); Bhattacharyya et al (2002); Dempster et al (2001); Agapitos et al (2010);
Garcia Almanza and Tsang (2007); Tsang et al (2004); Abdelmalek et al (2009); Lohpetch and
Corne (2009); Wang et al (2010); Wilson and Banzhaf (2010).

For our experiments in this thesis, we have used GP. More specifically, we have used EDDIE,
a well-tested financial forecasting tool, which we present in detail in Section 4.7.

4.6.4 Grammatical Evolution
Grammatical Evolution (GE) is a relatively new technique, which can evolve computer programs
in any language (Ryan et al, 1998) and is based on the BNF grammar. O’Neill, one of the founders
of GE, explains in (O’Neill et al, 2001, p. 346) how GE works.

“Rather than representing the programs as parse trees, as in traditional GP, a linear genome
representation is adopted. A genotype-phenotype mapping process is used to generate the output
program for each individual in the population. Each individual, a variable length binary string,
contains in its codons (groups of 8 bits) the information to select production rules from a BNF

3Variable length representations can be used, but it is more complex to implement the crossover operator.
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grammar. The BNF is a plug-in component to the genotype-phenotype mapping process, that rep-
resents the output language in the form of production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals, according to the production rules”.

Some relevant GE examples for financial forecasting are O’Neill et al (2001); Dempsey et al
(2004); Bradeley et al (2010).

4.6.5 Other Computational Intelligence (CI) techniques
In this section we present some further CI techniques that are used for financial forecasting. It
would of course be ambitious to claim that we will offer a full account of the research in this area;
our goal is just to provide some illustrative examples.

Reinforcement learning is another CI technique used for financial forecasting. Examples of
this can be found in Dempster and Romahi (2002); Dempster and Leemans (2006). Support Vector
Machines (SVMs) are powerful mechanisms that have been used to perform financial forecasting,
like in Yuan and Zou (2009); Sapankevych and Sankar (2009); Cao and Tay (2006); Gestel et al
(2001); Huang et al (2004a). In particular, such mechanisms have been extensively used to predict
bankruptcy like in Fan and Palaniswami (2000); Gestel et al (2003) or to perform credit rating like
in Huang et al (2004b). A detailed literature survey on the topic can be found in Sapankevych
and Sankar (2009). Moreover, Learning Classifier Systems (LCSs) is another CI technique that
has been used for financial forecasting. Examples can be found in Schulenburg and Ross (2001,
2002). Bayesian Kernel Models have also been used for volatility forecasting (Tino et al, 2005).
Finally, Genetic Network Programming and Differential Evolution have also been used for finan-
cial forecasting purposes (Chen et al, 2007; Worasucheep, 2008).

4.6.6 Limitations of the current financial forecasting approaches
So far, we have presented different CI techniques which have been applied for financial forecasting
purposes. Many of these works, use technical analysis indicators to form their predictors. Such
examples are: Bhattacharyya et al (2002); Dempster et al (2001); Becker and Seshadri (2003);
Dempster and Jones (2000); Dempster and Leemans (2006); Dempster et al (2001); Dempster and
Romahi (2002); Agapitos et al (2010); Cao and Tay (2001). However, a limitation of all of the
above works is that the indicators they use have a pre-specified period. For instance, they use ‘12
days Moving Average’. Nevertheless, nobody can guarantee that the period of ‘12 days’ is the
optimal period for an indicator. We thus consider important to work towards this direction and
investigate the effects of allowing the evolution to decide on the optimal indicators. In the next
section, we present a GP system that was developed at the University of Essex, which also faced
the limitation of pre-specified periods. Later, in Chapter 6, we explain how we have extended this
tool, by allowing the GP to look for the optimal indicators.

One last thing that should be mentioned, is that the only work known to us that has not used
fixed periods for the indicators is Brabazon and O’Neill’s (Brabazon and O’Neill, 2004). However,
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this work does not offer any discussion on the effects of this choice. This is because this work
focused on the advantages of the application of Grammatical Evolution to Foreign Exchange (FX)
markets. No discussion was attempted on the benefits of allowing the evolution to look for the
optimal periods.

4.7 EDDIE for Financial Forecasting
In this section, we present a GP tool for financial forecasting, called EDDIE (which stands for
Evolutionary Dynamic Data Investment Evaluator), which uses indicators from technical analysis
in order to make its forecasts. EDDIE is the main tool used for the experiments in Chapter 6 and
is also used for parts of the experiments in Chapters 7 and 8.

EDDIE learns and extracts knowledge from a set of data. It was first implemented in horse
races (Tsang et al, 1998). It was then implemented in the stock market, in order to forecast price
movements and help investors in their decision process (Li and Tsang, 1999b). Later EDDIE was
developed into an interactive tool for discovering investment opportunities (Tsang et al, 2004).
Li and Tsang (Li and Tsang, 2000; Tsang and Li, 2002) further developed the algorithm and
introduced constraints to its fitness function. This version was called FGP-2 (stands for Financial
Genetic Programming, a.k.a EDDIE-4), and will be discussed in the next section. The introduction
of the constraints did not affect the overall correctness of the program, but it improved the rate of
failure (i.e. the algorithm would make less mistaken predictions-see Section 4.7.3 for more details).
EDDIE was also used in arbitrage opportunities discovery (Tsang et al, 2005), where it managed
to successfully forecast arbitrage opportunities. However, it only managed to pick up a very small
proportion of these opportunities; it thus had a quite high rate of opportunities that it was failing
to discover. This fact thus limited any commercial potential for that version. Furthermore, EDDIE
was also applied to detect scarce opportunities. Garcia Almanza (Garcia Almanza and Tsang,
2007; Garcia Almanza, 2008) invented the Repository Method, which was successfully used for
detecting rare opportunities in the market (e.g. crashes). Finally, EDDIE has recently been used in
Wang et al (2011, 2010), where new fitness function and new operators were applied; in addition,
Wang et al (2010) also used the ensemble method. Results were promising, showing improvement
in the performance of the algorithm, but were not always consistent across all datasets tested (Wang
et al, 2010).

In this work we are interested in the financial forecasting abilities of EDDIE, and therefore we
will focus on those versions of EDDIE. More specifically, we will focus on Jin Li’s FGP-2 (Li,
2001), which has been extensively presented in the literature (Tsang et al, 2000; Li and Tsang,
1999a; Tsang et al, 2004). For the rest of this chapter, we will hence provide more information on
this algorithm. Later, in Chapter 6 we present how we have extended FGP-2 and the reasons for
this.
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4.7.1 FGP-2: An Overview
In his framework, Li was interested in predicting price movements. The kind of question he tried
to answer was ‘will the price increase within the n following days by r%’? Let us now show how
FGP-2 attempts to address this question.

First of all, the user feeds FGP-2 with a set of past data; it then uses this data and, through
a GP process, it produces Genetic Decision Trees (GDTs), which make recommendations of buy
(1) or not-to-buy (0). It then evaluates the performance of the GDTs on a training set, for each
generation. The GDT with the highest fitness at the last generation is finally applied to a testing
set.

The set of data FGP-2 uses is composed of the daily closing price of a stock, a number of
attributes, and signals. Stocks’ daily closing prices can be obtained online on websites such as
http : //finance.yahoo.com and also from financial statistics databases like Datastream. The
attributes are indicators commonly used in technical analysis (Edwards and Magee, 1992); which
indicators to use depends on the user and his belief in their relevance to the prediction. Table 4.1
presents the technical indicators that FGP-2 used.

Table 4.1: Technical Indicators used by FGP-2.

Technical Indicators (Abbreviation) Period

Moving Average (MA) 12 & 50 days
Trade Break Out (TBR) 5 & 50 days
Filter (FLR) 12 & 63 days

The signals are calculated by looking ahead of the closing price for a time horizon of n days,
trying to detect if there is an increase of the price by r% (Tsang et al, 2000). Thus, when there is
an increase in the price by r% within the next n days, then we denote this by 1 (true), else by 0
(false). Let us for instance assume that n is set to 20 and r to 4%. The GP is thus trying to use
some of the indicators of Table 4.1 in order to forecast whether the daily closing price is going to
increase by 4% within the following 20 days.

After we feed the data to FGP-2, it creates and evolves a population of GDTs. Figure 4.1
presents the BNF (grammar) of these GDTs for FGP-2. The root of each tree is an If-Then-
Else statement. Then the first branch is a Boolean (testing whether a technical indicator is greater
than/less than/equal to a value4), or a logic operator (and, or, not), which can hold multiple Boolean
conditions. The ‘Then’ and ‘Else’ branches can be a new GDT, or a decision, to buy or not-to-buy
(denoted by 1 and 0).

We would also like to draw the reader’s attention to the Variable symbol of Figure 4.1; here are
the 6 indicators which we mentioned earlier in Table 4.1 that FPG-2 uses. They are pre-specified
and should thus be considered as constants of the system. This was considered a limitation of all

4This value is a real number, which is optimized through a hill climbing process.
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<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
”Not” <Condition> |
Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 5 | TBR 50 | FLR 12 |
FLR 63

<RelationOperation> ::= “>” | “<” | “=”
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 4.1: The Backus Normal Form of FGP-2

EDDIE versions and thus motivated us to extend the algorithm. More information about how we
have extended the algorithm will follow in Chapter 6.

4.7.2 Performance evaluation
Each GDT’s performance is evaluated by a fitness function, presented below.

If the prediction of the GDT is positive (1), and also the signal in the training data for this
specific entry is also positive (1), then this is classified as True Positive (TP). If the prediction is
positive (1), but the signal is negative (0), then this is False Positive (FP). On the other hand, if the
prediction is negative (0), and the signal is positive (1), then this is False Negative (FN), and if the
prediction of the GDT is negative (0) and the signal is also negative (0), then this is classified as
True Negative (TN). These four together give the familiar confusion matrix (Provost and Kohavi,
1998), which is also presented in Table 4.2.

Table 4.2: Confusion Matrix

Actual Positive Actual Negative

Positive Prediction True Positive (TP) False Positive (FP)
Negative Prediction False Negative (FN) True Negative (TN)

As a result, we can use the following 3 metrics:

Rate of Correctness (RC)

RC =
TP + TN

TP + TN + FP + FN
(4.7)
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Rate of Missing Chances (RMC)

RMC =
FN

FN + TP
(4.8)

Rate of Failure (RF)

RF =
FP

FP + TP
(4.9)

Li (2001) combined the above metrics and defined the following fitness function:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4.10)

where w1, w2 and w3 are the weights for RC, RMC and RF respectively.5 Li states that these
weights are given in order to reflect the preferences of investors. For instance, a conservative
investor would want to avoid failure; thus a higher weight for RF should be used. However, Li also
states that tuning these parameters does not seem to affect the performance of the GP.

4.7.3 Constraints
As we said at the beginning of the chapter, Li and Tsang introduced constraints to EDDIE, and
thus created FGP-2. These constraints were implemented in the fitness function, which allowed
FGP-2 to achieve lower RF at the price of a higher RMC. The effectiveness of this constrained
fitness function has been discussed in detail in Li (2001); Tsang et al (2005). The constraint is
denoted by R, which consists of two elements represented by percentage, given by

R = [Cmin, Cmax],

where Cmin is the percentage of minimum positive predictions required, and Cmax is the percentage
of maximum positive predictions required.

Therefore, a constraint of R = [50, 65] would mean that the percentage of positive signals that
a GDT predicts6 should fall into the range of 50-65%. When this happens, then the coefficient of
RC (w1) remains as it is. Otherwise, w1 it takes the value of zero.

During the evolutionary procedure, we allow three operators: crossover, mutation and repro-
duction. After reaching the last generation, the best-so-far GDT (in terms of fitness) is applied to
the testing data.

5Here we should note that RMC = 1 − Recall, and RF = 1 − Precision, where Recall and Precision are the
two well-known metrics for evaluating the correctness of pattern recognition algorithms. There is no doubt that Recall
and Precision are more popular in the literature than RMC and RF. However, we chose to continue using Li’s RMC
and RF for consistency purposes, since we are after all extending his work.

6As we have mentioned, each GDT makes recommendations of buy (1) or not-to-buy (0). The former denotes a
positive signal and the latter a negative. Thus, within the range of the training period, which is t days, a GDT will
have returned a number of positive signals
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Algorithm 3 presents the pseudo code that FGP-2 uses for its experiments.

Algorithm 3 Pseudo code for the procedure that FGP-2 and EDDIE in general follows. (Based on
(Li, 2001, p. 76))

Procedure EDDIE ( )
Begin
Partition whole data into training data and testing data; /* While training data is employed to
train EDDIE to find the best-so-far-rule; the test data is used to determine the performance of predictability
of the best-so-far-rule */
Pop <- InitializePopulation (Pop); /* randomly create a population of GDTs.*/
Evaluation (Pop); /* calculate fitness of each GDT in Pop */
Repeat
Pop <- Reproduction (Pop) + Crossover (Pop); /*new population is created after genetic operators

of reproduction which reproduces M*Pr individuals and crossover which creates M*(1-Pr) individuals. Pr
denotes the reproduction probability and M is the population size */

Pop <- Mutation (Pop); /*Apply mutation to population */
Evaluation (Pop); /* Calculate the fitness of each GDT in Pop */

Until (TerminationCondition( )) /* determine if we have reached the last generation */
Apply the best-so-far rule to the test data;
End

4.8 Chapter Summary
This concludes this chapter, which offered a review on financial forecasting. We started by pre-
senting a brief history for financial forecasting and then continued by presenting its two main
constituents, fundamental and technical analysis. We then presented a number of technical indica-
tors, which are going to be used as part of our GP tool in the later chapters of this thesis. Then,
we presented some literature examples of different computational intelligence techniques that have
been used for financial forecasting and also explained why the current approach of pre-specified
periods of the technical indicators is considered to have limitations. Finally, we presented EDDIE,
a genetic programming tool which can be used for forecasting purposes. We also discussed pre-
vious applications of the tool in the literature. We finally explained in detail how the algorithm
works and how it can be evaluated. The next chapter focuses on financial agent-based models and
dynamics of financial markets. These models are closely related to the Market Fraction Hypothesis
and the Dinosaur Hypothesis, which constitute the second and third research chapter of this thesis
(Chapters 7 and 8).
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Chapter 5

Agent-Based Financial Models

This chapter focuses on agent-based financial models. These models are of interest to us for two
reasons: first of all, observations from these models about fraction1 and behavior dynamics have
led to the formulation of the Market Fraction Hypothesis (MFH) and the Dinosaur Hypothesis
(DH), which are the two hypotheses we test in this thesis, in Chapters 7 and 8. Secondly, for the
purposes of testing these hypotheses we use a new agent-based financial model, which acts as an
extension to the models that already exist in the literature. We thus consider it important to start
by offering a brief review on the existing types of agent-based financial models.

Thus, the rest of this chapter is organized as follows. Section 5.1 presents the different designs
of agent-based financial models and gives some information for each design. Then, Section 5.2
discusses some of the limitations of the above designs and thus explains our motivation for sug-
gesting an extension to these models. Finally, Sections 5.3 and 5.4 discuss the observations made
by the agent-based financial models, which as we have already mentioned, led to the formulation
of the MFH and the DH.

5.1 Agent-based Financial Models
Agent-based financial models are models of financial markets, where artificial agents can trade
with each other. These models simulate the simultaneous operations and interactions of the dif-
ferent agents that exist in the market, with the goal of re-creating or predicting the appearance of
complex phenomena (e.g., stylized facts of financial time series, such as volatility clustering, fat
tails, non-Guassianity (Cont, 2001)). Building such models can give valuable information about
different aspects of market dynamics, such as behavior dynamics (Chan et al, 1999). In this section
we present the different designs of financial agent-based models, along with some examples.

According to Chen et al (2012), there are two basic designs (models) of financial agents:
the N -type design, and the autonomous-agent design. A typical example of the former is the

1The term ‘fraction dynamics’ refers to the fractions of the different trading strategy types that can exist in a market.
More details about this are provided later in Section 5.3.
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fundamentalist-chartist model and of the latter the Santa Fe Institute Artificial Stock Market (SFI-
ASM). The rest of this section presents these two designs.

5.1.1 N -type Designs
5.1.1.1 Two- and Three-Type Designs

In this type of design, agents have beliefs regarding the price of a stock in the next period. In the
two-type design, there are two types of agent beliefs. Consequently, there are two types of ‘fixed’
trading strategies. Each agent can choose between these two types. These two types are usually
the fundamentalists and the technical traders.2

The three-type design is an extension of the two-type one, where there are three types of agents.
One way to implement this design is to have two types of chartists, the momentum traders and the
contrarian traders (Sansone and Garofalo, 2007). The former is the kind of agents we described
above as ‘chartists’. The latter, the contrarian traders, extrapolate past movements of the price into
the future, the opposite way that the trend goes. This happens because contrarians believe that the
price trend will finish soon and will start to reverse.

Finally, we should mention that several extensions of the above designs exist, by enriching
their behavioral rules. For instance, a typical way to do this is by adding a memory factor to these
rules. More information about this can be found in Chen et al (2012).

Adaptive behavior
In the original fundamentalist-chartist design, there is no learning. This means that once an agent
chooses to be a fundamentalist (or chartist), he will never change this believe and always continue
being a fundamentalist (or chartist). A way to make these models more realistic is to add an adap-
tive behavior, where the agents can learn from their previous experiences and then update their
beliefs. Thus, an agent that started as a fundamentalist is now able to update its beliefs at every
period. As a result, the proportion of the different strategy types that exist in the market (e.g.,
fundamentalists and chartists), which is called the Market Fraction, can change at every period.
Therefore, agents can switch between the strategy types, depending on which one they consider to
be more promising.

A good example of adaptive behavior can be found in Brock and Hommes (1998), where Brock
and Hommes use 2-, 3-, and 4-type models. Other adaptive behavior examples include Kirman’s
ANT Model (Kirman, 1991, 1993) and Lux’s Interactive Agent Hypothesis Model (Lux, 1995,
1997, 1998).

2Other equivalent names for technical traders are chartists, trend-followers and noisy traders. For a reminder on
what the fundamental and the chartist strategies are, see Chapter 4.
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5.1.1.2 Many-Type Designs

So far we have seen designs with several ‘fixed’ types. In this section we present some examples
of we have N -type designs, where N > 3.

Adaptive Belief Systems
A useful example of a many-type design is the Adaptive Belief System (ABS) of Brock and
Hommes (Brock and Hommes, 1998, 1997). This system can be considered as an extension of
the two- and three-type designs we have seen. The number of strategies used is between 1 and N ,
and these are known and fixed as before. This means that agents can choose from a finite and fixed
number of beliefs.

Large Type Limit and Continuous Belief Systems
Other many-type designs include the Large Type Limit (LTL) (Brock et al, 2005) and the Contin-
uous Belief System (CBS) (Dicks and Van der Weide, 2005). In these systems, the number N of
strategies is not finite, but infinite, i.e., N → ∞. Both of these systems are based on an idea called
distribution of beliefs, where there is a belief space from which the observed beliefs are sampled.

5.1.2 Autonomous Agent Designs
So far, we have talked about the N -type designs, where the strategies are pre-specified and fixed
by the model designer. Thus, the agents are restricted to using these specific strategies and cannot
come up with any new ones. Although the N -type design had been characterized as a major class
of agent-based financial models, it has also been agreed that it severely restricts the degree of
autonomy available for financial agents (Chen et al, 2012).

The above issue of autonomy was addressed by the autonomous agent designs, where we can
have artificial agents who are autonomous and thus have the ability to discover new strategies,
which have never been used before. An example of this is the well-known SFI-ASM (Palmer et al,
1994; Arthur et al, 1997), where a Genetic Algorithm (GA) was used. Thus, there is not a fixed
number of strategies; on the contrary, each artificial agent can have a different forecasting behavior
which is “customized” by a GA. SFI-ASM is of course not the only application of GAs in artificial
stock markets. Another example is AGEDASI TOF3 (Izumi and Okatsu, 1996; Izumi and Ueda,
1999). If the reader is interested in these topics, an informative literature review can be found in
Chen et al (2009).4

3It stands for A GEnetic-algorithmic Double Auction SImulation in TOkyo Foreign exchange market
4It should also be said that apart from GA, other population-based learning models have been used, such as GP.

We refer the readers to Chen et al (2012) for more details.
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5.2 Limitations of the Agent-Based Financial Models
In the previous section, we described two main agent-based financial designs: the N -type and
the SFI-like (autonomous agents design). The former design consists of N pre-specified strategy
types, and the agents have to choose among these N types. Consider the fundamentalist-chartist
model. Agents are presented with these two strategy types at different time periods, and have to
choose between these two types. An advantage of this design is that it allows us to observe the
changes in the market fraction5 dynamics of the above strategy types. However, as was shown,
a disadvantage of this type of model is that the agents always need to choose from the given N
strategy types. In addition, another limitation of this type of model is heterogeneity. Agents that
belong in the same trading strategy type follow exactly the same behavioral rule. Nevertheless, in
the real world, the behavior of each trader is expected to be heterogeneous (Chen et al, 2012); even
if some traders are clustered into a strategy type, it does not mean that they behave in exactly the
same way.

The issue of heterogeneity is addressed by the SFI-like models (autonomous agent designs).
This type of model allows for the creation of autonomous and heterogeneous agents, as was shown
above. Nonetheless, even under the autonomous agent models, agents are presented with a pre-
specified number of trading strategy types (Chen et al, 2012). To the best of our knowledge, there
is no model that uses autonomous agents that are not restricted to predefined, fixed strategy types.

In this thesis, and more specifically in Chapter 7, we present such an agent-based financial
model. It first allows the creation of novel, autonomous and heterogeneous agents by the use of GP.
The reason for using GP is that the market is considered to be undergoing an evolutionary process;
this is inspired by Andrew Lo’s Adaptive Market Hypothesis (AMH) (Lo, 2004, 2005), where Lo
argued that the principles of evolution (i.e., competition, adaptation, and natural selection) can
be applied to financial agents’ expectations, i.e., agents’ forecasting rules. Thus, agents can be
considered to be organisms that learn and try to survive.

After creating and evolving novel agents, we then cluster them into strategy types via SOM.
The trading strategy types are thus not pre-specified, but depend upon the strategies of the agents.
In this way, we are able to reconstruct the microscopic level of markets (SFI-like designs), where
financial agents are created, and connect it to the mesoscopic level (N -type designs), where agents
are clustered into N strategy types. Figure 5.1 illustrates this process. More details about this
model follow in Chapter 7. Lastly, as we have already mentioned, this model will facilitate the
experiments of Chapters 7 and 8, which test the MFH, and the DH, respectively. A brief review on
these two hypotheses is presented below.

5A reminder that ‘market fraction’ refers to the proportion of different types of trading strategies in a financial
market.
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Figure 5.1: Connecting the microscopic to the mesoscopic level of financial markets.

5.3 The Market Fraction Hypothesis
As we mentioned earlier, in the N -type designs, the proportion of different types of trading strate-
gies in a market is called the Market Fraction. A common observation in many of the above models
is that the market fraction of the strategies that exist in a market keeps swinging. In other words, if
for instance we have two types of agents in the market (e.g., fundamentalists and chartists), it has
been found that the fraction of these two strategies keeps swinging over time. If, for example at a
time t 90% of the market participants adopt the fundamental strategy and 10% of them adopt the
chartist strategy, these fractions change continuously over time; therefore, in a future time period,
we could observe that the fundamentalists occupy only 10% of the agents, and the chartists the
other 90%. This observation is very interesting, because it gives us valuable information about
market fraction dynamics, by suggesting that popularity can be interchanged among all available
trading strategy types. More importantly, the above implies that there cannot be a ‘winner’ type of
trading strategy and thus questions the necessity of attempting to forecast trading rules.

This swinging feature has been observed in many N -type financial models (Brock and Hommes,
1998; Amilon, 2008; Lux, 1995, 1997, 1998; Boswijk et al, 2007; Kirman, 1991, 1993). In ad-
dition, it has also been observed in artificial agent-based models (Winker and Gilli, 2001; Gilli
and Winker, 2003). For a more detailed description of agent-based financial models that have this
swinging property, the reader is referred to Chen et al (2012).

Based on these observations about the swinging of market fraction, Chen (Chen, 2008; Chen
et al, 2012) suggested a new hypothesis, called the Market Fraction Hypothesis (MFH). The MFH
states that there is a constant swinging among the fractions of the types of trading strategies that
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exist in a market. However, although the term ‘MFH’ was introduced and used by Chen, it was
never formalized as a hypothesis. This thus motivates us to formalize the MFH, by presenting
its main constituents, and also suggesting a method to test it. This takes place in Chapter 7. In
addition, motivated by the fact that the majority of the observations about the swinging of the
market fraction have so far only taken place under artificial market frameworks, we test the MFH
under empirical datasets. More details about the MFH tests will follow in the relevant chapter,
Chapter 7.

5.4 The Dinosaur Hypothesis
Let us now move our focus to the autonomous agent-based financial models. An observation
that has been made in some of these models (Arthur, 1992; Chen and Yeh, 2001) is regarding
the markets’ behavior, which is said to be non-stationary. In other words, the market behavior
constantly changes over time, and thus the same trading strategy that used to perform well at a
certain point in time, will not continue performing well in the future.

Brian Arthur, a pioneer of the Santa Fe Institute Artificial Stock Market (SFI-ASM), built an
artificial stock market, where he investigated the agents’ level of adaption to their market environ-
ment (Arthur, 1992). He found that agents that did not co-evolve (i.e., adapt), with the changes
in the market, became obsolete. This led Arthur to conclude that the market behavior changed
constantly. In addition, Arthur used ‘dinosaurs’ as a metaphor to describe this constantly-changing
property. More specifically, Arthur stated:

“We find no evidence that the market behavior ever settles down; the population of predictors6

continually co-evolves. One way to test this is to take agents out of the system and inject them in
again later on. If market behavior is stationary they should be able to do as well in the future as
they are doing today. But we find that when we “freeze” a successful agent’s predictors early on
and inject the agent into the system much later, the formerly successful agent is now a dinosaur.
His predictions are unadapted and perform poorly. The system has changed” (Ibid, p.24).

This observation is very interesting for two reasons. Firstly, it informs us that the behavior of
a market does not cycle or repeat. On the contrary, it keeps changing. In addition, Arthur informs
us that the trading strategies that exist in this market need to continue adapting to the market
conditions in order to survive. If they do not co-evolve with the market, then their performance is
poor and they can thus be considered as dinosaurs. This also indicates that any successful trading
strategy can only live for a finite amount of time.

Chen and Yeh (2001) also tested for the existence of this phenomenon in their artificial stock

6According to Arthur (1992), an agent’s basic problem is to profit in the next period, and the only way to do that is
by predicting the direction of the market. Thus, predictors are models that map the patterns which are formed by the
current price set into a forecast for the next period’s price. In other words, agents in the market use different predictors
to forecast future price movements. In this thesis, we refer to predictors as ‘trading strategies’.
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market. Their results verified Arthur’s observations. In addition, Chen and Yeh found that a
dinosaur’s performance decreases monotonically.

To the best of our knowledge, the above observations have only been made by Arthur, Chen
and Yeh in 1992 and 2001, respectively. Later, in 2008, Chen (2008) suggested a new hypothesis,
called the Dinosaur Hypothesis (DH), based on these observations. The DH states that the market
behavior never settles down and that the population of trading strategies continually co-evolves
with the market. However, this hypothesis has also never been formalized. Chapter 8 thus for-
malizes the hypothesis, by presenting its main constituents. Furthermore, motivated by the DH
observations, we are interested in examining the behavior of financial markets in detail, by using
our suggested agent-based financial model that we briefly mentioned earlier in Section 5.2. We
thus also suggest a testing methodology and again run tests under empirical datasets, as in the
MFH framework, since both Arthur’s and Chen and Yeh’s observations were made under artificial
stock market frameworks.

5.5 Chapter Summary
This chapter focused on agent-based financial models. We started in Section 5.1 by presenting
different agent-based financial market models, where we identified some of their limitations. These
limitations were discussed in Section 5.2, where we also explained that these limitations have
motivated us to create a new agent-based financial model, which we will present in detail later, in
Chapter 7. Finally, observations from several of the above financial models led to the formulation
of the MFH and the DH, which were presented in Sections 5.3 and 5.4.

This concludes the literature review section of the thesis. The next part, Part IV, presents the
contributions of this thesis. The first chapter, Chapter 6, presents the work that has been done on
EDDIE, and investment opportunities forecasting.
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Chapter 6

Extending the grammar of a GP-based tool

6.1 Introduction
Earlier in Chapter 4 we presented EDDIE and more specifically EDDIE 4, also known as FGP-
2. We also explained that EDDIE, as well as other similar GP financial forecasting tools, use
indicators from technical analysis in order to form their Genetic Decision Trees (GDTs). These
indicators use pre-specified lengths, e.g. 12 days Moving Average (MA). It is thus left up to the
user of the forecasting tool and his expertise, to choose the appropriate period for these indicators.
This basically means that two different users could use very different periods and as a result get
very different outcomes. This is the source of our motivation. We are interested in eliminating
this drawback. Why should somebody choose 12 days MA and not 14 or 15? We believe that
it should be left to the evolutionary procedure to make these decisions. In order to do that we
have implemented a new version, EDDIE 8, which allows the GP to search in the search space
of the periods of the technical indicators. The novelty of this algorithm is in its rich, extended
grammar. Instead of using a fixed number of pre-specified indicators from technical analysis, like
the previous versions do, EDDIE 8 allows the GP to search in the space of the technical indicators
and use the ones that it considers to be optimal. Thanks to its extended grammar, EDDIE 8 is
considered to be an improvement, because it has the potential, through the learning process, to
discover better solutions that its predecessors cannot.

In order to present the value of EDDIE 8 we compare it with EDDIE 7, which is a re-implemen-
tation of Jin Li’s FGP-2 (Li and Tsang, 1999a; Li, 2001), with the addition of some indicators that
Martinez-Jaramillo (2007) found helpful and used in his own version of EDDIE.1

Therefore, the main contributions of this chapter can be summarized as follows: (i) Extending
EDDIE’s grammar by allowing the GP to search in the space of technical indicators, and thus
creating EDDIE 8, and (ii) Comparing EDDIE 8 with its predecessor, EDDIE 7, and reporting the
results from this comparison under both empirical and artificial markets.

1Martinez-Jaramillo was also a researcher at the University of Essex and also used EDDIE as part of his work.
This is why we have taken into account his conclusions about the usefulness of some specific technical indicators.
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The rest of this chapter is organized as follows: Section 6.2 presents the two versions discussed
in this chapter, EDDIE 7 and EDDIE 8. Section 6.3 presents the experimental parameters for our
tests, and Section 6.4 shows the results of the comparison of the two versions, on 10 different
empirical datasets. However, because these results are not conclusive, we also test the performance
of the two versions under artificial datasets, where we can create our own patterns in the data and
avoid any noise that an empirical dataset might sometimes have. This is done in Section 6.5. We
then extend the conclusions drawn from the artificial datasets experiments to the empirical ones,
in Section 6.6. Finally, Section 6.7 concludes this chapter and discusses future work.

6.2 EDDIE 7 vs EDDIE 8

6.2.1 EDDIE 7
As already mentioned, EDDIE 7 is our re-implementation of Jin Li’s FGP-2 (Li and Tsang, 1999a;
Li, 2001), including some additional indicators that Martinez-Jaramillo (Martinez-Jaramillo, 2007)
used in his version of EDDIE. The indicators that EDDIE 7 uses are presented in Table 6.12. For
simplicity, each indicator uses the same two periods, 12 and 50 days. The reason for using these
specific period lengths is that we want to take into account a short-term and a long term period.

Table 6.1: Technical Indicators used by EDDIE 7. Each indicator uses 2 different periods, 12 and
50, in order to take into account a short-term and a long-term period.

Technical Indicators (Abbreviation) Period

Moving Average (MA) 12 & 50 days
Trade Break Out (TBR) 12 & 50 days
Filter (FLR) 12 & 50 days
Volatility (Vol) 12 & 50 days
Momentum (Mom) 12 & 50 days
Momentum Moving Average (MomMA) 12 & 50 days

Figure 6.1 presents the Backus Naur Form (BNF), which is basically very similar to the one
of FGP-2, presented in Figure 4.1. The only difference is, of course, in the use of the additional
technical indicators. Once again, we would like to draw the reader’s attention to the ‘Variable’
symbol, which takes as input the pre-specified indicators, which act as constants of the system. In
addition, Figure 6.2 presents a sample GDT produced by EDDIE 7 based on this BNF grammar.

2These indicators have been used because they have been proved to be quite useful in developing investment
opportunity decision rules for forecasting rises and drops of the price in previous works like Allen and Karjalainen
(1999); Austin et al (2004); Martinez-Jaramillo (2007). Of course, there is no reason why not use other information
like fundamentals or limit order book information. However, the aim of this work is not to find the ultimate indicators
for financial forecasting.
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It should be noted here that this tree is a simplified version, which has smaller depth. As a typical
GDT could have a depth up to 8, it could be quite hard to visualize it.

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
“Not” <Condition> |
Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 |
FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |
MomMA 12 | MomMA 50

<RelationOperation> ::= “>” | “<” | “=”
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 6.1: The Backus Naur Form of the EDDIE 7

As we can see, the If-Then-Else statement starts with the Boolean ‘less than’ method: if the 12
days Moving Average Indicator is smaller than the threshold 6.4, then the user is advised to-buy,
which is indicated by ‘1’ in the second branch of the GDT. Otherwise, if the condition under
the first branch does not hold, then the GDT returns another If-Then-Else statement, at the third
branch of the GDT. This statement, depending on whether its condition is true or false, advises to
not-to-buy or buy, respectively.

Figure 6.2: Sample GDT produced by EDDIE 7
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This concludes the short presentation of EDDIE 7. We should say at this point that EDDIE
7 will be acting as the benchmark of our experiments. Next, Section 6.2.2 presents how we have
extended EDDIE 7, by allowing the GP to search in the space of the technical indicators.

6.2.2 EDDIE 8
Let us consider a function [y = f(x)], where the input x is the indicators and the output y is
the prediction made by EDDIE 7. The function f is unknown to the user and is the GDTs that
EDDIE 7 generates, in order to make its prediction. As we said earlier, EDDIE 7 uses a number
of indicators, with different pre-specified periods. This therefore means that the input x consists
of constants. On the other hand, EDDIE 8 uses another function y = f(g(z)), where x = g(z);
in other words, g is a function that generates indicators and periods for EDDIE to use. EDDIE 8
is not only searching in the space of GDTs, but also in the space of indicators. It can thus return
GDTs that are using any period within a range that is defined by the user.

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
“Not” <Condition> |
VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |
Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 6.3: The Backus Naur Form of EDDIE 8

As we can see from the new syntax at Figure 6.3, the Variable symbol has been replaced by the
VarConstructor function, which takes two children. The first one is the indicator, and the second
one is the Period. Period is an integer within the parameterized range [MinP, MaxP] that the
user specifies. The function V arConstructor could be considered as an Automatically Defined
Function (ADF) (Koza, 1994), which always takes two arguments (indicator and period). Since
these two arguments can take many different values, the number of the ADFs in the system can be
quite big; for instance, under a choice of 6 indicators and 64 periods (from 2 to 65 days), the total
number of ADFs is 6 × 64 = 384.

As a result, EDDIE 8 can return decision trees with indicators like 15 days Moving Average,
17 days Volatility, and so on. The period is not an issue anymore, and it is up to EDDIE 8, and as a
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consequence up to the GP and the evolutionary process, to decide which lengths are more valuable
to the prediction.

The immediate consequence of this is that now EDDIE 8 is not restricted only to the 12 indi-
cators that EDDIE 7 uses (which are still part of EDDIE 8’s search space); on the contrary, it now
has many more options available, thanks to this new grammar. As an example we again present the
same simplified GDT that we presented earlier in Figure 6.2, after having reconstructed it under
EDDIE 8’s grammar; this “reconstructed” GDT is presented in Figure 6.4. If we look closely at the
figure, we will notice that the indicators are no longer pre-specified. Instead, there is the “VarCon-
structor” function, which as we have mentioned takes two children, the Indicator and the Period
length. The 12 and 50 days Period lengths are now in a separate branch, and are thus subject to GP
operators, such as crossover and mutation.

Figure 6.4: Sample GDT produced by EDDIE 8

Now that we have presented and explained the differences of the two versions, we will proceed
by presenting our experiments and the results from the comparison between EDDIE 7 and EDDIE
8.

6.3 Experimental Parameters
As we have already said, the data we feed to EDDIE consist of daily closing prices. These clos-
ing prices are from 10 arbitrary stocks from the FTSE 100. These stocks are: British American
Tobacco (BAT), British Petroleum (BP), Cadbury, Carnival, Hammerson, Imperial Tobacco, Next,
Schroders, Tesco, and Unilever. The training period is 1000 days and the testing period 300. Table
6.2 presents the training and testing dates for the above datasets. For simplicity, we chose periods
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where there was a bull market. In addition, the GP parameters are presented at Table 6.3. For
statistical purposes, we run the GP 50 times for each of EDDIE 7 and EDDIE 8.

Table 6.2: Training and Testing dates for the 10 stocks.

Stock Training Period Testing Period
BAT 20/05/2003 - 19/02/2007 20/03/2007 - 13/05/2008
BP 26/06/1992 - 25/04/1996 26/04/1996 - 19/06/1997
Cadbury 03/06/1992 - 02/04/1996 03/04/1996 - 27/05/1997
Carnival 02/05/2001 - 01/03/2005 02/03/2005 - 25/04/2006
Hammerson 30/11/2000 - 29/09/2009 30/09/2004 - 23/11/2005
Imperial Tobacco 19/06/1997 - 18/04/2001 19/04/2001 - 12/06/2002
Next 05/10/1990 - 04/08/1994 05/08/1994 - 28/09/1995
Schroders 13/06/2002 - 12/04/2006 13/04/2006 - 06/06/2007
Tesco 01/08/1996 - 31/05/2000 01/06/2000 - 25/07/2001
Unilever 19/10/1989 - 18/08/1993 19/08/1993 - 12/10/1994

Table 6.3: GP Parameters.

GP Parameters
Max Initial Depth 6

Max Depth 8
Generations 50

Population size 500
Tournament size 6

Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

Thus, the process is as follows: we create a population of 500 GDTs, which are evolved for
50 generations, over a training period of 1000 days. At the last generation, the best performing
GDT in terms of fitness is saved and applied to the testing period. As we have already said, this
procedure is done for 50 individual runs.

In addition, we should emphasize that we want the datasets to have a satisfactory number of
actual positive signals. By this we mean that we are neither interested in datasets with a very
low number of actual positive signals, nor in datasets with an extremely high one. Such cases
would be categorized as ‘chance discovery’ (Garcia Almanza and Tsang, 2007), where people
are interested in predicting rare events, such as a stock market crash. Clearly this is not the case
in our current work where we use EDDIE for investment opportunities forecasting. We are thus
interested in datasets that have opportunities of around 50-70% (i.e. 50-70% of actual positive
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signals). Therefore, we need to change the values of r and n accordingly,3 so that we can obtain
the above percentage from our data. For our experiments, the value of n is set to 20 days. The
value of r varies, depending on the dataset. This is because one dataset might reach a percentage of
50-70% with r = 4%, whereas another one might need a higher or lower r value. Accordingly, we
need to calibrate the value of the R constraint, so that EDDIE produces GDTs that forecast positive
signals in a range which includes the percentage of the actual positive signals of the dataset we are
experimenting with. We thus set R to take values in the range of [−5%, +5%] of the number of
positive signals that the dataset has. For instance, if under r = 4% and n = 20 days, a dataset has
60% of actual positive signals, then R would be set to [55,65].

Table 6.4: EDDIE Parameters

EDDIE Parameters Value
n 20
w1 0.6
w2 0.1
w3 0.3

Period (EDDIE 8) [2, 65]

Furthermore, Table 6.4 presents the parameters used by EDDIE. As we have already men-
tioned, n is set to 20 days. The three weights w1, w2, w3 of the fitness function are set to 0.6,
0.1 and 0.3, respectively, and are given in this way in order to reflect the importance of each per-
formance measure (i.e. RC, RMC, RF) to our predictions. As we can see, we chose to include
strategies that mainly focus on correctness and reduced failure. The last entry of Table 6.4 refers
to the period length, which as we know is a parameter of EDDIE 8. It is set to the range of 2 to 65
days, which means that the technical indicators of EDDIE 8 can have any period length within this
range.

We should also mention that we have chosen to use the same fitness function that Li introduced
in his work (Li, 2001). As we have already explained in Chapter 5, the fitness function contains
three metrics: RC, RMC, RF. There is no doubt that other metrics could be used of course, such as
‘actual financial returns after transaction costs’. Nevertheless, since we are extending Li’s work,
we chose for consistency purposes to use the same fitness function. In addition, later tests in the
chapter provide as a reference additional performance metrics, such as Annualized Average Rate
of Return, and Rate of Positive Returns, which are more relevant to financial applications.

3A reminder that EDDIE attempts to answer the following question: “Will the price of a stock rise by r% within
the next n days”?
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6.4 Test Results
This section presents the experimental results after having tested the 10 datasets under EDDIE 7
and EDDIE 8. We start by observing how EDDIE 8 affects the fitness of the population during
the training period. We are interested in seeing whether the extended grammar is giving EDDIE
8 an advantage, and if this is the case, how fast this happens during the evolutionary procedure.
We then continue by presenting a summary statistics comparison between the two versions, under
the data of the testing period. At this point we should mention that all fitness results have been
normalized to a scale of [0,1]. The other measures (RC, RMC, RF) were already in this scale and
thus no further normalization took place.

6.4.1 Training performance comparison
In this section, we compare the training fitness of the two algorithms. As we have said, we are
interested in examining the behaviour of the GP, now that it searches in a much larger search
space. Does it find well-performing solutions from the beginning of the evolutionary procedure,
because it now has more options to look into? Or does it start with low performance due to these
many options and later manages to focus on the promising ones? These are just two examples of
behavioral questions that we could be asking.

Figure 6.5: Average of the average fitness of the population of the GDTs for EDDIE 7 and EDDIE
8. This means that we first obtain the average fitness of the whole population, per generation. Then
we find the average of this number over the 50 runs.

We conduct our analysis in two different parts. Firstly, we compare the training fitness in terms
of the whole population. To do that, we calculate the average fitness for the whole population of
GDTs; this process is done for each generation. Let us call this average AvgFit. Thus, we can
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Figure 6.6: Average BestFit. We first obtain the best GDT’s fitness per generation, for each one
of the 50 runs. This happens for both algorithms. We then calculate the average of these fitness
values (over the 50 runs) and present them in this figure. For the convenience of the reader, we
have split the stocks into 5 per graph (by alphabetical order). The graphs in the first column are for
EDDIE 7 and the others for EDDIE 8.

observe how the GDTs’ AvgFit changes over the 50 generations of a single run. We then repeat
this procedure for each one of the 50 runs. Finally, we calculate the average, over these 50 runs,
of AvgFit. Figure 6.5 presents these results. Each line in the graph denotes the average AvgFit

for a different dataset. As we can see, the population of EDDIE 7 starts at generation 1 with an
average fitness between 0.1-0.2, for all stocks. This quickly rises to 0.4-0.5 and stabilizes around
0.6, with half of the stocks slightly exceeding this level. On the other hand, EDDIE 8’s population
average fitness for all stocks starts from a much higher point, around 0.3. Fitness here also rises
quickly to 0.5-0.6 and stabilizes between 0.6 and 0.7. As we can observe, the average training
fitness population of EDDIE 8 is somewhat higher than EDDIE 7’s. It is obvious that EDDIE 8’s
grammar has allowed it to come up with better individuals in the first generation, and thus start
with a population that has higher fitness.

For the second part of our analysis, we compare the fitness of the best individual (i.e. the GDT
with the highest fitness) per generation; this fitness is called BestFit. So now instead of calculating
the average fitness of the whole population for each generation, we just obtain the highest fitness.
We can thus present how the highest fitness changes over the 50 generations of a single run. We
then repeat this procedure for each one of the 50 runs. Finally we find the average, over these 50
runs, of BestFit. Figure 6.6 presents these results. In order to get a clearer idea of these results, we
have divided them into two graphs per algorithm. The first column presents the graphs for EDDIE
7, and the second one for EDDIE 8. The graphs at the top are for the first 5 stocks (in alphabetical
order) and the bottom graphs are for the remaining 5 stocks. We can see that results vary per stock
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for both algorithms, although they seem to follow the same pattern. The BestFit values for EDDIE
7 start from a range of [0.58,0.66], for generation 1, and reach up to a range of [0.64,0.74], at the
last generation. The datasets for EDDIE 8 seem to follow a very similar behavior: the BestFit

values start in the range of [0.58,0.67] and end up in the range of [0.65,0.75].
Table 6.5 also presents the average BestF it values for the first and the last generation. Each

stock has 4 values, 2 for EDDIE 7 and 2 for EDDIE 8. The top value represents the average
BestFit for generation 1, and the bottom value represents the average BestFit for generation 50.
EDDIE 8’s BestFit starts with higher fitness for 7 stocks. This means that there are 3 stocks for
which EDDIE 7 has better initial values: Carnival (0.6298), Hammerson (0.6121), and Schroders
(0.5935). In addition, at the end of the evolutionary procedure (generation 50), there are 2 stocks
for which EDDIE 7’s BestFit is higher than EDDIE 8’s: BAT (0.7320), and Hammerson (0.6894).
However, these differences from EDDIE 7 are relatively small (below 1%).

Table 6.5: Average BestFit for generation 1 and 50, for EDDIE 7 and EDDIE 8, over the 10 stocks.
Each stock has 4 values, 2 for EDDIE 7 and 2 for EDDIE 8. The top value represents the average
BestFit for generation 1, and the bottom value represents the average BestFit for generation 50.

Stock EDDIE 7 EDDIE 8

BAT
Generation 1 0.6373 0.6635
Generation 50 0.7320 0.7273

BP
Generation 1 0.6079 0.6138
Generation 50 0.6612 0.6860

Cadbury
Generation 1 0.6144 0.6236
Generation 50 0.6822 0.7084

Carnival
Generation 1 0.6298 0.6235
Generation 50 0.6763 0.6977

Hammerson
Generation 1 0.6121 0.5944
Generation 50 0.6864 0.6743

Imp. Tobacco
Generation 1 0.6438 0.6651
Generation 50 0.7178 0.7439

Next
Generation 1 0.6591 0.6655
Generation 50 0.7257 0.7360

Schroders
Generation 1 0.5935 0.5915
Generation 50 0.6626 0.6643

Tesco
Generation 1 0.6569 0.6684
Generation 50 0.7123 0.7346

Unilever
Generation 1 0.5825 0.6073
Generation 50 0.6613 0.6906

As we can see, there are times where EDDIE 7 outperforms EDDIE 8, although this is only to
a small degree. Nonetheless, this is quite interesting, because it indicates that there can be cases
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where EDDIE 8 might not be able to outperform its predecessor. Of course, at this moment this is
only an indication that comes from results during the training period and this is why more analysis
needs to be conducted.

6.4.2 Summary results for testing period
In this section we present summary results for the two algorithms, after the GDTs were applied to
the testing period. The first part presents the averages of the metrics we used and the second part
presents the improvements and diminutions caused by the best GDT evolved by EDDIE 8.

6.4.2.1 Average Results

We start with the average results for Fitness. In this way, we can have a general view of how the
two algorithms have performed. We then move to the performance measures (RC, RMC and RF).

Figure 6.7 presents the average fitness results over the 50 runs for EDDIE 7 and EDDIE 8. As
mentioned at the beginning of this section, the results have been normalized and are in the scale of
[0,1]. As we can see, EDDIE 8 performs better than EDDIE 7 at 5 stocks (BAT, BP, Carnival, Ham-
merson, Tesco) and worse at the other 5 (Cadbury, Imperial Tobacco, Next, Schroders, Unilever).
In order to test for the statistical significance of these results, we use the Kolmogorov-Smirnov test
(K-S). We find that EDDIE 8 is better in only 3 stocks (BP, Carnival, Hammerson) and worse in 4
(Cadbury, Next, Schroders, Unilever), at a 5% significance level. A detailed table of the p-values
for the K-S tests is provided in Appendix A.

Figure 6.7: Summary results over 50 runs for fitness for EDDIE 7 and EDDIE 8. Results are
normalized to [0,1] scale.
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Figure 6.8: Summary results over 50 runs for RC for EDDIE 7 and EDDIE 8. Results are on the
scale of [0,1].

We get a similar picture for the rest of the summary statistics results, namely RC, RMC and
RF. Regarding the average RC (Figure 6.8), EDDIE 8 is significantly better at 2 stocks only (Car-
nival, Hammerson), whereas it performs worse in 5 (Cadbury, Imperial Tobacco, Next, Schroders,
Unilever). Figure 6.9 shows that EDDIE 8 is better at only 1 stock (Hammerson), in terms of aver-
age RMC, whereas EDDIE 7 performs better at 5 (BAT, BP, Next, Schroders, Unilever). Finally,
Figure 6.10 informs us that EDDIE 8 is better at 4 stocks (BAT, BP, Carnival, Tesco), in terms of
RF, and worse at 5 (Cadbury, Imperial Tobacco, Next, Schroders, Unilever). The reader should
bear in mind when reading the figures that we are interested in maximizing the values of Fitness
and RC, and minimizing the values of RMC and RF. So when we say that EDDIE 8 performs
better, in terms of fitness and RC, it means that these values have increased; on the other hand,
when we say that EDDIE 8 performs better, in terms of RMC and RF, this means that these values
have decreased. In addition, we should again mention that all of the results reported here have been
tested by the K-S test and were found significant at a 5% significance level, and that the p-values
of these tests are provided in Appendix A.

Finally, we should mention that a single run of either version does not last for more than a few
minutes. EDDIE 8 is slightly slower than EDDIE 7, due to its large search space, but this fact does
not seem to significantly affect its runtime.

6.4.2.2 Best GDTs

In this section, we investigate the improvements and diminutions caused by the best GDT that
was evolved by EDDIE 8. From now on, we will be referring to this GDT as Best-8. Best-8 is
essentially the GDT with the highest fitness at the end of the training period, among all 50 runs. It
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Figure 6.9: Summary results over 50 runs for RMC for EDDIE 7 and EDDIE 8. Results are on the
scale of [0,1].

is thus the best solution that EDDIE 8 could come up with, after these 50 individual runs. After
obtaining Best-8, we apply it to the testing period. Likewise, we obtain the best GDT evolved by
EDDIE 7, named Best-7, and also apply it to the testing period.

The reason for choosing to compare the best GDTs is quite obvious. If an investor was using
EDDIE to assist him with his investments, he would run the algorithm many times, and then pick
the best GDT that was produced during training. Thus, by comparing Best-7 and Best-8, we can
get insight into which EDDIE version would be more effective to an investor’s predictions.

Table 6.6 presents the improvements and diminutions caused by Best-8, after having calculated
the differences between Best-7 and Best-8, for each metric. Thus, an entry with a positive sign
indicates that Best-8 has improved the results in that metric by the respective percentage. Likewise,
an entry with a negative sign indicates that Best-8’s results for that metric have declined by the
respective percentage.

In addition, the last two rows of Table 6.6 present the mean of the above improvements and
diminutions. Therefore, when we want to calculate the mean of improvements for Fitness, we sum
up the values where Fitness is positive; we hence sum up the Fitness values for BAT (7.31), BP
(1.05), Carnival (10.15), Tesco (3.27), Unilever (9.72) and then divide them by 5 (since that is the
number of stocks with positive sign). Thus, when we want to calculate the mean of improvements
for a metric, we calculate the mean for those values that have positive sign. On the other hand,
when we want to calculate the mean of diminutions, we calculate the mean for those values that
have negative sign. The same process stands for all metrics on the table.

Finally, apart from Fitness and the three metrics presented earlier in Chapter 4, Table 6.6 uses
two additional metrics: Annualised Average Rate of Return (AARR), and Rate of Positive Returns
(RPR). Since the EDDIE application lies in finance, we consider that it would be beneficial to an
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Figure 6.10: Summary results over 50 runs for RF for EDDIE 7 and EDDIE 8. Results are on the
scale of [0,1].

investor to use as a reference performance criteria that are related to investment return. Obviously,
the higher these metrics are, the higher the return for the investor. The formulas for these two
additional metrics are presented in Appendix B. We should emphasize that these two metrics are
given here only as reference, and are not part of the fitness function that EDDIE 7 and EDDIE 8
use.

What we can observe from Table 6.6 is that Best-8 does better than Best-7 for 5 stocks in terms
of Fitness (BAT, BP, Carnival, Tesco, Unilever), for 4 stocks in terms of RC (BAT, Carnival, Tesco,
Unilever), for 4 stocks in terms of RMC (BAT, Carvival, Imp. Tobacco, Schroders), for 6 stocks
in terms of RF (BAT, BP, Carnival, Hammerson, Tesco, Unilever), for 5 stocks in terms of AARR
(BAT, BP, Imp. Tobacco, Tesco, Unilever), and for 5 stocks in terms of RPR (BAT, BP, Carnival,
Tesco, Unilever). The differences in the values of the metrics are often quite big; for instance,
EDDIE 8 has improved the Fitness of BAT and Carnival by 7.31 and 10.15%, respectively. What
is even more remarkable is the differences in AARR: 31.03% for Tesco, and 48.81% for Unilever.
Similar extremes can be observed for the diminutions. However, it seems that the improvements
of Best-8 have a greater impact than its diminutions.

To make this clearer, let us move our focus to the last two rows of the table, where the mean
of Best-8’s improvements and diminutions in all metrics is presented. As we can see, with the
exception of RF, improvements have, on average, had a greater effect than diminutions(6.30%
vs -4.22% [Fitness], 8.00% vs -3.83% [RC], 11.78% vs -6.35% [RMC], 6.92% vs -6.96% [RF],
25.55% vs -16.61% [AARR], 8.62% vs -5.46% [RPR]). This is a very important result, because
it indicates that an investor using EDDIE 8’s best GDT would on average gain more than if he
was using EDDIE 7’s best tree. We can thus conclude from the above that, given a high number
of individual runs (e.g., 50 runs), EDDIE 8 would find a very good solution, which on average,
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Table 6.6: Improvements and diminutions of Best-8 in Fitness and the other metrics, for all 10
stocks. The data presented in the first ten rows is basically the difference between metric val-
ues of EDDIE 8 and EDDIE 7. Finally, the last two rows of the table present the mean of the
improvements and diminutions of Best-8 to the metrics.

Stock Fitness RC RMC RF AARR RPR

BAT 7.31% 8.00% 8.07% 5.66% 10.95% 4.08%
BP 1.05% -1.67% -1.86% 7.45% 17.07% 5.26%
Cadbury -10.48% -11.33% -17.32% -6.48% -7.03% -7.11%
Carnival 10.15% 10.67% 13.87% 7.86% -6.19% 10.90%
Hammerson -0.22% -0.33% -1.94% 0.57% -3.29% -0.03%
Imp.Tobacco -1.85% -1.33% 12.97% -7.83% 19.90% -5.31%
Next -7.59% -7.33% -7.07% -8.28% -17.92% -5.31%
Schroders -0.96% -1.00% 12.22% -5.27% -48.61% -9.55%
Tesco 3.27% 3.00% -3.43% 6.05% 31.03% 5.46%
Unilever 9.72% 10.33% -6.52% 13.91% 48.81% 17.38%
Mean Improvement 6.30% 8.00% 11.78% 6.92% 25.55% 8.62%
Mean Diminution -4.22% -3.83% -6.35% -6.96% -16.61% -5.46%

outperforms EDDIE 7’s best solution in terms of all performance measures. This thus guarantees
that an investor who uses EDDIE 8 will have more profit than using EDDIE 7.

6.4.2.3 Discussion on the summary statistics results

So far we have presented summary statistics for EDDIE 7 and EDDIE 8. From what we saw in the
previous sections, EDDIE 7 outperforms EDDIE 8 in more stocks, in terms of all average statistics
(Fitness, RC, RMC and RF). On the other hand, EDDIE 8 outperforms EDDIE 7 in terms of the
average results of the best GDT.

An interesting observation from the above is that although EDDIE 8’s best GDT can on average
perform better than the one of EDDIE 7, this superiority is not reflected in the mean values of
Fitness, RC, RMC, and RF. EDDIE 8 is able to come up with very good GDTs, sometimes even
better than EDDIE 7’s. However, the problem is that it does not come up with such trees often
enough. Figure 6.11 illustrates this problem. It presents the relationship between performance (i.e.
fitness) (x-axis) and precision (y-axis).4 It is divided into two parts. The top graph (Figure 6.11a)
presents the performance-precision values for stocks where EDDIE 8’s average fitness is lower
than EDDIE 7’s. Let us denote these two fitness values by ED8Fit and ED7Fit, respectively.
The bottom graph (Figure 6.11b) presents the performance-precision relationship for stocks where
ED8Fit > ED7Fit.

4“Precision shows the degree to which repeated measurements under unchanged conditions show the same results”.
(Robert Taylor, 1999) It is defined as the fraction of TP predictions, over the sum of TP and FP.
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Figure 6.11: Performance-precision relationship. The x-axis presents the performance (average
fitness) and the y-axis the average precision over 50 runs. The top graph (a) presents the stocks
where ED8Fit < ED7Fit. The bottom graph (b) presents the stocks where ED8Fit > ED7Fit.

What we can observe from Figure 6.11 is that EDDIE 8 always has lower precision than EDDIE
7, for stocks where ED8Fit < ED7Fit. This indicates that EDDIE 8’s GDTs are spread in a bigger
fitness range, than the ones of EDDIE 7. It seems that there is something preventing EDDIE 8 from
having on a regular basis results with high fitness. The picture is exactly opposite in Figure 6.11b,
where ED8Fit > ED7Fit. We can see that here EDDIE 8 is not having difficulties finding good
solutions, with precision at least as good as EDDIE 7’s.

To summarize, the conclusions we can draw are the following:

• EDDIE 8 can perform better than EDDIE 7

• However, there are stocks where ED8Fit < ED7Fit

• EDDIE 8’s best GDT does, on average, better than EDDIE 7’s best GDT

• EDDIE 8’s precision is lower than EDDIE 7’s, for stocks where ED8Fit < ED7Fit. This
does not happen for stocks where ED8Fit > ED7Fit

• Therefore, there is something which prevents EDDIE 8 from returning high fitness GDTs
more often. This unknown factor reduces EDDIE 8’s precision and only happens when
ED8Fit < ED7Fit.

Hence, our next goal is to identify the reason why EDDIE 8 cannot return high fitness GDTs
more often, for the stocks where ED8Fit < ED7Fit. One explanation could be that there is
something special in the nature of the patterns of these stocks. We therefore need to deepen our
analysis and try to provide an explanation of when and why EDDIE 8 outperforms EDDIE 7.
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6.5 Artificial Datasets
So far, the experiments were tested with 10 empirical datasets. As we saw, results were not conclu-
sive. It is not yet clear why EDDIE 8 cannot always outperform EDDIE 7. This section attempts
to provide an answer to this question, by re-running the experiments under artificial datasets.

The reason for using artificial datasets is twofold. Let us start with the first reason. A potential
drawback of experimental work with real data is that we cannot be sure that there are always pat-
terns in the data. As a result, the failure of an algorithm in finding patterns could also be attributed
to this fact. Of course, somebody could argue that both EDDIE 7 and EDDIE 8 have managed to
find patterns and that EDDIE 7 just happens to be better in more cases. Nonetheless, creating our
own artificial dataset can reassure us of the existence of such patterns. At the same time, artificial
datasets can guarantee the absence of any noise. The second reason for using artificial datasets is
that we have control over the nature of the patterns. This is very important, because it enables us
to study the weaknesses and strengths of the algorithms, i.e. in what kind of data would EDDIE
7 or EDDIE 8 perform better. This can thus help us understand the reason why we cannot always
have ED8Fit > ED7Fit.

6.5.1 Artificial Datasets Methodology

Figure 6.12: Methodology for creating an artificial dataset. The random closing prices (P) use a
GDT previously derived from EDDIE, in order to create the set of signals.

It was explained earlier that, in traditional experiments for EDDIE, a dataset would consist of
three parts: the daily closing prices, the technical indicators, and the buy/not-to-buy signals. In
order to create the artificial data set, we need to replicate these three parts. First of all, we generate
a set of random prices, which represents the daily closing prices. We then calculate the technical
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indicators for this set. Finally, in order to create the signals for the random prices, we apply to
these prices a GDT that was previously evolved with EDDIE. After the application of the GDT,
a new set of signals is created. Basically the difference here from the traditional approach is that
we do not use the question “will the price of the stock increase by r% in the next n days”. The
signals are created in a new way, based on a given GDT, which should be considered as a hidden
function; EDDIE 7 and EDDIE 8 are thus asked to rediscover this hidden function. Therefore,
after these three steps, we create a dataset like the ones EDDIE uses for its traditional experiments.
Figure 6.12 shows the procedure we have just explained. The first column is the random prices,
which are fed into a GDT for generating a set of signals.

It should also be mentioned that the evolved GDT which acts as the hidden function could
be obtained either from EDDIE 7 or from EDDIE 8. In this way, the patterns could come from
EDDIE 7’s search space only, or from a larger search space (EDDIE 8). As mentioned above, this
is the strength of this approach. Not only are we sure that patterns exist in our dataset, we are also
able to determine which search space these patterns come from. Hence, having an artificial dataset
allows us to control the nature of the patterns. And of course, being able to control the nature of
the patterns allows us to observe the differences in the behaviour of the two versions.

Finally, let us introduce some important terminology. As mentioned, the evolved GDT which
acts as the hidden function can be obtained either from EDDIE 7 or from EDDIE 8. Thus, when it
is obtained by EDDIE 7, this GDT is called GDT-7, whereas when it is obtained by EDDIE 8, this
GDT is called GDT-8. In addition, when we present results from EDDIE 7, we are going to denote
these results as EDDIE 7 GDT-7, if the patterns come from EDDIE 7’s vocabulary, or EDDIE
7 GDT-8, if the patterns come from EDDIE 8’s. Equivalently, EDDIE 8’s results will be denoted
either as EDDIE 8 GDT-7 or EDDIE 8 GDT-8, depending on which vocabulary the patterns come
from.

6.5.2 Experimental Parameters
As we said in the previous section, the prices of the data were randomly generated. This can be
clearly observed in Figure 6.13. The training period was 1000 days and the testing period 300, as
in the empirical datasets’ experiments.

Moreover, Table 6.7 presents the parameters of the EDDIE algorithm. The R constraint is set
in the range of [50,65], with n and r being 20 days and 4%, respectively. The weights and the
Period length remain the same, as earlier in Table 6.4.

The GP parameters are the same, as presented earlier at Table 6.3. For statistical purposes, we
again run the GP for 50 times.

6.5.3 Artificial Dataset Results
This section is divided into two parts. The first part presents the results for signals generated by
GDT-7, and the second one the results for signals generated by GDT-8.
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Figure 6.13: Random closing prices for a period of 1300 days. The first 1000 consist the training
period, and the rest 300 the testing period.

Table 6.7: EDDIE Parameters

EDDIE Parameters Value
R [50,65]
n 20
r 4

w1 0.6
w2 0.1
w3 0.3

Period (EDDIE 8) [2, 65]

6.5.3.1 GDT-7

Table 6.8 presents the summary results for the testing period over 50 GP runs. As we can observe,
EDDIE 7 GDT-7 (EDDIE 7 with patterns that have been created by GDT-7) is doing significantly
better in all performance measures and is very close to finding a perfect solution5 (RC=97.36,
RMC=2.4, RF=1.3). It is also interesting to observe that the standard deviation of EDDIE 7 GDT-
7’s results is small, which basically indicates that the values for RC, RMC and RF are very similar
among the 50 runs. This however does not happen with EDDIE 8 GDT-7 (EDDIE 8 with patterns
that have been created by GDT-7), where the standard deviation is bigger for all Fitness, RC, RMC
and RF. As we can also see from Table 6.8, the mean values of all Fitness, RC, RMC and RF have

5A perfect solution can be defined as any GDT that fits the testing dataset perfectly. This essentially means that
RC would be 100%, and RMC=RF=0
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Table 6.8: Summary Results for the testing period, over 50 runs, for EDDIE 7 and EDDIE 8. The
patterns were created by GDT-7. The results are shown in % percentages.

Summary Results
EDDIE 7 GDT-7

Fitness RC RMC RF AARR RPR
Mean 97.78 97.36 2.4 1.3 47691.23 90.42

St.Dev. 1.36 1.58 1.97 1.51 1146.75 0.2
Max 99.75 99.66 4.8 6.36 49246.4 90.73
Min 94.79 94.66 0.4 0 100 90.1

EDDIE 8 GDT-7
Fitness RC RMC RF AARR RPR

Mean 80.28 77.66 17.11 15.36 46730 90.48
St.Dev. 8.95 10.28 10.75 6.8 4885.08 1.03

Max 92.04 91 35.57 25.32 51648.92 92.85
Min 67.95 63.66 2.4 6.03 34138.56 88.29

worsen to 80.28, 77.66, 17.11 and 15.36, respectively. Furthermore,we can also observe that the
Min and Max values of the above metrics are in a much bigger range for EDDIE 8. Also, EDDIE
7 has higher mean AARR, whereas the mean RPR is quite similar, for both EDDIE 7 and EDDIE
8.

Furthermore, Figure 6.14 presents the training fitness of the best individuals per generation,
as we did earlier in Section 6.4.1. As a reminder, what we do is to calculate the highest fitness
of the whole population for each generation. After doing this for each one for the 50 generations,
we repeat this whole procedure for each one of the 50 runs. Finally, we calculate the average
highest fitness for each generation, over the 50 runs. As we can see from Figure 6.14, EDDIE
7 GDT-7 comes to a solution very quickly, which is actually very close to the optimal one (i.e.
Fitness = 1). On the other hand, EDDIE 8 GDT-7 does not seem to reach fitness levels as high
as EDDIE 7 GDT-7 does. It only manages to reach around 80%, which is quite high, but not as
high as EDDIE 7 GDT-7’s.

The poor results could be explained by the large increase in the search space of EDDIE 8 GDT-
7. For this reason, we tested EDDIE 8 GDT-7’s performance with a bigger population (1500
individuals) and more generations (100). The reasoning for this was that because of the big search
space, EDDIE might have needed more candidate solutions or more time in order to perform better.
However, as we can see from Table 6.9, EDDIE 8 GDT-7’s summary results did not seem to have
any significant improvement (mean of Fitness was improved from 80.28 to 81.19, mean of RC was
improved from 77.66 to 78.72, mean of RMC improved from 17.11 to 15.86 and mean of RF 15.36
to 14.91).
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(a) EDDIE 7 (b) EDDIE 8

Figure 6.14: Highest training fitness per generation for EDDIE 7 GDT-7 [Figure 6.14(a)] and
EDDIE 8 GDT-7 [Figure 6.14(b)], over 50 runs.

6.5.3.2 GDT-8

The results in this section are quite different. As we can see from Table 6.10, none of EDDIE
7 GDT-8 (EDDIE 7 with patterns that have been created by GDT-8) or EDDIE 8 GDT-8 (EDDIE
8 with patterns that have been created by GDT-8) seem to be able to find solutions very close to the
optimal one. In addition, this time EDDIE 8 GDT-8 is performing better than EDDIE 7 GDT-8,
in terms of measures (Fitness, RC, RMC and RF). Furthermore, EDDIE 8 GDT-8’s maximum
values for Fitness (94.00) and RC (92.67) and minimum values for RMC (8.25) and RF (0) are
significantly better than the ones of EDDIE 7 GDT-8 (80.83, 74.33, 29.13 and 19.42 respectively).
Finally, EDDIE 8’s average AARR is significantly better; average RPR is also slightly better for
EDDIE 8.

In order to see whether the difference in the performance measures is indeed significant, we
run a two-sample Kolmogorov-Smirnov non-parametric test. The null hypothesis is that the two
samples come from the same continuous distribution; it is rejected if the value obtained by the test
is greater than the critical value. Table 6.11 shows us that H0 is clearly rejected for all performance
measures at a 5% significance level, with p-values well below 5%.

6.5.4 Discussion on the artificial datasets’ results
From the above experiments, we have shown that both EDDIE 7 and EDDIE 8 have been able
to discover solutions very close to the hidden functions (see Figure 6.12). This is very important
and proves the effectiveness of these two methods. Also, it should not be considered as something
trivial, since it cannot be assumed that other, arbitrary methods would be able to do this.
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Table 6.9: Summary Results for the testing period, over 50 runs, for EDDIE 8 GDT-7. The results
are shown in % percentages. The numbers of generations and population have changed to 100 and
1500, respectively.

Summary Results
EDDIE 8 GDT-7

Fitness RC RMC RF AARR RPR
Mean 81.19 78.72 15.86 14.91 47460.18 90.74

St.Dev. 8.25 7.67 10.48 4.35 4857.71 0.9
Max 92.16 91.33 35.57 21.21 57879.55 93.29
Min 67.76 64.66 0.48 6.17 38344.04 89.44

However, our analysis also showed that EDDIE 8 cannot always perform better than EDDIE 7.
It seems that there is a trade-off between ‘searching in a bigger space’ and ‘search effectiveness’.
It is obvious that the results are affected by the patterns in the dataset. If these patterns come from
EDDIE 8’s vocabulary (and thus are in its search space), EDDIE 8 can find better solutions. This
is something we anticipated, since EDDIE 7 cannot search for these solutions. From Figure 6.15,
a look into the components of the trees that EDDIE 8 used during the evolutionary procedure of a
single run would show us that EDDIE 8 indeed took advantage of its large search space and came
up with solutions that it is impossible for EDDIE 7 to find. The x-axis of this figure presents the
range of the periods (2-65 days) that the 6 technical indicators are using. The y-axis shows the
occurrence of these indicators, in the logarithmic scale, after 50 generations of a single run. As we
can see, all indicators are used and they use many different periods within the range of 2-65 days.

However, a question arises, whether just using a bigger number of indicators is enough to
get better prediction results. This point becomes even clearer in cases where the patterns in the
dataset come from a very small search space, like the one of EDDIE 7’s. It then seems very
hard for EDDIE 8 to find as good a solution as EDDIE 7 does. The solutions are indeed in its
search space, but because they come from a very small area of it, it seems that EDDIE 8 cannot
search effectively enough to find them. The search space has increased significantly. To make this
clearer, let us give an example: if a GDT can have a maximum of k Variables (EDDIE 7) or k
VarConstructors (EDDIE 8), then the permutations of the available 12 indicators6 under EDDIE 7
are 12k; on the other hand, the permutations of the available 384 indicators7 under EDDIE 8 are
384k. It is thus obvious that EDDIE 8’s search space is significantly larger, which can therefore
explain the difficulties of EDDIE 8 of consistently finding good solutions. There is an obvious
trade-off between the more expressive language that EDDIE 8 provides and the search efficiency
of EDDIE 7.

6We are using 6 different indicators, with 2 periods each, thus 6 ∗ 2 = 12.
7We are using 6 different indicators with 65-1=64 periods each, thus 64 ∗ 6 = 384.

69



6.6 Extending the Artificial Datasets’ Results

Table 6.10: Summary Results for the testing period, over 50 runs, for EDDIE 7 and EDDIE 8. The
patterns were created by GDT-8. The results are shown in % percentages.

Summary Results
EDDIE 7 GDT-8

Fitness RC RMC RF AARR RPR
Mean 79.07 72.09 23.49 18.30 22569.97 90.02

St.Dev. 0.75 72.0996 23.495 18.30 22569.97 190.02
Max 80.83 74.33 29.13 20.30 34438.01 92.27
Min 76.15 68.33 19.42 16.67 10000 88.71

EDDIE 8 GDT-8
Fitness RC RMC RF AARR RPR

Mean 85.28 81.91 21.14 5.83 34741.70 91.14
St.Dev. 5.36 5.48 3.73 6.52 4547.87 0.70

Max 94.00 92.67 32.04 20.85 48613.98 92.07
Min 72.65 68.33 8.25 0 10000 88.73

Table 6.11: Kolmogorov-Smirnov test for testing whether the differences between EDDIE 7 and
EDDIE 8 are significant at a 5% significance level.

Kolmogorov-Smirnov test
Fitness RC RMC RF AARR RPR

p-value 4.0089e-15 1.2488e-16 4.0202e-07 3.2843e-18 4.9988e-19 1.2561e-07

6.6 Extending the Artificial Datasets’ Results
So far, we have made two valuable observations in Sections 6.4 and 6.5:

• EDDIE 8 has lower precision than EDDIE 7, for stocks where ED8Fit < ED7Fit

• EDDIE 8 performs better than EDDIE 7 (on artificial datasets), when patterns come from
EDDIE 8’s vocabulary. If, on the other hand, patterns come from EDDIE 7’s vocabulary,
then EDDIE 8 is having difficulties discovering them, and thus ends up with lower perfor-
mance

We also mentioned at the end of Section 6.4 that a plausible explanation for EDDIE 8’s lower
precision is that the nature of the patterns in the data prevents EDDIE 8 from performing well
more often. Now, after having the insight from the artificial datasets’ results, we want to see if
we can apply our conclusions to the empirical datasets. We shall therefore move our focus to the
indicators that EDDIE 8’s GDTs use and examine their relation with EDDIE 7’s vocabulary. We
saw earlier that if patterns in the hidden function come from EDDIE 7’s vocabulary, then EDDIE
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Figure 6.15: Indicators occurrence after 50 generations for a single run. This occurrence is pre-
sented in the y-axis and is in a logarithmic scale with a base of 10. The range of the period for the
6 indicators is from 2 to 65 days, and is presented in the x-axis. There are 6 different colours in the
graph, each one denoting a different technical indicator.

8 is having difficulties discovering them. This is what we are going to investigate now with the
empirical datasets. Our aim is to show that when ED8Fit < ED7Fit, it is because the GDTs of
EDDIE 8 contain a high percentage of indicators that come from the vocabulary of EDDIE 7, or
indicators very close to it. If this happens, it means that EDDIE 8 needs to look for patterns in a
very small search space, and thus faces difficulties in doing so.

One more thing to say is that here there are no hidden functions that EDDIE 8 is trying to
discover. When dealing with empirical datasets, we have “solutions”. A solution should be con-
sidered as the GDT that had the highest fitness at the end of the training period, and was then
applied to the testing period. This GDT was the best solution EDDIE 8 could come up with for
that specific run, for that specific dataset.

Let us now have a look into the components of the best solution of EDDIE 8, which as we said
in Section 6.4.2.2 is called Best-8, which as we already know is the best tree that EDDIE 8 could
find among a total of 50 runs8. We want to examine the components of Best-8, and calculate the
percentage of indicators that come from the vocabulary of EDDIE 7. Figures 6.16 and 6.17 present
us these results, for stocks where ED8Fit < ED7Fit (6.16) and stocks where ED8Fit > ED7Fit

(6.17). The x-axis shows the number of days that an indicator of EDDIE 8 is away from the
pre-specified indicators of EDDIE 7. For instance, “+/-1” means that EDDIE 8’s indicator has

8The ideal case would be of course to consider as a solution a GDT that would be able to fit the data with 100%
accuracy. However, this is not possible in forecasting with real data. We should thus consider as a solution other
GDTs, which would be able to fit the data sufficiently well. In our case, we choose the best performing GDT out of
50 runs.
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a distance from EDDIE 7’s indicators by +1 or -1 day. Thus, since EDDIE 7’s indicators have
lengths 12 and 50 days, EDDIE 8’s indicators in this example could be 11, 12, 13, 49, 50 and 51.
The y-axis presents the percentage of EDDIE 8’s indicators that come from EDDIE 7’s vocabulary.

Figure 6.16: Percentage of EDDIE 8’s indicators that are close to EDDIE 7’s vocabulary, for the
stocks that ED8Fit < ED7Fit. This percentage can be viewed in the y-axis. The x-axis presents
the number of days that an EDDIE 8’s indicator is away from the pre-specified indicators of EDDIE
7.

As we can see from Figure 6.16, even though none of the 4 stocks’ Best-8 trees are using any
indicators from the vocabulary of EDDIE 7 (all stocks have 0% at +/- 0 days), they are using indi-
cators in a very close range. To be more specific, 50-60% of the Best-8 indicators for these stocks
are close to indicators from EDDIE 7’s search space, in a range of [-4,+4] days; this percentage
increases to 50-80% for range [-6,+6] days.

On the other hand, for stocks where EDDIE 7 is outperformed by EDDIE 8 (Figure 6.17),
the previous percentage is much lower. For the range of [-4,+4] days, Best-8 for all 3 stocks has
a percentage of 18-30%. For the range of [-6,+6] days, this percentage increases only a little,
and is in the range of 18-44%, which is clearly much lower than the percentages we observed in
Figure 6.16.

Our intuition hence seems to be verified. EDDIE 8’s performance is indeed affected by the
nature of the patterns in the GDTs. When these patterns come from EDDIE 8’s broader vocabulary,
then EDDIE 8 has no problem finding these GDTs. On the other hand, when solutions come from
a very small space (in our case a search space around the one of EDDIE 7), then EDDIE 8 is having
difficulties focusing there. This, as a consequence, affects EDDIE 8’s performance results, which
become poorer than those of EDDIE 7.

72



6.7 Conclusion

Figure 6.17: Percentage of EDDIE 8’s indicators that are close to EDDIE 7’s vocabulary, for the
stocks that ED8Fit > ED7Fit. This percentage can be viewed in the y-axis. The x-axis presents
the number of days that an EDDIE 8’s indicator is away from the pre-specified indicators of EDDIE
7.

6.7 Conclusion
In this chapter we presented two investment opportunities forecasting algorithms, EDDIE 7 and
EDDIE 8. EDDIE 8 is an extension of EDDIE 7, because it extends its grammar. Traditionally,
EDDIE 7 and other similar GP algorithms use predefined indicators from technical analysis to
forecast the future movements of the price by using a pre-specified period length. In this approach,
we suggested that it should be left to the GP to decide the optimal period length. EDDIE 8 is
thus an improvement to the previous algorithm because it has richer grammar and also because
it can come up with solutions that EDDIE 7 can never discover. In addition, the improvements
introduced by the best GDT evolved by EDDIE 8, called Best-8, have on average a greater impact
than its diminutions. This is a very important finding, because it indicates that an investor using
EDDIE 8’s best GDT would on average gain more than if he was using EDDIE 7’s best tree.
EDDIE 8’s best tree was, on average, able to outperform EDDIE 7’s best tree in terms of all
performance measures. In addition, Best-8 had significantly higher average annual return (AARR)
than Best-7, which means that on an annual basis, an investor would make more profit if he was
using EDDIE 8. The above thus allow us to characterize EDDIE 8 as a successful extension to its
predecessor, and a valuable forecasting tool.

However, there seems to be a trade-off between ‘discovering new solutions’ and ‘effective
search’. Results from 10 empirical datasets from FTSE 100 showed that EDDIE 8 cannot always
outperform EDDIE 7 in terms of average fitness, RC, RMC and RF. In order to further understand
this behaviour, we created an artificial dataset. The reason we did this was because empirical
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datasets are exposed to noise. Thus, by using artificial datasets, which were noise-free, we could
avoid the impact of noise. In addition, with artificial datasets we could control the nature of
patterns. This thus helped us to identify the strength and weakness of EDDIE 7 and EDDIE 8.
Results suggested that EDDIE 8 can outperform EDDIE 7, as long as the solutions come from its
own vocabulary. If they come from EDDIE 7’s, then EDDIE 8 is having difficulties finding these
solutions, due to the fact that it has to look in EDDIE 7’s narrow search space. These results were
also verified by our empirical datasets.

We can thus conclude that the current version of EDDIE 8 has its limitations. Nevertheless,
EDDIE 8 is still a very valuable tool, due to the fact that it can guarantee significantly higher profits
than its predecessor, as already explained.

Future research will focus on improving EDDIE 8’s search effectiveness. Of course there are
different ways to do this. A promising way that we have already investigated is hyper-heuristics
(Özcan et al, 2008; Hart et al, 1998; Burke et al, 2006, 2003), where we created a framework for
financial forecasting (Kampouridis and Tsang, 2011). The results were promising, because hyper-
heuristics led to a significant decrease in the RMC; another promising result was that the search
became more effective, since more areas of the search space were visited. We believe that more
sophisticated hyper-heuristic frameworks, which will include more heuristics than the ones used
in Kampouridis and Tsang (2011), can lead to even better results. We therefore intend to focus in
that direction. Moreover, another direction of our research could be to produce some new search
operators or to create a new constrained fitness function.

This concludes Chapter 6. In the next chapter, we move our focus to the market fraction
dynamics of financial markets.
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Chapter 7

The Market Fraction Hypothesis

7.1 Introduction
As we saw earlier in Chapter 5, several works have focused on the mesoscopic structure of the
financial markets, where market fraction1 dynamics were investigated. One of the observations
made about the market fraction of trading strategies that exist in a market is that it constantly
changes (swings). As mentioned in Chapter 5, this is an interesting observation, because it gives
us valuable insight about the fraction dynamics of financial markets, i.e., how the popularity among
different types of trading strategies is interchanged. In addition, an immediate implication of this
observation is that there cannot be a ‘winner’ type of trading strategy in the long run.2 However,
this challenges the necessity of attempting to forecast the market. Motivated by the above, we
are interested in investigating in detail the dynamics of market fraction. We thus formulate this
swinging feature, observed at the mesoscopic level of agent-based financial models, into a con-
crete hypothesis, called the Market Fraction Hypothesis (MFH). Formalizing the MFH is a very
important task, because it is something that has not happened before and also because it allows us
to suggest and formulate tests that will examine its plausibility.

After formalizing the hypothesis, we are interested in testing it. In order to do that, we create
a new agent-based financial model, which combines characteristics from the N -type and the SFI-
like models. The reason of using this new model is because of the limitations that exist in the
N -type and SFI-like models, which we presented earlier in Chapter 5. For instance, we saw that
a limitation of the N -type models is that they assume that the trading strategy types are static and
pre-specified. By this we mean that the N -type models endow their agents with a specific number
of trading strategy types from which they have to choose. To the best of our knowledge, the MFH
has not been empirically examined under a more dynamic environment, where strategy types are
not fixed and are not exogenously given. Thus, in this chapter we do not assume any prefixed

1A reminder that the term ‘market fraction’ refers to the fraction of the different strategy types that exist in a
financial market.

2‘Winner’ in this context means a trading strategy type that will attract a big fraction of financial traders over many
time periods.
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behavioral rule for any type of trading strategy. In other words, we are not going to define fixed
types like fundamentalists and chartists, as it happens in the N -type models.

Moreover, we consider that agents that belong to the same trading strategy type are heteroge-
neous, while they can be similar. We consider that this departure will lead us to a more general
and realistic implication of the MFH. Consider the two-type model (fundamentalists-chartists) we
mentioned in Chapter 5. In this model, traders that belong to the same type always behave in ex-
actly the same way at any given point in time. This could be considered as very unrealistic. In the
real world, the behavioral rules of each trader are expected to be heterogeneous, and even if they
can be clustered into types, this does not mean that these rules are exactly the same. Therefore,
another characteristic of our agent-based financial model is the heterogeneity of the agents that
belong in the same type of trading strategy.

After presenting our financial model, we suggest a testing methodology. Because of the fact
that the observations of the MFH have so far been made under artificial market frameworks, we are
interested in investigating the underlying market fraction dynamics under ‘real’ financial markets.
We thus run tests under 10 international markets and hence provide a general examination of the
plausibility of the MFH. Another goal of our empirical study is to use the MFH as a benchmark
and examine how well it describes the empirical results which we observe from various markets.
In particular, we are interested in knowing how this benchmark performs when we tune a key
parameter of our model, i.e., the number of trading strategy types in the market. More details
regarding this can be found in Section 7.6.

Therefore, the contributions that are going to be presented in this chapter can be summarized
in the following way: (i) Formalizing the MFH, (ii) Suggesting a testing methodology, (iii) Testing
the hypothesis under real datasets, (iv) Proposing a new agent-based financial model which (a) does
not assume pre-fixed types of trading strategies and (b) allows heterogeneity among the strategies
that belong in the same type.

The remainder of this chapter is organized as follows. Section 7.2 elaborates on the MFH.
Section 7.3 presents our suggested model and also explains our motivation for the choice of tools
we used for our tests, namely Genetic Programming (GP) (Koza, 1992; Poli et al, 2008) and Self-
Organizing Map (SOM) (Kohonen, 1982). Section 7.4 presents the experimental designs. Section
7.5 addresses the methodology employed to test the MFH and explains the technical approaches
needed to be taken to facilitate the testing of the MFH. These proposed approaches play an impor-
tant role in our experiments, since they allow for a comparison of the types of trading strategies
displayed in SOMs, throughout the different time periods. Section 7.6 presents the test results.
It first starts by presenting the results over a single run for a single dataset. Then it continues
by presenting the summary results over 10 runs for this dataset and it finally presents summary
results for all datasets. Section 7.7 then tests the hypothesis under EDDIE 7 and EDDIE 8, in
order to investigate whether the previously derived results are independent on the choice of the GP
algorithm. Finally, Section 7.8 concludes this chapter and briefly discusses possible directions for
further research.
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7.2 The Market Fraction Hypothesis
As we have already pointed out, within a market there exist different types of trading strategies.
The MFH tells us that the fraction among these types of strategies keeps changing (swinging) over
time. The following two statements are the basic constituents of the MFH, and are based on a
summary of the empirical development of the agent-based financial models, presented in Chen
et al (2012).

1. In the short run, the fraction of different clusters of strategies keeps swinging over time,
which implies a short dominance duration for any cluster.

2. In the long run, however, different clusters are equally attractive and thus their market frac-
tions are equal.

The first statement means that it is not possible for a single strategy type to dominate the market
by attracting an overwhelming fraction of market participants for many consecutive periods. In
other words, according to the MFH a ‘winner’ type of trading strategy does not exist. Let us give
an example by again using the fundamentalist-chartist model. If at time t fundamentalists dominate
the market, the first MFH statement says that this should not happen for too long. Eventually there
should be a “switch”, and chartists would take over as the dominant strategy in the market. The
term ‘dominance duration’ refers to the amount of time that a type of strategy attracts a high
number of traders. This term will become technical for testing the MFH, and we shall make it
precise later in the chapter, in Section 7.6.

Let us now move to the second statement. If the above continuous happening, then in the
long run both the fundamentalist and chartist strategy types should have occupied about the same
market share, i.e., about one half.3.

As we can see, the implications of the MFH are very important. First of all, if the MFH holds,
this means that all types of trading strategies that exist in a financial market will, at some point,
become popular4. In other words, any type of trading strategies has equal chances of attracting a
significant amount of traders. Nevertheless, this seems unrealistic, because this means that even a
bad strategy can become popular. It is thus interesting to investigate if this can happen under real
data. In addition, another implication of the MFH is that no strategy can remain popular over a
long period of time, as it will soon be succeeded by another popular strategy. It is therefore also
interesting to examine if this is true, because it would give us an insight of how financial markets
are structured.

Hence, what we shall do in this chapter is test the above two MFH properties against our
empirical data. It should again be said that we are interested in qualitative results, meaning that
we want to see how close the real market behaves to what is described by the MFH under different

3This idea is first made rigorous by Kirman (1993), who attempted to solve a puzzling entomological problem, i.e.,
ants swinging among themselves within two identical sources of food.

4Popularity is equivalent to dominance, which means that a strategy type occupies many market participants (strate-
gies).

77



7.3 Model

numbers of clusters. The next section presents our model, along with the basic tools we used for
testing the MFH.

7.3 Model
In this section, we present our agent-based financial model. This model first allows the creation
of novel, autonomous and heterogeneous agents by the use of GP. The reason for using GP is be-
cause the market is considered to undergo an evolutionary process; this is inspired by Andrew Lo’s
Adaptive Market Hypothesis (AMH) (Lo, 2004, 2005), where Lo argued that the principles of evo-
lution (i.e., competition, adaptation, and natural selection) can be applied to financial interactions.
Thus, agents can be considered to be organisms that learn and try to survive.

After creating and evolving novel agents, we cluster them into types of trading strategies via
SOM. These types are thus not pre-specified, but depend on the strategies of the agents.

The advantages of this approach are thus twofold: first of all, agents can create autonomous
and heterogeneous trading strategies. Thus, even if two trading strategies belong to the same type
of trading strategy (e.g. fundamental), it does not mean that these two strategies have to follow
exactly the same trading rule, as it happens in the traditional agent-based model literature. In
addition, when these trading strategies are categorized into types of trading strategies, they are not
clustered into pre-specified, fixed types; on the contrary, the types depend on the existing trading
strategies. This thus makes our model more realistic.

Next, we present the two techniques of our model, GP and SOM.

7.3.1 Genetic Programming as a Rule-Inference Engine
In this work, we assume that traders’ trading strategies, are either not observable or not available.
Instead, their strategies have to be estimated by the observable market price. Using macro data to
estimate micro behavior is not new,5 as many N -type empirical agent-based models have already
performed such estimations6 (Winker and Gilli, 2001; Gilli and Winker, 2003; Boswijk et al, 2007).
However, such estimations are based on very strict assumptions, as we saw earlier (e.g., having pre-
specified trading strategy types is considered to be a strict and unrealistic assumption). Since we no
longer keep these assumptions, an alternative must be developed, and in this work we recommend
Genetic Programming (GP).

As we have already mentioned, the use of GP is motivated by regarding the market as an evolu-
tionary and selective process, as Lo (2004, 2005) suggests in his AMH. In this process, traders with

5‘Macro data’ is generally a term used to mainly describe two categories of data: aggregated data, and system-
level data (Diez-Roux, 2002). The former refers to data that combine information, such as unemployment statistics
and demographics. The latter refers to information that cannot be disaggregated to lower level unities; such examples
are the prices of a stock. On the other hand, ‘micro behavior’ refers to the study of the behavior of components of a
national economy, such as individual firms, households and traders.

6For more information on such papers, we refer the reader to Chen et al (2012), which provides an excellent
literature review on the topic.
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different behavioral rules participate in the markets. Those behavioral rules which help traders gain
lucrative profits will attract more traders to imitate them, and rules which result in losses will attract
fewer traders. An advantage of GP is that it does not rest upon any pre-specified class of behavioral
rules, like many other models in the agent-based finance literature (Chen et al, 2012). Instead, in
GP, a population of behavioral rules is randomly initiated, and the survival-of-the-fittest princi-
ple drives the entire population to become fitter and fitter in relation to the environment. In other
words, given the non-trivial financial incentive from trading, traders are aggressively searching for
the most profitable trading rules. Therefore, the rules that are outperformed will be replaced, and
only those very competitive rules will be sustained in this highly competitive search process.7

Hence, even though we are not informed of the behavioral rules followed by traders at any
specific time horizon, GP can help us infer what these rules are approximately, by simulating how
the market evolves. For instance, if a market under a certain time period is dominated by chartists,
it is very likely that the generated GP trees are a type of chartist. Traders can then be clustered
based on realistic, and possibly complex, behavioral rules.8

The GP algorithm used to infer the rules is a simple GP, which is based on EDDIE 7, which
we presented in the previous chapter. The difference between this simple GP and EDDIE 7 is in
the fitness function; the simple GP does not use constraints at all. In other words, the constraints
that EDDIE uses are completely relaxed and thus set to [Cmin, Cmax] = [0, 100] (see Section 4.7.3.
The reason for doing this is because we want to test the hypothesis with a more general algorithm,
rather than with a specialized one. At the end of this chapter, we also test the hypothesis with
EDDIE 7 and EDDIE 8, for completion, and to investigate whether the results are independent
from the choice of GP algorithm.

7.3.2 Self Organizing Maps for Clustering
Once a population of rules (GDTs) is inferred from GP, we are interested in clustering these strate-
gies to N -types, so as to provide a concise representation of the market. The clustering takes place
based on a similarity criterion, which in this work is the observed trading behavior.9 Based on this
criterion, two rules are similar if they are observationally equivalent or similar, or, alternatively

7It does not necessarily mean that all types of traders surviving must be smart and sophisticated. They can be dumb,
naive, randomly behaved or zero-intelligent. Obviously, the notion of rationality or bounded rationality applying here
is ecological (Simon, 1956; Gigerenzer and Todd, 1999) (‘ecological’ refers to the adaptive behavior of agents and
it is used in contrast to the classical definitions of rationality, where agents conform to norms of logic, statistics and
probability theory). Nevertheless, it could be argued that the above methodology does not infer the existence of dumb
and naive strategies, but only evolves dumb strategies that do not necessarily represent the ones that actually existed
in the market. This could thus be considered as a limitation of our suggested agent-based model.

8Duffy and Engle-Warnick (2002) provide the first illustration of the use of genetic programming to infer the
behavioral rules of human agents in the context of ultimatum game experiments. Similarly, Izumi and Ueda (1999)
use genetic algorithms to infer behavioral rules of agents from market data.

9Other similarity criteria could take place, too, such as risk averseness. However, it is not the purpose of this work
to investigate the effect of different clustering criteria.
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put, they are similar if they generate the same or similar market timing10 behavior.
Given the criterion above, the behavior of each trading rule can be represented by its series

of market timing decisions over the entire trading horizon, for example, 6 months. Therefore, if
we denote the decision “buy” by “1” and “not-to-buy” by “0”, then the behavior of each rule is a
binary vector. The dimensionality of these vectors is then determined by the length of the trading
horizon. For example, if the trading horizon is 125 days long, then the dimension of the market
timing vector is 125 × 1. Thus, each GDT can be represented by a vector which contains a series
of 1s and 0s, denoting the tree’s recommendations to buy or not-buy on each day. Let us call this
vector the ‘behavior vector’. Once each trading rule is concretized into its behavior vector, we can
then easily cluster these rules by applying Kohonen’s self-organizing maps. At the end of the SOM
process, trading strategies that behave in the same or in a similar way will have been clustered into
the same cluster.

Figure 7.1 presents the results after running 3×3 SOM for a population of 500 individuals11

for the daily TAIEX12 index for the first and second half of 2007, respectively. Here, 500 artificial
traders are grouped into nine clusters (types of trading strategies). In a sense, this could be per-
ceived as a snapshot of a nine-type agent-based financial market dynamics. Traders of the same
type indicate that their market timing behavior is very similar. The market fraction or the size of
each cluster can be seen from the number of traders belonging to that cluster. As we can see, there
are usually a few strategies that are occupying the majority of the population, whereas the rest of
the strategies have significantly fewer members. For instance, we can see that in the left map, 193
trading strategies have been clustered to the bottom-right cluster, 152 strategies have been clus-
tered into the top-left cluster, 92 into the bottom-left cluster, and so on. Similar observations can
be made for the second map, on the right of Figure 7.1. Having different maps for different periods
in time allows us to observe how the market fraction dynamics change from period to period, e.g.,
whereas a cluster which occupies a high number of trading strategies, will continue doing this in
the future periods, and for how long.

The main advantage of SOM over other clustering techniques such as K-means (MacQueen,
1967) is that the former can present the results in a visualizable manner so that we can not only
identify these types of traders, but can also locate their 2-dimensional position on a map, i.e., a
distribution of traders over a map. Furthermore, if we suppose that maps over time are directly
comparable, we end up with a rather convenient grasp of the dynamics of the markets’ structure,
as if we were watching the population density on a map over time.13

10‘Market timing’ refers to the strategy of making buy or sell decisions of stocks, by attempting to predict future
price movements.

11In this thesis, we run experiments with 500 individuals. We leave it as a future work to investigate whether a
different number of individuals could affect our results.

12Taiwan Stock Exchange Capitalization Weighted Stock Index. Available from http://finance.yahoo.com
13However, the assumption of directly comparable maps over time does not necessarily hold. In order to address

this issue, we have introduced a technical step, which is referred to as time-invariant SOM. More details about this
follow in Section 7.5.
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(a) First semester of the year 2007 (b) Second semester of the year 2007

Figure 7.1: Two self-organized maps constructed from the rules inferred using the daily data of the
TAIEX, the first half (the left panel) and the second half (the right panel) of 2007, respectively.

7.4 Experimental Designs
This section summarizes the experimental designs. The experiments were conducted for a period
of 17 years (1991-2007) and the data were taken from the daily closing prices of 10 international
market indices. These 10 markets are the CAC 40 (France), DJIA (USA), FTSE 100 (UK), HSI
(Hong Kong), NASDAQ (USA), NIKEI 225 (Japan), NYSE (USA), S&P 500 (USA), STI (Singa-
pore) and the TAIEX (Taiwan). For each of these markets, we run each experiment 10 times. To
make it easier for the reader, we first present the testing methodology and results for a single run
of the TAIEX dataset. Figure 7.2 presents the daily closing price of the TAIEX. We then proceed
by presenting summary results over the 10 runs for all datasets.

Each year was split into 2 halves (January-June, July-December), so in total, out of the 17
years, we have 34 periods.14 Since our data is divided into semesters, the first semester of a year
is denoted with an ‘a’ at the end (e.g. 1991a), and the second semester of a year is denoted with a
‘b’ at the end (e.g. 1991b).

The GP was therefore implemented 34 times, once per each period. As we said earlier, in
Section 7.3.1, this was done in order to estimate the traders’ trading strategies. Thus, each period
from 1991a to 2007b has a number of GDTs (500 in our experiments), which represent the traders’
strategies. Table 7.1 presents the GP parameters for our experiments, which are essentially the
same as the ones in the previous chapter.

After obtaining the 500 GDTs per period, we are interested in clustering them into types of

14At this point the length of the period was chosen arbitrarily as 6 months. We are aware that dividing the data in
fixed semesters might “hide” some bias in the results, such as seasonality effect. We leave the investigation of this to
future research. For instance, one potential approach of this investigation could be the use of sliding-windows.
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Figure 7.2: Daily Closing Price for the TAIEX:1991-2007

trading strategies, as already explained in Section 7.3.2. More specifically, after obtaining the 500
trees from 1991a, we cluster them into the 9 clusters of a SOM,15 where each cluster represents
a trading strategy type. The same procedure is followed for 1991b, 1992a, and so on. Hence, at
the end of the SOM process, all trading strategies from all periods have been clustered into the 9
trading strategy types of each period. We have therefore ended up with 34 different SOMs, one per
semester, which represent the market in different time periods over the 17-year horizon. We can
thus observe how the proportion (market fraction) of these types of trading strategies changes over
time.

Table 7.2 presents the SOM parameters for our experiments. As already mentioned in Chapter
3.7, we have used the MATLAB MathWorks Neural Network Toolbox (MathWorks, 2011), and
the parameters used are the toolbox’s default ones.

7.5 Testing Methodology
After having presented the necessary tools and the experimental designs, we can now proceed to
present the testing methodology. Our methodology consists of three parts: GP, SOM and time-
invariant SOM.

Let us start with GP. As we have already seen, we have used a simple GP in order to generate
and evolve trading strategies. However, there is a problem with comparing trading strategies for
different periods. This happens because we cannot compare the fitness function of a trading strat-
egy (GDT) from one period with the fitness function of a strategy (GDT) for another period, since

15Later in the chapter we experiment with different SOM dimensions. For the moment, we investigate what happens
when the number of trading strategy types is 9 (3 × 3). This number has been chosen arbitrarily.
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Table 7.1: GP Parameters. The GP parameters for our experiments are essentially the same to the
ones from Chapter 6.

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
{w1, w2, w3} {0.6, 0.1, 0.3}

Table 7.2: Default SOM parameters of the MathWorks SOM Toolbox (MathWorks, 2011)

SOM Parameters

Algorithm Batch (trainbuwb)
Initialization midpoint
Update rule Batch map (learnsomb)
Distance Euclidean (dist)
Neighborhood Simple neighborhood set of radius σ = 3
Topology Hexagonal (hextop)
Steps 100

they were presented with different datasets (environments).
This also applies to the clusters’ comparison among different SOMs. Maps over time are

not directly comparable. In order to better understand this, consider Figure 7.1. The way SOM
works is that it creates the clusters after it is given a specific population of, in our cases, GDTs.
When we have different periods with different populations, the nine clusters from different periods
will generally be different, because they represent different populations of investment behavior,
which were generated by different data environments. For example if we name the bottom-left
cluster of each SOM (Figure 7.1) as ‘Cluster 1’, we are then saying that ‘Cluster 1’ of the SOM
derived using the data for 2007a will in general not be the same as ‘Cluster 1’ of the SOM derived
from the data using 2007b. It is quite likely that they will have different centroids (weighting
vectors), representing different investment behaviors. This, therefore, makes the strategy types
incomparable crossing different periods.

In order to tackle this problem, we introduce a time-invariant SOM based on the idea of emi-
grating and reclustering, which is the third and last part of our testing methodology. The following
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section thus presents these “translations” needed in order to make SOMs from different periods
comparable.

7.5.1 Translations
7.5.1.1 Emigrating

As we have just mentioned, after obtaining the trading strategies from GP, we cannot directly
compare them with strategies from other periods, because each period has its own dataset. What
therefore needs to be done is that all periods use the same dataset as a common base. In other
words, all GDTs that are derived from each period emigrate to a common base period. For con-
venience, we call these emigrant GDTs. Therefore, after applying a GDT to the new dataset, new
signals are created. In this way, the behavioral vectors of all GDTs derived from different periods
are re-built based on the same grounds and hence become comparable. Here, we choose the second
half of 2007 (2007b) as the base period.16 Consider the GDTs of 1991a as an example. What we
do is that we apply (emigrate) each GDT to the data of 2007b. Each tree then generates a series
of new signals, under the new data (2007b). Thus, each GDT has a new behavior vector, which is
comparable to the behavior vectors of the GDTs from 2007b. The same process is followed for the
GDTs of periods 1991b-2007a.

7.5.1.2 Reclustering

Reclustering or time-invariant SOM is the second part of translations, which allows SOM clusters
to be compared throughout different periods. We again use 2007b as the common base period.
This time, we keep the centroids of the clusters originally derived from the common base period
(2007b) fixed and assign the behavior vectors from other periods (emigrated GDTs) to one of the
clusters of 2007b. This reclustering is conducted in the following way: the behavior vector of each
emigrated GDT is compared with each centroid of the nine clusters of the 2007b map, and is then
assigned to the one with the minimum Euclidean distance. We do this period by period from 1991a
to 2007a. 33 SOMs are constructed in this way17, and now these SOMs can be directly compared
with each other, given that they all share the same centroids.18 We call these SOMs ‘time-invariant’
SOMs.

Figure 7.3 presents 4 of these 34 SOMs, where we can examine how the fraction of the clusters
changes over time. These SOMs are now directly comparable over time. For instance, we can
observe that although the bottom-right cluster of the top-left map (2006a) occupied a high number
of trading strategies (390), this did not continue happening in the future periods. Only 1, 6 and 50

16The base period was chosen arbitrarily. However, which base period is chosen does not affect the results.
172007b does not need reclustering, since we use it as the base period.
18While this process offers the major advantage of comparing maps from different time periods, it inevitably has

to assume that since after reclustering we have the same clusters over time, the strategy types behind these clusters
also remain the same. This might be considered a strict assumption, but it is necessary for allowing some kind of
topological equivalence. In the next chapter, we investigate the market dynamics without this assumption.
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trading strategies were clustered in this cluster in periods 2006b, 2007a, and 2007b, respectively.
This figure thus gives a clear picture of what we mean by market fraction dynamics. As we can
observe, the distribution over the clusters is uneven over time. In each period of time, some clusters
obviously dominate others, but that dominance changes over time. This can be seen from the
constant renewing of the major blocks.

We will thus use all 34 SOMs that have been generated for the years 1991-2007 to test State-
ments 1 and 2 (see Section 7.2), and thus examine how the market fraction dynamics change in the
short and in the long run.

(a) First semester of the year 2006 (b) Second semester of the year 2006

(c) First semester of the year 2007 (d) Second semester of the year 2007

Figure 7.3: SOM of Trading Strategies After “Translation”: Samples from TAIEX Cells (1,1),
(1,2), (2,1) and (2,2) correspond to period 2006a, 2006b, 2007a, and 2007b, respectively.

7.6 Results

7.6.1 Results of a single run of a single dataset
7.6.1.1 Test 1: The Short-Run Test

The first test regards the short-run behavior of market fractions. In the short run, the fraction
of different clusters of strategies is expected to keep swinging over time, which implies a short

85



7.6 Results

dominance duration for any cluster. To be operational, a type of strategy is said to be dominant if
its fraction is greater that the threshold,

TH =
1 + p

N + p
, (7.1)

where TH denotes a threshold, N is the number of clusters and p is a free parameter to manipulate
the degree of dominance.19 By varying the parameter p, one can therefore have an operational
meaning that is consistent with our intuition regarding dominance. For example, as N = 9, the
threshold of being a dominant type changes with p as follows. It is 11.11% when p = 0, 20% when
p = 1, and 27.27% when p = 2. Clearly, the higher the value of p, the higher the threshold. If
all clusters were to have the same number of members, then each cluster would be occupying 11%
(1/9) of the population. Hence, the case where p = 0 corresponds to a threshold that just breaks
the tie. However, to be dominant, we may expect a value of p to be higher than just breaking the
tie. Hence, in this work, p is set to be 2.

Furthermore, we need to be precise as to what we mean by short duration for a dominant
type. Here, any specific number may be arbitrary; after all, short is only a matter of degree. We,
therefore, first present the statistics of duration observed for each type. Figure 7.4 summarizes the
dominance results over the 34 periods. It presents the minimum, average and maximum of the
duration times of each type. What we can observe from Figure 7.4 is that the longest duration
observed is nine periods (four and a half years) for type 6. For other types, the longest duration is
barely over two periods. Hence, if we look at the average duration, with the exception of type 6,
no type remains dominant for more than 2 consecutive periods, i.e., a year. Nevertheless, because
of the long dominance duration of Cluster 6, we can argue that evidence for the support of Test 1
is quite weak.

7.6.1.2 Test 2: The Long-Run Test

The second hypothesis concerns the long-run behavior of market fractions. It says that, in the
long run, different clusters are equally attractive and thus their market fractions are equal. As we
said earlier, we expect to see that the fraction of strategies keeps changing. In the left SOM of
Figure 7.1, for instance, we can see that three strategies are occupying a quite large fraction of
the population (around 39%-193 members out of a total of 500, 30%-152 out of 500, and 18%-
92 out of 500). The rest of the strategies have lower percentages. According to the MFH, these
percentages should keep changing from period to period so that, in the long run, these percentages
should be close to each other. In other words, if we have N types of traders, their long-term
frequency of appearance should be close to 1

N
. Let Cardit be the number (cardinality) of traders

in Cluster i in time period t.

19We should state at this point that the terms ‘dominance’ and ‘dominance duration’ used in this thesis should not
be confused with the concept of ‘dominant strategy’ that can be met in game theory.
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Figure 7.4: Min, average and max number of consecutive times that a strategy remains dominant
over the 34 periods for p=2 Daily Closing Price for theTAIEX:1991-2007

N∑
i=1

Cardit = M, ∀t (7.2)

In our current setting, M , the total number of traders, is 500. The long-term histogram can be
derived by simply summing up the number of traders per cluster over all periods, and dividing it
by a total of M × T (# of periods),

wi =

∑T
t=1 Cardit

M × T
(7.3)

Figure 7.5 gives the long-term histogram of these clusters, {wi}. Obviously, they are not equal
and thus we present them in descending order from the left to the right. Cluster 6 has the largest
market fraction of up to almost 60% , whereas Cluster 4 has the smallest market fraction, which is
not even up to 1%.

Of course, it is obvious that this distribution is very different from the uniform one. In order to
provide a measure of how far away it is from the uniform distribution, we use the familiar entropy
as a metric. Let us denote the empirical distribution presented in Figure 7.5 as fX , and the uniform
distribution fY . By definition, fY = 1

N
, where N is the number of clusters, which in this case is

9. In order to measure how close fX is to the uniform distribution fY , we calculate the entropy of
both distributions. For the discrete random variable, entropy is defined as

Entropy = −
N∑

i=1

Pi ln Pi (7.4)
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Figure 7.5: Market Fractions of the Nine Clusters: TAIEX, 1991-2007

where Pi is the fraction of each cluster. It is well known that for the uniform distribution Entropy(Y ) =
ln N . When N = 9, it is ln 9 ≈ 2.2. The closer Entropy(X) is to 2.2, the closer X is to the uni-
form distribution. After calculating X’s entropy, we find it equal to 1.3, which is only 59% of
the entropy of the uniform distribution. This thus allows us to argue that fX is far away from the
uniform distribution, and hence Test 2 is not supported by TAIEX.

Now that we have seen the test results of a single run for one dataset, it is interesting to see
if these results can be generalized for more runs and more datasets. The next part of this section
presents and discusses these summary results.

7.6.2 Summary results for all datasets under 9 clusters (3×3 SOM)
As we saw in the previous section, the experimental results of the two tests seem to deviate from
what the MFH predicts to some extent. Test 1 has one cluster that dominates the market for 9 con-
secutive periods, which appears to be too long. In addition, Test 2 shows an even larger deviation,
since the long term market fraction is very different from the uniform distribution. Altogether, the
evidence for the MFH is weak. However, so far we have only presented a single run, for a single
dataset. Table 7.3 thus presents the results over 10 runs, for all the datasets tested. The first two
numeric columns are related with Test 1. They present the averages over the 10 runs for the aver-
age and maximum dominance duration of the 9 clusters. Furthermore, the last column is related to
Test 2 and shows the ratio of the average realized entropy (over the 10 runs) over the base entropy
(equal to 2.2).

The first observation we can draw from Table 7.3 is that homogeneity exists across the majority
of the results. Let us first start with Test 1. We can see that on average there is no cluster that
remains dominant for 2 consecutive periods. This is in line with Test 1. However, the second
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Table 7.3: Summary results over 10 runs, for all datasets, for 3×3 SOM. The first two numeric
columns are related with Test 1 and present the averages over the 10 runs for the average and
maximum dominance durations of the 9 clusters, respectively. The last column presents the ratio
of the average realized entropy (over the 10 runs) over the base entropy (Test 2). This ratio is
maximized when RealizedEntropy

BaseEntropy
= 1.

Summary Statistics

Test 1 Test 2
Average Max Entropy Ratio

CAC 40 1.81 5.5 0.68
DJIA 1.93 5.78 0.66
FTSE 100 1.77 6 0.64
HSI 1.71 4.6 0.7
NASDAQ 1.59 4.11 0.69
NIKEI 225 1.51 3.4 0.79
NYSE 1.93 6.56 0.6
S&P 500 2.16 6.89 0.64
STI 1.67 3.7 0.75
TAIEX 2.02 8.25 0.55

column tells us that even though on average no cluster dominates for more than 2 periods, there is
always an outlier that can remain dominant for longer, e.g. 8 consecutive periods for the TAIEX.
Thus Test 1 is not supported by any of the 10 datasets tested, under the 3×3 SOM. Regarding Test
2, the entropy ratios for all datasets are somewhat distant from their maximum values. All entropy
ratios are in the range 0.55-0.79, which basically is a 21-45% difference from the entropy of the
uniform distribution. This essentially means that the distributions are on average different from
the uniform and therefore the clusters, in the long run, are not equally attractive, as Test 2 requires.
Overall, the MFH seems to be relatively weak for all 10 indices tested under the 3 × 3 SOM.

7.6.3 Changing the number of clusters
So far, all of our tests have been performed for 3×3 SOMs. It is therefore interesting to investigate
how sensitive are the results if we tune the number of clusters. Therefore, we repeat the whole
procedure mentioned above for different SOM dimensions: 2×1, 3×1, 2×2, 5×1, 3×2, 7×1 and
4×2.

7.6.3.1 Test 1 under all SOM dimensions

Figure 7.6 presents the averages, over 10 runs, for the average and maximum dominance duration
for number of clusters 2-9. The x-axis presents the number of types of trading strategies (clusters),
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(a) Test 1-Averages (b) Test 1-Maximums

Figure 7.6: Summary Results for Test 1-Averages and Test 1-Maximums. The x-axis presents the
number of types of trading strategies (clusters), and the y-axis the dominance duration.

and the y-axis the dominance duration. What we observe in these graphs, especially in Figure
7.6(a), is that the dominance duration decreases as the number of clusters increases. Nevertheless,
we can again see from Figure 7.6(b) that there are always clusters with strong dominance, even
under the 3 × 3 SOM. In addition, standard deviations results for Test 1-Max (Table E.1) are
relatively low, and thus Test 1-Max results are reliable. Test 1 thus is not supported under any
number of clusters.

To see how significant the above patterns are, we run a Monte Carlo simulation as follows.
Starting with two clusters, we randomly assign a winner (dominant cluster) to either cluster 1 or
cluster 2. We then conduct this binomial experiment 34 times. Considering this to be one run, we
do it for 10 runs. Hence, we have 10 artificial series of dominant clusters, with each series lasting
for 34 runs. We then conduct the same analysis as above by figuring out the average duration and
maximum duration of each series, and the average of the whole. We then apply this Monte Carlo
experiment for 2 to 9 clusters. A comparable result is then drawn in Figure 7.7.

By comparing Figure 7.6 with Figure 7.7, we can see that the behavior of the real markets is
very different from that of the multinomial experiment. For the latter, the average of the maximum
duration (Figure 7.7(b)) decays, from above 7 to slightly above 3, but for the former (Figure 7.6(b))
this decaying tendency is shown in none of the ten markets. Instead, they all fluctuate slightly
around a horizontal line, and, depending on the market, the line is situated at a interval from four
to eight. For the average duration (Figures 7.6(a) and 7.7(a)), while both figures feature a decaying
tendency, the one with financial data decays much more slowly than the one based on the artificial
data. Therefore, our result cannot be treated as an incident from a random draw of the multinomial
experiments, and in this sense this pattern is not spurious.

One last thing that we would like to comment is the low average dominance duration that can
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(a) Test 1-Averages (b) Test 1-Maximums

Figure 7.7: Summary Results for Test 1-Averages and Test 1-Maximums under Monte Carlo sim-
ulation

be observed in Figure 7.6(a), for the high number of clusters. One might wonder what the reason
for this ‘phenomenon’ is, especially since the average dominance duration started at quite high
levels (for the low number of clusters). We believe that this can be better explained if we also take
in to account Figure 7.6(b). What seems to happen for all datasets is that there are always a few
clusters that have strong (long) dominance over the 34 periods, whereas the rest have very low
dominance. The low average dominance duration we see in Figure 7.6(a) for the high number of
clusters can therefore be explained by the extremely low dominance duration of the majority of
clusters.20

7.6.3.2 Test 2 under all SOM dimensions

As we said earlier, we are interested in obtaining the distance of the entropy of the empirical
distribution fX (fractions of clusters) from the uniform distribution (benchmark). We have also
said that the closer the entropy of distribution fX is to the entropy of the uniform distribution, the
closer distribution fX is to the uniform one. After obtaining the entropies over 10 runs for each
dataset, we first calculated the average of these runs, we then divided each one of these averages
with the benchmark entropy and thus obtained 10 different ratios (one per dataset). Of course, this
ratio is maximized when the two entropies are equal, and therefore their ratio is equal to 1. Hence,
the higher the ratio, the closer to the uniform distribution the empirical distribution will be. Figure
7.8 presents these ratios for all datasets.

HSI and NASDAQ seem to be the only datasets that are close to the uniform distribution, with

20For instance, if 8 out of the 9 clusters have a dominance duration of 2 periods, and only 1 cluster has a dominance
duration of 9 periods, then the average dominance duration is driven down to (8∗2)+9

9 ≈ 2.7 periods.
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Figure 7.8: Test 2: Difference of the empirical distribution x (fractions of clusters) from the uni-
form distribution.

a ration of 0.99 and 0.97, respectively; this happens only under the 2 × 1 SOM. In addition, we
can observe that the ratios tend to decrease as the number of clusters increases, and hence the
support for Test 2 gets weaker, for all datasets. Such a divergence of the two distributions indicates
again that the strong dominance of a few clusters continues to exist, even in the long run. Hence,
evidence for the support of Test 2 is quite weak.21 Therefore, after combining Tests 1 and 2, we
can have a quite clear picture. Clusters tend to dominate the markets for long periods of time.

To make this argument even clearer, we also present Figure 7.9, which shows the cumulative
fractions for the TAIEX for different number of clusters. A graph named ‘Number of Clusters: 2’
means that the strategies are allocated to 2 clusters. When ‘Number of Clusters: 3’, the strategies
are allocated 3 clusters, and so on. The clusters have been sorted by their size (fraction) in descend-
ing order. Therefore, Cluster 1 on the x-axis denotes the cluster with the highest fraction, Cluster
2 the cluster with the second highest fraction, etc. The y-axis presents the cumulative fraction of
the clusters.

An observation we can make from Figure 7.9 is that the contribution of each ranked cluster
decreases when the number of clusters increases, which causes the entire cumulative curve to shift
down.22 For instance, when the number of clusters is 2, the largest cluster has a size of about
70%. However, while we move to a higher number of clusters, we can see that this size gradually
decreases and finally falls below 60%, when the number of clusters is 9. The same happens for the
contribution of the rest of the clusters. Hence, each graph moves a bit below, when the number of
clusters increases. Nevertheless, what is important is that even when the number of clusters is 9,

21This is also supported by the standard deviation results presented in Table E.2, where we can see that these values
are quite low.

22The graphs for the other markets can be found in Appendix C.
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Figure 7.9: Cumulative Fraction for TAIEX

the clusters with the highest two or three ranks occupy a very large fraction (approximately 90%)
of market participants.

The above observation leads us to consider that maybe there is a minimum number of clusters
that covers a certain fraction of the market. Table 7.4 gives the result of the minimum number
of clusters required to cover a targeted fraction of market participants. The three targeted values
given in the table are 90%, 95% and 99%. Since the purpose was to see whether only a small
number of clusters is required, we started with a larger number clusters, namely, nine, and saw
how much reduction we could make. If the target is to cover 90% of the market participants, then
most markets need only four to five types, and if the target rises even higher to 95%, then most
markets need five to six types.23 We can thus conclude from this that a few types of strategies are
enough to characterize the market behavior.

7.7 Testing the MFH under different GP algorithms
In this section, we test the MFH again, but this time with EDDIE 7 and EDDIE 8 as the rule
inference engines, instead of the simple GP. The reason we do this is because we are interested
in seeing if the previous results can hold under different GP algorithms, which would indicate that
they are algorithm-independent. This would thus allow us to generalize the results.

23These results are similar to another work by Aoki (2002).This is probably the only paper known to us that deals
with a number of types of agents in the multi-agents system. In his work, Aoki determined the minimum number
of types of behavior required to capture multi-agent economic systems. He showed that it would be enough to char-
acterize the 95% of the market behavior only by a few types, say, two to three. The remaining types were rather
marginal.
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Table 7.4: Minimum number of clusters whose cumulative fraction is above the required threshold
of 90%, 95% and 99%, respectively

Minimum Number of Clusters

Threshold
90% 95% 99%

CAC 40 4 5 7
DJIA 5 6 8

FTSE 100 4 5 8
HSI 5 6 8

NASDAQ 4 6 8
NIKEI 225 5 6 8

NYSE 7 8 9
S&P 500 7 8 9

STI 5 6 8
TAIEX 4 6 7

7.7.1 Test 1 under EDDIE 7 and EDDIE 8
We set again the parameter that manipulates the degree of dominance duration to p = 2, as earlier.
Figure 7.10 presents the Test 1 results for Averages (left) and Maximums (right), for both EDDIE
7 (up) and EDDIE 8 (down). What we observe in these graphs is that again the dominance duration
decreases as the number of clusters increases, for both EDDIE 7 (top) and EDDIE 8 (bottom). This
suggests that when we move from a lower to a higher number of clusters, the empirical results
reveal stronger evidence of the MFH. Of course, the fact remains that both maximum duration
graphs suggest that there is always a cluster that remains dominant for a number of periods that
is greater than the average. Therefore, results under EDDIE 7 and EDDIE 8 suggest that there
are always a few clusters that have strong dominance over the 34 periods, whereas for the rest the
dominance of duration is very low. Test 1 is hence not justified.

These observations are in line with the earlier ones. However, it should be stated that the GP
algorithms in this section seem to have slightly worsened the results. Especially in the case of
the averages of maximum duration, both the EDDIE 7 and EDDIE 8 results reveal a significant
increase on the duration period. Earlier, the results started in the range of 4-11 periods for the 2×1
SOM, for all datasets, and finished in the range of 3-8 periods, under the 3 × 3 SOM. However,
the results in this section start in the range of 8-17 (EDDIE 7) and 7-15 (EDDIE 8) periods, and
finish in the range of 4-9 (EDDIE 7) and 3-8 (EDDIE 8). What we can thus conclude from this
test is that both versions of EDDIE have increased the dominance duration of the few clusters with
strong dominance.
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(a) Test 1-Average-EDDIE 7 (b) Test 1-Max-EDDIE 7

(c) Test 1-Average-EDDIE 8 (d) Test 1-Max-EDDIE 8

Figure 7.10: Test 1: Summary Results for Averages (left) and Maximums (right). The x-axis
presents the summary results under different numbers of clusters. The graphs at the top present the
EDDIE 7 results, whereas the ones at the bottom present the EDDIE 8 results.

7.7.2 Test 2 under EDDIE 7 and EDDIE 8
Figure 7.11 presents the entropy ratios for all datasets. What we observe from this figure is that the
ratios tend to decrease as the number of clusters increases (thus, the difference between the two
distributions increases). This observation holds for both EDDIE 7 and 8. Furthermore, when only
a few number of strategy types exist, we get closer to the uniform distribution, which as we know
implies that in the long run the clusters are equally competitive.

Such a high diversity of the two distributions (especially with a high number of clusters) in-
dicates again that the strong dominance of a few clusters continues to exist, even in the long run.
Therefore, Test 2 is again not justified under neither EDDIE 7, nor EDDIE 8.

These observations are also very similar to the original ones. However, once again the results
under EDDIE 7 and EDDIE 8 seem to have slightly deteriorated. Under the simple GP, the above
ratios for low SOM dimensions (e.g. 2× 1) were in the range of 0.82-0.99, for all datasets. Hence,
some of the empirical distributions were very close to the uniform distribution, which of course
indicates support for Test 2. On the other hand, this does not happen here, where the difference
between fX and fY is quite big for both GPs, with their maximum ratios not exceeding 0.83
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(a) Test 2-EDDIE 7

(b) Test 2-EDDIE 7

Figure 7.11: Test 2: Difference of distribution fX from the uniform distribution for EDDIE 7 (top)
and EDDIE 8 (bottom). The x-axis presents the results under different numbers of clusters.

(EDDIE 7), and 0.91 (EDDIE 8), respectively. Thus there is no support for Test 2 under EDDIE 7
and EDDIE 8.

Finally, we present Table 7.5, which shows the minimum number of clusters required to pass
the 90, 95, and 99% fraction thresholds, under under EDDIE 7 and EDDIE 8. Results are again
very similar as earlier, in Table 7.4. In order to cover 90% of the market participants, all markets
need four to five types; if the target is to cover 95%, then markets need five to six types, for both
EDDIE 7 and 8.

7.8 Conclusion
To summarize, this chapter presented the Market Fraction Hypothesis (MFH), which states that
the fraction of the types of trading strategies that exist in a financial market changes over time.
This is a very interesting statement, because it suggests that popularity can be interchanged among
all available trading strategy types, and thus a ‘winner’ type of trading strategy cannot exist. As a
result, it might be futile to attempt to identify successful forecasting opportunities, since no rule can
be a ‘winner’ in the long run. In addition, this statement motivated us to investigate the underlying
dynamics of the different types of trading strategies that exist in financial market. However, this
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Table 7.5: Minimum number of clusters whose cumulative fraction is above the required threshold
of 90%, 95% and 99%, respectively. Results are under the EDDIE 7 and EDDIE 8 algorithms.

CA40 DJIA FTSE100 HSI NASDAQ NIKEI NYSE S&P STI TAIEX

EDDIE 7 90% 4 4 4 4 4 4 5 5 5 4
95% 5 5 5 5 5 5 6 6 6 5
99% 7 7 8 7 7 7 8 8 8 8

EDDIE 8 90% 5 5 5 4 4 3 4 5 4 5
95% 6 6 6 5 5 5 5 6 5 6
99% 8 8 8 7 7 7 7 7 7 8

hypothesis had never been formalized in the past. Our first contribution was thus to formalize the
hypothesis. This then allowed us to suggest a testing methodology and test the statements of the
hypothesis under 10 real markets. The latter was very important, because until now the majority
of the observations of the MFH had only been made under artificial market frameworks. Lastly, in
order to test the hypothesis we proposed a new agent-based financial model. The novelty of this
model was twofold: first, it did not assume pre-fixed types of trading strategies, like the typical
N -type models do (Chen et al, 2012). In addition, our model allowed the strategies that belonged
in the same type to be heterogeneous, which was also something that was not happening in the
N -type models.

The results showed that the hypothesis cannot always be supported and can sometimes be
affected by the number of clusters (trading strategy types). In fact, the MFH seems to be weak for
the majority of the datasets we tested. More specifically, we found that, even in the long run, the
market tends to favor few types of agents, hence the property of the long-term uniform distribution
(Test 2) does not hold. The only exception to this was when there were only 2 types of trading
strategies in the markets (2 × 1 SOM). In addition, we found that we only need four to five (five
to six) types, to account for the behavior of 90% (95%) of market participants. Therefore, having
more types of strategies in the market does not change much; the traders tend to focus to only
a few of these strategies. Finally, while most types of agents cannot be dominant consecutively
for more than 2 years, few exceptions can sustain up to 5.5 years (TAIEX maximum duration: 11
consecutive periods). Therefore, the property of short-term dominance duration (Test 1) also does
not hold.

The above observations have led us to valuable conclusions about market fraction dynamics.
From our experimental results we can argue that popular (i.e., dominant) types of trading strategies
can remain popular over long time periods. Hence, winners can exist. In addition, there is no
swinging among the fractions of the different types of trading strategies. Thus, even if many
strategy types exist in a market, only a few of them become and remain popular over time. It is
therefore enough to characterize the market behavior by using a few types of trading strategies,
even if many more types exist in this market.

We also used two different GP algorithms, EDDIE 7 and EDDIE 8, to test the previous derived
results of the Market Fraction Hypothesis. We were interested in observing whether our previous
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results were sensitive to the choice of GP and to what extent. In general, we can say that the same
patterns were observed for all 2 tests, under EDDIE 7, EDDIE 8, and simple GP. Thus, we can
argue that our arguments and conclusions regarding the Market Fraction Hypothesis are rigorous.
Nevertheless, the introduction of both EDDIE versions has shown a minor deterioration in the
individual test results. Thus, evidence for the MFH has got even weaker. This becomes especially
true for low number of clusters. For instance, under the simple GP tests, there were a few datasets
that would show support for Test 2 under a very low SOM dimension, e.g. 2 × 1. However, this
does not happen any more, with any of the EDDIE versions. There is even less support for the
MFH under EDDIE 7 and 8. Our explanation for this is that the constrained fitness function that
both versions share is responsible for this, although we cannot yet explain how. We leave this as
future research. More specifically, if we completely loosen the constraints in the fitness function of
EDDIE 7, we will end up with the simple GP algorithm. We can thus start from there and then fine-
tune the constraint parameters, so that we can experiment with looser and tighter constraints. This
should allow us to observe how the MFH results are affected by the constrained fitness function.
We believe that this will give us a better idea of why the MFH results under EDDIE are different
than the original ones. Finally, as there are no significant differences between EDDIE 7 and EDDIE
8, we have concluded that EDDIE 8’s new grammar is not responsible for any more changes in the
MFH results.

Future research will include some changes in our model. At the moment, we have used GP
and SOM as our two main tools. A question that arises is whether our results can be affected by
different choices of GP and SOM algorithms. Also, it would be interesting to investigate whether
our results would stand under a different framework, where different rule-inference machines and
clustering techniques would be used. For example, Genetic Algorithms could be used instead of
GP. In addition, standard hierarchical clustering (Xu and Wunsch, 2008) or growing hierarchical
self-organizing maps (Dittenbach et al, 2001) could be used instead of SOM. Also, individual
parameters of the algorithms we have used in this work, like the choice of fitness function or the
crossover rate, could affect the tests’ results. Lastly, one aspect that we consider as an interesting
future work is to examine and understand the underlying trading strategy types behind the SOM
clusters. This could give valuable insight for the markets and how they operate. For instance, if
we knew which is the underlying strategy type behind a cluster that had remained dominant for
2 consecutive years, we might have been able to explain what were the reasons that allowed this
strategy to remain popular. This could also lead to understand what makes strategies popular in the
first place.

Furthermore, we should mention that despite the advantages of our new agent-based model
that were presented in this chapter, there are some limitations, as well. One of these limitations
is that our model has departed from the ‘traditional’ approach of estimating agent-based models.
Such models follow the approach of generating trading strategies, which they then use to generate
artificial datasets and then calibrate the vector of parameters of the above strategies, so that the
datasets’ statistical properties resemble the properties of real financial markets. However, because
of limitations that exist in these models (see Chapters 5 and 7), we chose to depart from this
approach and use Genetic Programming to infer the strategies that existed in the real financial
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markets. Nevertheless, it could be argued that this approach does not guarantee that the inferred
strategies are a close approximation of the reality. These strategies were inferred based on the
aggregate behavior of the real markets, which was the price movements, and not on individual
strategies. It would thus be interesting to investigate, as a future work, how close the inferred
strategies are to the real strategies.

Finally, while the introduction of time-invariant SOM has offered an important advantage to our
work (i.e., allowing the comparison of SOMs among different time periods), it has also introduced
a drawback. In order to make these comparisons, we had to assume that trading strategy types
remain the same over time. This could be considered as a strict assumption, because this does
not necessarily happen in real markets. In the next chapter, we do not need to make any more
comparisons of clusters from different periods, and thus relax the above assumption. We consider
that this will add more realism to our financial model.
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Chapter 8

The Dinosaur Hypothesis

8.1 Introduction
In the previous chapter, we presented an agent-based financial model, where we developed an
approach to empirically examine the dynamics of market fractions of different types of trading
strategies. That study used GP as a rule-inference engine to find out the behavioral rules of these
strategies, and then used SOM to cluster the strategies into types of trading strategies. Once after
the clusters and the associated map were obtained from period to period, the dynamics of market
fractions were studied based on a time series of these maps. More specifically, we studied two main
properties motivated by the Market Fraction Hypothesis: the short-term horizon and the long-term
frequency.

However, that study rested upon an important assumption, i.e., the maps derived from each
period were comparable with each other. This comparability assumption itself required that the
clusters, as well as their operational specification, would not change over time. If this were not
the case, then the subsequent study would be questioned. This was mainly due to the technical
step in our analysis called translation. The purpose of translation was to place the behavior of
agents observed in one period into a different period and to recluster it for the further cross-period
comparison. We could not meaningfully have done this without something like topological equiv-
alence, which could not be sustained without the constancy of the types. However, this assumption
can be considered as a strict one. Strategy types do not necessarily remain the same over time.
For instance, if a chartist strategy type exists in time t, it is not certain it will also exist in t + 1.
If market conditions change dramatically, the agents might consider other strategy types as more
effective and choose them. The chartist strategy would then stop existing.

In this chapter, we are interested in extending our previous work by investigating the market
structure when both the types and the fractions of strategies are subject to change. Thus, we again
employ GP as a rule inference engine and SOM as a clustering machine, with the only difference
being that we relax the above assumption of static clusters over time. This makes our model more
realistic and also allows us to test for the existence of the constantly-changing property in the
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behavior of financial markets that Arthur (1992), and Chen and Yeh (2001) observed, or in other
words what Chen first called the Dinosaur Hypothesis (DH) (Chen, 2008).

More specifically, Arthur (1992), and Chen and Yeh (2001) argued that the behavior of financial
markets constantly changes and as a result, the trading strategies of financial agents need to con-
tinuously co-evolve with the market in order to remain successful. In addition, both Arthur, Chen
and Yeh showed that strategies that did not adapt to the changes happening in the market became
obsolete, or what Arthur called ‘dinosaurs’. Finally, Chen and Yeh also showed that dinosaurs’
performance deteriorates monotonically with time.

These are very interesting observations, because they give us valuable information about the
behavior of financial markets. In addition, these observations tell us that there is a finite lifetime
for trading strategies that do not adapt to the changes happening in the market. However, as
Arthur’s, Chen and Yeh’s observations took place under artificial stock market frameworks, we
are interested in investigating whether these observations can also hold in the ‘real’ world, under
empirical datasets.

Furthermore, we are interested in formalizing the DH, by presenting its main constituents. As
we have already mentioned, although the term ‘DH’ has been used before in the literature (Chen,
2008), it has never been formalized as a concrete hypothesis. Doing this allows us to suggest
a testing methodology and test its plausibility in the real markets. We then run tests under 10
international markets and hence provide a general examination of the plausibility of the DH. More
importantly, these tests will allow us to observe the dynamics of market behavior and investigate
how they change in the long run.

The main contributions that will be presented in this chapter can thus be summarized as follows:
(i) Formalizing the observations of Arthur, Chen and Yeh into a concrete hypothesis, the DH, (ii)
Suggesting a testing methodology, (iii) Extending the agent-based financial model presented in
Chapter 7 by allowing trading strategy types to change over time, and (iv) Testing the hypothesis
under 10 international markets.

The rest of the chapter is organized as follows: Section 8.2 elaborates on the DH. Section 8.3
presents the experimental designs. Section 8.4 addresses the methodology employed to test the
DH and explains the technical approaches needed to be taken for facilitating the test of the DH.
Section 8.5 presents the test results. First it starts by presenting the results over a single run for a
single dataset. Then it continues by presenting the summary results over 10 runs for this dataset
and it finally presents summary results for all datasets. Section 8.6 then tests the hypothesis under
EDDIE 7 and EDDIE 8, in order to investigate whether the previously derived results are dependent
on the choice of the GP algorithm. Finally, Section 8.7 concludes this chapter and briefly discusses
possible directions for further research.

8.2 The Dinosaur Hypothesis
The following statements form the basic constituents of the DH and are based on Arthur, Chen and
Yeh’s work:
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1. The market behavior never settles down. The population of trading strategies that exists in
the market continuously co-evolves with it.

2. If these trading strategies do not co-evolve with the market, their performance deteriorates
over time.

These two statements indicate the non-stationary nature of financial markets and imply that
strategies need to evolve and adapt to the changes in these markets, in order to survive. If they do
not co-evolve1 with the market, their performance2 deteriorates and they become ineffective.3

As we mentioned earlier, Arthur’s, Chen and Yeh’s observations were made in an artificial
stock market framework. What we shall thus do in this work is to test the above statements against
empirical data. Section 8.4 presents the two tests derived from the Statements 1 and 2.

Finally, in order to make the reading of this chapter more comprehensive, we present two
definitions, inspired by Arthur’s work: Dinosaur, is a trading strategy which has performed well in
some periods, but then ceased performing well in the periods that followed. This means that this
strategy may or may not become effective again. If it does, then it is called a returning dinosaur.

8.3 Experimental Designs
The tools used for the experiments in this chapter are again the simple GP we used in Chapter 7
and SOM. For simplicity, we have kept the same parameters and setup for both tools.

The experiments were again conducted for a period of 17 years (1991-2007) and the data was
taken from the daily closing prices of the same 10 international market indices. These 10 markets
are: CAC 40 (France), DJIA (USA), FTSE 100 (UK), HSI (Hong Kong), NASDAQ (USA), NIKEI
225 (Japan), NYSE (USA), S&P 500 (USA), STI (Singapore) and TAIEX (Taiwan). For each of
these markets, we run each experiment for 10 times. To make it easier to the reader, we first
present the testing methodology and results for a single run of the STI dataset. Figure 8.1 presents
the daily closing price of STI. We then proceed with presenting summary results over the 10 runs
for all datasets.

1The meaning of co-evolution here refers to the idea that trading strategies need to follow the changes that occur
in a financial market. For instance, if a market that was earlier dominated by fundamentalists is now dominated by
chartists, a trading strategy should adopt to this change in order to remain successful.

2Performance can be measured in different ways. In this work, we do this by measuring how well old, unadapted
strategies fit in future market environments. We call this measure ‘dissatisfaction’. More details about this are provided
later in Section 8.4

3At this point, we have neglected the fact that Chen and Yeh specifically state that this performance deterioration
is monotonic. Later, in Section 8.4, we explain why we have chosen to relax this statement.
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Figure 8.1: Daily Closing Price for STI:1991-2007

8.4 Testing Methodology
In this section we discuss the testing methodology. But before we do this, let us first present some
frequently used terms:

• Base period, is the period during which we create and evolve GDTs that are going to be used
for testing the DH

• Future period(s), is a period or periods which follow the base period (in chronological order)

Furthermore, our data is again divided into semesters. Thus the first semester of a year will
again be denoted with an ‘a’ at the end (e.g. 1991a), and the second semester of a year will be
denoted with a ‘b’ at the end (e.g. 1991b). Let us now present the tests and our suggested testing
methodology.

8.4.1 Dissatisfaction Test
In order to investigate whether the behavior of markets is non-stationary, we do the following.
After generating and evolving GDTs for each one of the 34 periods, and clustering them into
strategy types via SOM, we recluster the GDTs of each base period to the SOM of their future
periods.4 If the Dinosaur Hypothesis holds, we should observe that GDTs (strategies) from past
periods have more and more difficulties fitting into the environments of the future periods. This is
because these strategies have remained unadapted to the new environments and have thus turned
into dinosaurs.

4The process of reclustering is explained in the next section.
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Let us give an example, and assume that there is a strategy type (cluster) in time t, which rep-
resents ‘fundamentalists’; then, all GDTs which follow a fundamental strategy are placed in that
cluster. When we then take the GDTs from that period (base period) and recluster them to strategy
types of future periods, it is not guaranteed that there will again be a cluster that represents funda-
mentalists. If market behavior constantly changes, there is a possibility that this type of strategies
does not exist any more. Thus, the GDTs find themselves unadapted to the new environment (clus-
ters) and have to choose another cluster, which represents them as closely as possible. This cluster
will be the one that has the centroid with the smallest Euclidean distance from the market-timing
vectors5 of these GDTs. Of course, since now the SOM of the future period is formed by different
clusters, the GDTs might not fit as well as they did in the base period. In order to measure this
‘unfitting’, we use a ‘dissatisfaction rate’, i.e., how dissatisfied these GDTs will be when placed
into a future period’s cluster that does not represent their strategy. If the market is non-stationary,
the GDTs’ dissatisfaction rate will be high, as a result of the changes that took place in the market.
The dissatisfaction rate is defined as the Euclidean distance of a GDT’s market-timing vector to
the centroid of the cluster in which it is placed, after the reclustering procedure.

In addition, motivated by Chen and Yeh’s stricter test results (Chen and Yeh, 2001), who found
that a dinosaur’s performance decreases monotonically, we want to investigate if this also applies
to our empirical datasets. Hence, under the Dinosaur Hypothesis the following two statements
should hold:

The average dissatisfaction rate of the population of trading strategies (GDTs) from future
periods should

1. Not be less than or equal to the dissatisfaction of the base period (Test 1)

2. Increase continuously, as the testing period moves further away from the base period (Test
2)

As we can see, we have a population of GDTs and we then monitor their future performance
in terms of their dissatisfaction rate, in accordance with Arthur’s and Chen and Yeh’s experiments.
Test 1 is basically the procedure we have just described above and is inspired by Arthur’s work
(Arthur, 1992). Test 2 is inspired by the observation that Chen and Yeh made (Chen and Yeh,
2001), regarding the monotonic decrease of a GDT’s performance. However, in our framework we
do not require that changes in the dissatisfaction rate are monotonic. The reason for this is because
when Chen and Yeh tested for the Dinosaur Hypothesis (they did not explicitly use this term), they
only tested it over a period-window of 20 days, which is relatively short, and hence makes it easier
to observe an example of monotonically decreasing behavior. Thus, requiring that the GDTs’
dissatisfaction rate increases monotonically in the long run would be very strict, and indeed hard
to achieve. For that reason, Test 2 requires that the dissatisfaction changes are continuous, but
not monotonic. In addition, since the dissatisfaction rate is a concept opposite to ‘performance’,

5A reminder that a market-timing vector is a vector of buy and not-buy signals (1 and 0, respectively).
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Test 2 does not require that the dissatisfaction rate decreases with time, as it happened with the
performance of dinosaurs, but that it increases over time.

Let us now explain the process of reclustering.

8.4.2 Re-clustering Process
Let us give an example of how reclustering works when 1991a is the base period. Each evolved
GDT is first moved to the next period, 1991b, and reclustered into one of the clusters of that
period. In order to ‘decide’ which cluster to choose, the GDT compares the Euclidean distance
of its market-timing vector with each cluster; it is then placed into the cluster with the smallest
Euclidean distance. The same procedure follows for all GDTs of the population. At the end, the
population of evolved GDTs from the base period of 1991a has been reclustered into the clusters
of period 1991b. We also follow the same procedure with all future periods. This means that the
GDTs from 1991a are also reclustered in 1992a, 1992b, ..., 2007b.

The same process is followed for all other base periods (i.e., 1991b, 1992a, ..., 2007a). This
means that when 1991b is the base period, the GDTs that were created and evolved during 1991b
will be reclustered into the SOMs of all future periods. After 1991b, 1992a takes over as the base
period and the same procedure takes place again. We do this until 2007a. We obviously cannot do
this for 2007b, since there are no periods available after this year. The reader should also bear in
mind that we only apply the evolved GDTs to the SOMs of future periods; for instance, when the
base period is 2000a, we do not apply the evolved GDTs backwards in time, only forwards. We
are not interested in looking at what would happen in the past; we are only interested to observe
how the dissatisfaction of the GDTs is affected in the future. Figure 8.2 presents the re-clustering
process we have just described.

Figure 8.2: Re-clustering process.

Once the process of reclustering is complete, we calculate the dissatisfaction rate of each GDT
in the population. Next, we calculate the population’s average dissatisfaction rate. We do the same
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for all 34 periods. Given a base period, the population average dissatisfaction of all periods is
normalized by dividing those population average dissatisfaction rates by the population average
dissatisfaction rate in the base period. For instance, if the population dissatisfaction rates for
periods 1991a, 1991b, 1992a, ..., 2007b are 0.8, 0.85, 0.9, ..., 0.85, respectively, the the normalized
population dissatisfaction for the base period 1991a would be 0.8

0.8
, 0.85

0.8
, 0.9

0.8
,..., 0.85

0.8
. Hence, each

base period has its normalized average dissatisfaction rate equal to 1. In order to prove that the
market is non-stationary, we need to show that the normalized average dissatisfaction rate of the
GDTs increases in the future periods, and never returns to its initial value of 1, which was during
the base period. If, on the other hand, this rate reaches 1 or below, this is an indication of a cyclic
market behavior, since the GDTs have found the same conditions with the base period, and as a
result feel as ‘satisfied’ as before. In this case, we refer to these GDTs as returning dinosaurs.

Therefore, Tests 1 and 2 can be re-written as:
The average dissatisfaction rate of the population of trading strategies (GDTs) from future periods
should

1. Not be less than or equal to 1, which is the normalized average dissatisfaction rate of the
base period (Test 1)

2. Increase continuously, as the testing period moves further away from the base period (Test
2)

As we can observe, Test 1 has been modified so that it takes into account the normalized
average dissatisfaction rate, which is equal to 1, and acts as the benchmark for returning dinosaurs.
Test 2 has remained unchanged. These are thus the two tests that we will be running in Section 8.5
to test if the DH holds under real data.

8.5 Results
This section presents the experimental results. In order to make it easier for the reader, we first
start by presenting the results of a single dataset (STI), in Section 8.5.1. We then continue with
presenting the summary results for all 10 datasets, in Section 8.5.2.

8.5.1 Results of a single run of a single dataset
Because of the fact that this test is connected with SOM, we are also experimenting with different
number of clusters (i.e. different SOM dimensions). This happens because we want to see if our
results are sensitive to the number of clusters that can exist in a market. Thus, we first begin by
presenting the results for the 3 × 3 SOM (9 clusters), and then present the results under different
SOM dimensions.
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8.5.1.1 Results under 3 × 3 SOM (9 clusters)

As Test 1 states, we want to make sure that the population dissatisfaction from future periods will
not return to the range of dissatisfaction of the base period. In other words, we want to make
sure that there are no returning dinosaurs. Then, Test 2 requires that we examine whether this
population dissatisfaction from future periods continues to increase, as we move further away
from the base period.

8.5.1.1.1 Test 1 We test this statement for one period at a time. The subject period forms our
base period. As already mentioned, a returning dinosaur is observed if any future normalized
population dissatisfaction rate is less than or equal to 1. Let us now have a look at Figure 8.3.
The x-axis presents the 34 periods and the y-axis presents the dissatisfaction rate for each period.
Period 1991a acts here as the base period.

Figure 8.3: Average dissatisfaction rate of the population of GDTs that were evolved in 1991a,
over the future 34 periods. Period 1991a acts here as the base period, because this is the period that
the evolved trees were initially clustered. After calculating the dissatisfaction rate of each GDT in
1991a, we calculated the average dissatisfaction rate of the population. We then re-clustered these
GDTs to all future periods. In this way, we are able to observe how the average dissatisfaction rate
of the population is affected while it is moving away from the base period. Results are for 3×3
SOM dimension.

107



8.5 Results

Figure 8.4: Minimum average dissatisfaction rate of the population of GDTs per base period, for
3×3 SOM. After obtaining the series of the average dissatisfaction rate of each base period, over
its future periods, we calculate the minimum average dissatisfaction rate per base period. In this
way, we have an indication of whether there are any returning dinosaurs in each base period.

As we can see, the dissatisfaction rate immediately increases, after we move away from the base
period 1991a. It starts from around 7.5, and never drops again to a range close to 1. On average, the
dissatisfaction rate is 6.73, which is far away from the baseline of 1. Thus no returning dinosaurs
are observed.

Nevertheless, this result is when 1991a is the base period. Let us now present what happens
after we have followed the same procedure for all periods, i.e. after all periods have acted as the
base period. In order to do that, we iterate through each base period and calculate the minimum
dissatisfaction rate among its future periods. For instance, in Figure 8.3, the minimum dissatisfac-
tion rate is around is around 4.5 in period 2002b. This means that for the base period of 1991a,
the lowest dissatisfaction rate that any future period managed to get was 4.5. So we extract this
value. We do the same for all 33 base periods and thus end up with a 1 × 33 vector, MinAvgDis,
which shows the potential returning dinosaur per base period. The plot of the MinAvgDis vector
is shown in Figure 8.4.

As we can observe, there is no base period with a minimum dissatisfaction rate of 1 or below.
There are a few periods with relatively low dissatisfaction rates (1992b, 1993a, 1999b, 2003b).
However, the lowest rate any period gets is 2, in period 1998a. In addition, the average minimum
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dissatisfaction rate for STI is for 3 × 3 SOM is 5.79. We can therefore conclude that strategies are
on average not ‘satisfied’ in future years, and thus that Test 1 is supported by this single run.

8.5.1.1.2 Test 2 Let us now move to Test 2. To show a continuous increase in the population
dissatisfaction rate, we calculate the sum of the dissatisfaction rates of all those future periods that
have distance from the base period equal to 1, then the sum of those future periods with distance
equal to 2, and so on, up to distance equal to 33. In order to do this, we first need to create a table
of distances, like the one in Table 8.1. Each row of this table presents the distance of the future
periods from their base period. For instance, if 91a is the base (first row), then future period 91b
has distance equal to 1, future period 92a has distance equal to 2, and so on. Table 8.2 presents an
example of series of normalized population dissatisfaction rates for the future periods of each base
period. For example, when the base period is 91a (first row), the normalized dissatisfaction rate
starts from 1 in 91a, then rises to 7.66 (91b), then goes to 6.82 (92a), and so on, until it reaches
dissatisfaction equal to 5.94 in future period 07b. Let us now denote the sum of dissatisfaction
rates we mentioned at the beginning of this section by

∑
|i−j|=m Dis(i, j), where i, j are the base

and future period respectively, |i− j| is their absolute distance, as presented in Table 8.1, and m is
the distance from the base period and takes values from 1 to 33. We divide this sum by the number
of occurrences where |i − j| = m. This process hence returns the average of the normalized
population dissatisfaction, and allows us to observe how it changes, as the distance m from the
base period increases. We call this metric Dm and it is presented in Equation 8.1.

Table 8.1: Distance of future periods from their base period, over the 17 years 1991-2007. The
further away we move from a period, a single unit of distance is added.

j
91a 91b 92a 92b ... 07b

91a 0 1 2 3 ... 33
91b 1 0 1 2 ... 32

i 92a 2 1 0 1 ... 31
92b 3 2 1 0 ... 30
... ... ... ... ... ... ...

07b 33 32 31 30 ... 0

Dm =

∑
|i−j|=m

Dis(i, j)

{#(i, j), |i − j| = m}
(8.1)

Let us give an example: if we want to calculate D32, we need to sum up the population dissatis-
faction rates that have distance m = 32. This happens with Dis(91a, 07a) (dissatisfaction rate of
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Table 8.2: Example of series of future population dissatisfaction rates per base period. Each
base period’s series is presented as a horizontal line of this table. Dissatisfaction rates have been
normalized, so that the rate in the base period is always equal to 1.

j
91a 91b 92a 92b ... 07b

91a 1 7.66 6.82 7.08 ... 5.94
91b 1 3.76 5.72 ... 4.70

i 92a 1 9.74 ... 7.77
92b 1 ... 8.80
... ... ... ... ... ... ...

07b ... 1

GDTs from base period 91a, when applied to future period 07a) and Dis(91b, 07b) (dissatisfaction
rate of GDTs from base period 91b, when applied to future period 07b). Therefore D32 would be
equal to the sum of these two rates over 2, as there are only 2 periods we are interested in.6 By
calculating Dm for all m values, we can have a clear idea of how the average of the population
dissatisfaction changes when we move from periods that are close to the base (low m), to periods
that are further away (high m), and thus observe whether there is a continuous increase.
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Figure 8.5: STI Dm distance of the dissatisfaction rate for 3×3 SOM.

6The distance m = 32 can also be found in 07a91a and 07b91b. However, we do not take them into account
because, as we said earlier in Section 8.4, we are not interested in applying the evolved GDTs of a base period (here
07a and 07b) backwards in time (91a and 91b, respectively).
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Figure 8.5 presents the results. It is interesting that for m = 1−22, Dm experiences an increase.
However this changes for higher values of m. Overall, Test 2 seems not to be justified for STI,
under 3 × 3 SOM. Later in the chapter, after we will have presented the results under all indices,
we run linear trend regression for the Dm observations, calculate the slope of the trend line and
investigate whereas the above observation indeed holds.

To summarize, the experimental results of Test 1 for the STI dataset under the 3 × 3 SOM
showed that there are no returning dinosaurs. Regarding Test 2, a continuous increase in the
average dissatisfaction rate of the population of GDTs could only be observed for some periods.

8.5.1.2 Experimenting with the number of clusters

Let us now examine if the above results hold under different numbers of clusters. We experiment
with the following SOM dimensions: 2×1, 3×1, 2×2, 5×1, 3×2, 7×1, 4×2, 3×3, for a range
of trading strategy types 2-9. All graphs in this section include information for all of the different
dimensions.

First let us start with the average dissatisfaction rate for the base period 1991a, which is pre-
sented in Figure 8.6. As we can observe, the dissatisfaction rate follows the exact same pattern
we observed earlier: it immediately increases, after we move away from the base period. It is in
a range from 3 to around 9, depending on the SOM dimension, and never drops again to a range
close to 1. On average, the average dissatisfaction rate for 1991a varies in the range of 4.29 under
2 types of trading strategies (clusters), to 6.73 (9 trading strategy types). Thus there are again no
returning dinosaurs for any SOM dimension. In addition, we again do not observe a continuous
increase in the dissatisfaction rate. Hence, Test 1 holds for all SOM dimensions, whereas Test 2
does not. One final observation we can make is that the dissatisfaction rate increases as the number
of clusters increases. However, it seems that the pattern of repetitive behavior we observed earlier
remains, under all trading strategy types. The number of clusters does not affect Test 2’s results.

Let us now present the same results for all base periods. Figure 8.7 presents these results. The
horizontal line denotes when the dissatisfaction rate is equal to 1, and is given as a reference.

As we can observe, nothing really changes when compared to the results presented earlier,
for the 3×3 SOM. There is again no base period, for any SOM dimension, reaching average
dissatisfaction rate of 1. The lowest rate we observe is again for period 1998a, which is around
2. On average, the minimum dissatisfaction rate varies in the range of 3.56 (2 clusters) to 5.79 (9
clusters). Therefore, we can again see that dinosaurs do not return and thus that Test 1 is supported
under all SOM dimensions for the STI dataset.

Regarding Test 2, we again use the Dm metric. Figure 8.8 presents the results. Once again, we
observe the same pattern for all SOM dimensions, as with the ones we saw earlier for the 3 × 3
SOM: continuous increase up to a point, and then upward and downward movements. In addition,
we again see that as the number of clusters increases, there is also an increase in the dissatisfaction
rate.

To summarize, the experimental results of Test 1 for the STI dataset show that there are no re-
turning dinosaurs, under all different SOM dimensions tested. The market seems to be constantly
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Figure 8.6: Average dissatisfaction rate of the population of GDTs that were evolved in 1991a,
over the future 34 periods. Period 1991a acts here as the base period, because this is the period that
the evolved trees were initially clustered. After calculating the dissatisfaction rate of each GDT in
1991a, we calculated the average dissatisfaction rate of the population. We then re-clustered these
GDTs to all future periods. In this way, we are able to observe how the average dissatisfaction rate
of the population is affected while it is moving away from the base period. Each line in the figure
represents a different SOM dimension.

changing and hence strategies are not ‘satisfied’ in their new environments. Furthermore, chang-
ing the SOM dimension (and thus the number of strategy types in the market) does not seem to
significantly affect the results. The only difference we can observe is that the dissatisfaction rate
increases when more types of strategies exist in the market (more SOM dimensions). Finally, there
seems that there is no continuous increase in the average dissatisfaction rate of the GDTs, after we
move away from the base period, and thus Test 2 is not supported by the STI dataset.7

Let us now examine if the above results generalize under different international markets.

8.5.2 Summary results for all datasets
So far we have presented the results for a single dataset, STI. In this section we will present the
results for all 10 datasets. As a reminder, these datasets are: CAC40, DJIA, FTSE100, HSI,
NASDAQ, NIKEI, NYSE, S&P500, STI, TAIEX.

7As already mentioned, later in Section 8.5.2.2 we run linear trend regression for the Dm observations, calculate
the slope of the trend line and show that indeed there is no continuous increase.
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Figure 8.7: STI Minimum average dissatisfaction rate of the population of GDTs per base period,
for all SOM dimensions. After obtaining the series of the average dissatisfaction rate of each base
period, over its future periods, we calculate the minimum average dissatisfaction rate per base
period. In this way, we have an indication of whether there are any returning dinosaurs in each
base period. The horizontal line denotes dissatisfaction rate equal to 1, and is given as a reference.

8.5.2.1 Test 1

Figures 8.9 and 8.10 present the results for Test 1. There are ten subfigures, each one presenting
the average dissatisfaction rate for all SOM dimensions, for each one of the datasets. A reminder
that the horizontal line at each subfigure denotes when the average dissatisfaction rate is equal to
1; as we already know, whenever a period’s rate goes close to 1, then this period has a returning
dinosaur. From the graphs it is clear that no dataset reaches a minimum average dissatisfaction
rate of 1. Tables 8.3 and 8.4 also present the average, over 10 runs, of average and minimum
dissatisfaction rate per cluster, per dataset. As we can observe, on average all datasets have an
average dissatisfaction rate of 4.78 for 2 × 1 SOM, which climbs to 7.95 for 3 × 3 SOM. There
seems to be a lower boundary, which does not allow the average dissatisfaction rate to go below
it. This lower boundary is around 4.5-5 for the 2 × 1 SOM and rises with the number of clusters,
reaching around 7-8 for the 3 × 3 SOM. Standard deviation results provided in Table E.3 are
relatively low, and thus results are liable. But even if we want to take into account the outliers,
Table 8.4 informs us that on average the minimum dissatisfaction rate does not go below 3.40
for 2 × 1 SOM and 5.50 for 3 × 3 SOM. It is thus obvious that GDTs do not find a familiar
environment in future periods. Hence, dinosaurs do not return or return only as lizards. The
latter refers to the exceptional cases when dissatisfaction goes relatively low, for instance around
2. Market conditions have allowed old strategies to feel ‘satisfied’ again, although this satisfaction
is not as high as in the base period. Thus market conditions have some similarities to the ones of
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Figure 8.8: STI Dm distance of the dissatisfaction rate for all SOM dimensions.

the base period, but by no means are the same or offer the same ‘satisfaction’ to the strategies.
Hence, Test 1 is supported by all 10 datasets, under all SOM dimensions.

8.5.2.2 Test 2

Let us now move to Test 2, which is presented in Figure 8.11. Each subfigure presents the results
under a different market. DJIA, FTSE 100 and NIKEI seem to experience a continuous increase in
the Dm metric. On the other hand, evidence for a continuous increase in the other markets seems
weak.

In order to confirm this eye-browsing observation, we run a linear trend regression for each
dataset. Our goal is to examine if the slope of the trend is positive; if this happens, then it denotes
a continuous increase in the metric. One more thing we should say is that we only run the linear
regression for a single SOM dimension, the 3 × 3 one. The reason for this is because for each
dataset, the Dm metric experiences the same patterns, under all SOM dimensions. Thus it would
not make a big difference if we took another dimension and applied linear regression. It should
also be mentioned that because the variance of the Dm observations seem relatively high, we apply
variance stabilizing transformation, and use the logarithmic values instead of the raw values of the
metric. Figure 8.12 presents the results of the linear regression. From the graphs we can clearly see
that HSI and NYSE experience a continuous decrease in the metric. The majority of the remaining
datasets’ metric seems to remain stable over time, with the exception of DJIA, FTSE 100 and
NIKEI.

Table 8.5 presents the coefficients, which denote the slope of the trend. In order to see whether
the coefficients are statistically significant, we run a t-test and present the respective p-values. As
we can observe, the p-value is below 5% (significance level) for the following datasets: DJIA,

114



8.6 Testing the DH under different GP algorithms

Figure 8.9: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets. Each subfigure represents a single dataset. From
left to right, top to bottom: CAC40, DJIA, FTSE100, HSI, NASDAQ, NIKEI.

FTSE 100, HSI, NIKEI and NYSE. This means that DJIA, FTSE 100 and NIKEI ’s positive slope
is statistically significant. Thus these markets experience a continuous increase in their Dm metric.
The remaining markets have either a statistically significant negative coefficient, thus a continuous
decrease (HSI, NYSE), or no statistically significant positive/negative coefficient, thus no evi-
dence for continuous increase (CAC 40, NASDAQ, S&P 500, STI, TAIEX). Therefore, Test 2 is
supported only by 3 out of the 10 datasets tested.

8.6 Testing the DH under different GP algorithms
In this section, we are interested in observing whether the previously derived results hold under
different GP algorithms. If they do, this allows us to argue that our results are rigorous and inde-
pendent of the GP algorithm and we can thus generalize our previous conclusions. We again use
EDDIE 7 and EDDIE 8 for our tests, as we also did earlier in Chapter 7, in the MFH experiments.
The same methodology is used, and of course the same 10 datasets.

8.6.1 Test 1
Figures 8.13-8.16 present the results for Test 1, under EDDIE 7 and EDDIE 8. As earlier, there are
ten subfigures, each one presenting the average dissatisfaction rate for all SOM dimensions, for
each one of the datasets. It is again clear that no dataset reaches the minimum average dissatisfac-
tion rate of 1. On average, the minimum average dissatisfaction does not go below 3.58 (EDDIE
7) and 3.37 (EDDIE 8) for the 2 × 1 SOM, and 5.71 (EDDIE 7) and 5.30 (EDDIE 8) for the 3 × 3
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Figure 8.10: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets. Each subfigure represents a single dataset. From
left to right, top to bottom: NYSE, S&P500, STI, TAIEX

SOM. As we can see, the differences between the EDDIE results and the earlier ones from sim-
ple GP are very small. In addition, the average dissatisfaction rate per cluster is on average 4.39
(EDDIE 7) and 4.17 (EDDIE 8) for the 2 × 1 SOM, and 7.62 (EDDIE 7) and 7.14 (EDDIE 8) for
the 3 × 3 SOM. We can thus see that in both terms of average and minimum dissatisfaction rate,
results under both EDDIE 7 and EDDIE 8 verify the simple GP ones, i.e. that there are no return-
ing dinosaurs. We can therefore conclude that Test 1 is also supported by EDDIE 7 and EDDIE 8.
The tables of the dissatisfaction rates, under the EDDIE algorithms, are presented in Appendix D.

8.6.2 Test 2
Figures 8.17 and 8.18 present the results for Test 2, under EDDIE 7 and EDDIE 8, respectively.
A first observation that can be made is that similar patterns exist, as the ones with the simple GP.
In order to understand these patterns better, we again run linear trend regression and calculate the
statistical significance of the slope at 5% significance level. Figures 8.19 and 8.20 present the
regression graphs for the Dm metric, for EDDIE 7 and EDDIE 8, respectively. In addition, Table
8.6 presents the slope of each trend, as well as the p-value of the t-test.

Results for EDDIE 7 show that only 3 datasets experience a positive slope: CAC 40, FTSE 100,
and HSI. However, only FTSE 100 and HSI’s coefficients are statistically significant, thus only
these two markets experience a statistically significant continuous increase in the dissatisfaction
rate. The remaining 8 markets either don’t have a statistically significant continuous increase, or
even have a continuous decrease.

Results for EDDIE 8 show a similar picture. Only one market (NASDAQ) experiences a sta-
tistically significant continuous increase in the dissatisfaction rate. There are 3 more datasets that
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Table 8.3: Average of Average Dissatisfaction Rate per Cluster per Dataset.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 4.69 5.04 5.32 6.03 6.27 7.09 7.13 7.46
DJIA 4.93 5.46 5.88 6.69 7.05 7.76 7.98 8.51

FTSE100 4.77 5.12 5.55 6.37 6.62 7.43 7.52 8.05
HIS 5.06 5.49 5.79 6.68 6.90 7.75 7.87 8.32

NASDAQ 4.42 4.84 5.21 5.94 6.16 6.91 6.93 7.50
NIKEI 4.88 5.26 5.50 6.54 6.69 7.68 7.64 8.28
NYSE 4.44 4.90 5.22 5.92 6.17 6.88 6.96 7.27

S&P500 4.36 4.61 4.93 5.53 5.79 6.45 6.56 6.86
STI 5.17 5.65 6.11 6.98 7.19 8.30 8.33 8.88

TAIEX 5.04 5.48 5.74 6.54 6.96 7.76 7.78 8.40

Mean 4.78 5.19 5.53 6.32 6.58 7.40 7.47 7.95

experience an insignificant increase (DJIA, HSI, NYSE), whereas the remaining 6 datasets expe-
rience a continuous decrease.

Overall, all three GP algorithms show that for the majority of the datasets tested, there is no
strong evidence for a continuous increase in the dissatisfaction rate. We can hence conclude that
Test 2 is not supported for the majority of the datasets, under EDDIE 7 and EDDIE 8. It is,
of course, interesting that there are always a few exceptions. At the moment it is unclear what
determines the fact of a continuous increase in the dissatisfaction rate of the respective datasets.
We thus leave this as a future work.

8.7 Conclusion
To summarize, this chapter presented the Dinosaur Hypothesis (DH), which states that the behav-
ior of a market never settles down and that the strategies in this market continuously co-evolve with
it. This observation was first made by Arthur (1992) and later by Chen and Yeh (2001). However,
these models made this observation based on simulations under artificial stock markets. In our
current work, we were interested in examining whether these observations could hold as well in
the real world, because this could give us valuable information regarding the nature of financial
markets (stationary vs non-stationary). We thus first formalized the hypothesis by presenting its
main constituents. This allowed us to form a testing methodology and then run tests under 10 in-
ternational markets. In order to run these tests, we extended the framework from Chapter 7, where
we had empirically examined the dynamics of market fractions of different types of agents. In that
study, we used Genetic Programming (GP) as a rule-inference engine to find out the behavioral
rules of agents, and Self-Organizing Map (SOM) to cluster these agents. However, because of an
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Table 8.4: Average of Minimum Dissatisfaction Rate per Cluster per Dataset.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 3.51 3.77 4.01 4.53 4.68 5.10 5.13 5.51
DJIA 3.60 4.00 4.37 4.85 5.14 5.58 5.77 6.14

FTSE100 3.35 3.56 3.88 4.34 4.50 5.01 5.11 5.54
HSI 3.38 3.58 3.77 4.15 4.30 4.80 4.83 5.15

NASDAQ 3.16 3.51 3.74 4.20 4.35 4.89 4.84 5.25
NIKEI225 3.36 3.74 3.88 4.40 4.53 5.13 5.18 5.57

NYSE 3.52 3.94 4.14 4.69 4.98 5.33 5.53 5.56
SP&500 3.28 3.48 3.77 4.18 4.31 4.78 4.80 5.07

STI 3.56 3.83 4.09 4.61 4.79 5.34 5.41 5.79
TAIEX 3.29 3.64 3.83 4.25 4.44 4.88 5.00 5.43

Mean 3.40 3.71 3.95 4.42 4.60 5.09 5.16 5.50

important assumption in that work, we had to require that SOM clusters, as well as their opera-
tional specification, would remain the same over time. In this chapter, we relaxed that assumption.
This offered more realism to our model and allowed us to investigate market behavior dynamics
and test for the DH.

We used two tests, which were inspired by the works of Arthur (1992), and Chen and Yeh
(2001) (see Chapter 5 for details). The first test investigated whether strategies from the past can
successfully be re-applied to the future. The results showed that this is not possible and thus
verified the hypothesis. Strategies that have not co-evolved with the market become dinosaurs
and cannot fit new environments. The second test investigated whether the dissatisfaction rate of
such strategies, which are being applied to new environments, can follow a continuous increase.
This was verified only by 3 out of the 10 datasets tested. Strategies are dissatisfied, or in other
words do not fit their environments if they do not adapt to the changes that have taken place;
however, this dissatisfaction does not necessarily increase continuously with time. Nevertheless, it
is quite interesting that results regarding the continuous increase of the dissatisfaction rate are not
homogeneous. This certainly deserves further investigation and we thus leave it as a future work.

What we can safely conclude from our experimental results is that trading strategies always
need to follow changes that take place in the markets, and co-evolve with them. The implications
of our results are very important. If strategies do not co-evolve with the market, they eventually
become ineffective, even if they were very successful in the past. Markets constantly change and
we need to follow and adapt to these changes if we want to remain successful. We can thus also
conclude that the behavior of financial markets is non-stationary.

In addition to the standard testing of the hypothesis, where we used a simple GP, we also pre-
sented tests on the DH under two different GP algorithms. The reason for doing this was because
we wanted to demonstrate that the results under the simple GP are rigorous and not algorithm-
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Figure 8.11: Test 2: Dm distance of the dissatisfaction rate for all SOM dimensions for all datasets.
Each subfigure represents a single dataset.

dependent. We thus ran the same tests under EDDIE 7 and EDDIE 8. Results showed that both
versions agree with the original results. More specifically, both versions demonstrated the non-
existence of returning dinosaurs for all 10 datasets. Thus, Test 1 is supported by our experimental
results. On the other hand, Test 2 is not supported, as we did not observe a continuous increase
in the average dissatisfaction rate. These findings are of course very important, because they
strengthen our argument of dinosaurs not being able to return in financial markets.

Finally, as we mentioned in the previous chapter, future research will include experimentation
with the control parameters of our framework, as discussed at the end of Chapter 7. We also plan to
use different clustering tools in order to investigate the sensitivity of our results to the SOM algo-
rithm. Moreover, as with the MFH chapter, future work also includes investigating the underlying
strategy types behind the SOM clusters. Doing so here would allow us to understand what makes
a trading strategy successful in the first place. Lastly, it would be interesting to investigate the
reason of having returning “lizards” under certain periods. Thus, the question we need to address
in the future is what are the underlying conditions in a market that allow the dissatisfaction rate of
a dinosaur to be similar to the rate of the base period.
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(a) CAC 40 (b) DJIA (c) FTSE 100 (d) HSI (e) NASDAQ

(f) NIKEI (g) NYSE (h) S&P 500 (i) STI (j) TAIEX

Figure 8.12: Linear Regression for the 3 × 3 SOM observations for the Dm metric.

Table 8.5: Slope of the trend and p-values per dataset.

Coefficient p-value
CAC 40 0.000256 0.8905560

DJIA 0.006977 0.0027034
FTSE 100 0.003843 0.0154329

HSI -0.009849 0.0000024
NASDAQ 0.001508 0.4836810

NIKEI 0.011413 0.0000053
NYSE -0.006919 0.0000004

S&P 500 -0.000095 0.9468793
STI 0.003035 0.2231986

TAIEX 0.000558 0.7977585
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Figure 8.13: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets, for EDDIE 7. Each subfigure represents a single
dataset. From left to right, top to bottom: CAC40, DJIA, FTSE100, HSI, NASDAQ, NIKEI.

Figure 8.14: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets, for EDDIE 7. Each subfigure represents a single
dataset. From left to right, top to bottom: NYSE, S&P500, STI, TAIEX
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Figure 8.15: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets, for EDDIE 8. Each subfigure represents a single
dataset. From left to right, top to bottom: CAC40, DJIA, FTSE100, HSI, NASDAQ, NIKEI.

Figure 8.16: Test 1: Minimum average dissatisfaction rate of the population of GDTs per base
period, for all SOM dimensions, for all datasets, for EDDIE 8. Each subfigure represents a single
dataset. From left to right, top to bottom: NYSE, S&P500, STI, TAIEX
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8.7 Conclusion

Figure 8.17: Test 2: Dm distance of the dissatisfaction rate for all SOM dimensions for all datasets
for EDDIE 7. Each subfigure represents a single dataset.

Figure 8.18: Test 2: Dm distance of the dissatisfaction rate for all SOM dimensions for all datasets
for EDDIE 8. Each subfigure represents a single dataset.
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8.7 Conclusion

(a) CAC 40 (b) DJIA (c) FTSE 100 (d) HSI (e) NASDAQ

(f) NIKEI (g) NYSE (h) S&P 500 (i) STI (j) TAIEX

Figure 8.19: Linear Regression for the 3 × 3 SOM observations for the Dm metric for EDDIE 7.

Table 8.6: Slope of the trend and p-values per dataset for EDDIE 7 (a) and EDDIE 8 (b).

(a) EDDIE 7

Coefficient p-value
CAC 40 0.0005547 0.316325054

DJIA -0.0024297 0.010205554
FTSE 100 0.0010992 0.033923973

HSI 0.0015698 0.024336519
NASDAQ -0.0005332 0.246262357

NIKEI -0.0024659 8.69461E-08
NYSE -0.0017806 0.013860675

S&P 500 -0.0013807 0.007529298
STI -0.0025821 0.000107345

TAIEX -0.0022289 0.010355922

(b) EDDIE 8

Coefficient p-value
CAC 40 -0.0010161 0.051839157

DJIA 0.0000143 0.970421371
FTSE 100 -0.0003952 0.435197783

HSI 0.0013025 0.06250284
NASDAQ 0.0019621 0.000775323

NIKEI -0.0021504 0.000781767
NYSE 0.0006542 0.276663372

S&P 500 -0.0004565 0.44375302
STI -0.0007854 0.128372175

TAIEX -0.0017310 0.01904134
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8.7 Conclusion

(a) CAC 40 (b) DJIA (c) FTSE 100 (d) HSI (e) NASDAQ

(f) NIKEI (g) NYSE (h) S&P 500 (i) STI (j) TAIEX

Figure 8.20: Linear Regression for the 3 × 3 SOM observations for the Dm metric for EDDIE 8.
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Chapter 9

Conclusion

This thesis applied Computational Intelligence techniques to applications from the fields of fi-
nance and economics. More specifically, it used Genetic Programming to address the problem
of pre-specified technical indicators that are used for investment opportunities forecasting. In ad-
dition, we also used Genetic Programming and Self-Organizing Map to test two hypotheses that
derive from the economics field: the Market Fraction Hypothesis and the Dinosaur Hypothesis.
Conclusions for the experiments on these problems are presented in the following sections. We
start by discussing the motivation behind each experimental work, we then continue by discussing
the novelty of the presented research, and then present the conclusions of each work. Finally, we
discuss future work at the end of this chapter.

9.1 Summary of EDDIE and financial forecasting

9.1.1 Motivation of the presented research
In the first research chapter, we were motivated by the fact that many financial forecasting tools
use pre-specified indicators from technical analysis. EDDIE 7, is a GP financial forecasting tool
that falls in this category. The user of EDDIE 7 suggests which indicators EDDIE should use.
However, in this way EDDIE 7 was restricted in using pre-specified indicators such as ‘12 days
MA’. Nevertheless, whether ‘12’ was the most appropriate period length for MA was questionable.
This thus motivated us to look for ways to address this problem.

9.1.2 Novelty of the presented research
In order to overcome EDDIE 7’s drawback, we proposed a new version, called EDDIE 8. This
version used a new BNF grammar, which allowed the GP to look in the space of technical indi-
cators. More specifically, instead of using the technical indicators as constants of the system (like
EDDIE 7 and other similar forecasting tools do), EDDIE 8 used a function which takes two chil-
dren, namely the indicator and the period length, the latter being a number within a parameterized
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length defined by the user. As a result, EDDIE 8 came up with new solutions, which EDDIE 7
could have never come up with.

9.1.3 Conclusions
In order to show the value of the new version (EDDIE 8), we compared it with EDDIE 7. Results
showed that the new version was able to take advantage of the enlarged search space and thus
come up with improved trees. In addition, the best tree produced from EDDIE 8 could on average
outperform the best tree from EDDIE 7. This was characterized as a significant finding, because it
demonstrated the value of the new version.

However, experimental results also showed that on average, EDDIE 8 was outperformed by
its predecessor in terms of fitness and the other metrics. Analysis in both empirical and artificial
datasets showed that there could be cases where EDDIE 8 had difficulties searching effectively.
This behavior was observed when solutions came from EDDIE 7’s search space. When this hap-
pened, EDDIE 8 was having difficulties focusing its search on such a narrow search space, and
could not always return results that would outperform EDDIE 7. It was obvious that there was a
trade-off between ‘discovering new solutions’ and ‘effective ’search’.

Nevertheless, we should again emphasize that the best tree of EDDIE 8 is better than the
best tree from EDDIE 7. We consider this as a very important contribution, because practitioners
would be interested in the best results of the algorithm, and not necessarily in the average results.
Therefore, since EDDIE 8’s best tree can on average perform better than EDDIE 7’s in terms of
all performance metrics, this means that EDDIE 8 can offer higher profit to its user. We thus
believe that this allows us to characterize EDDIE 8 as an important contribution to the literature of
financial forecasting tools.

9.2 Summary of the Market Fraction Hypothesis

9.2.1 Motivation of the presented research
In the following chapter, we focused on observations regarding the fraction dynamics of financial
markets, which have led to the Market Fraction Hypothesis (MFH). This hypothesis states that the
fraction between the trading strategy types that exist in a financial market changes continuously
over time. This was an important observation, because it suggests that a ‘winner’ type of trading
strategy cannot exist in the long run. However, this observation had neither been formalized before,
nor tested under ‘real’ data.1 This thus motivated us to formalize the hypothesis, and test it under
real data. Investigating the hypothesis would also allow us to make valuable conclusions regarding
the market fraction dynamics.

1Actually, there is a limited number of works that has observed the MFH under real data. However, these observa-
tions were made under either N -type or autonomous agent-based models, which as we have already explained make
strict assumptions.
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9.2.2 Novelty of the presented research
We first formalized the hypothesis, by presenting its main constituents. Formalizing the MFH was
an important task, because this made it possible to test the hypothesis. We then proceeded by
suggesting a testing methodology. In addition, we suggested a new agent-based financial model,
which used Genetic Programming as a rule inference engine, and Self-Organizing Map as a clus-
tering machine. The novelty of this model was twofold: first, it did not assume the existence of
pre-fixed types of strategies, like the traditional N -type models do (e.g., fundamentalist-chartist
model). Secondly, our agent-based model allowed trading strategies that belong to the same type
to be heterogeneous, while they could behave in a similar way. The last contribution on this chapter
was that we tested the plausibility of the MFH under 10 international markets.

Despite the novelty of our work, we should also acknowledge its limitations. We mentioned
in Chapter 7 that our agent-based model creates and evolves dumb and naive trading strategies,
which might not necessarily represent the actual naive strategies that existed in the real market.
Throughout our work we have assumed that this is not the case and that the naive strategies evolved
behave like the ones in the real markets. This could of course be considered as a limitation of our
agent-based model.

9.2.3 Conclusions
The experimental results gave us valuable insight about the dynamics of market fraction. Our
findings suggest that the properties of the hypothesis do not hold for the majority of the cases
tested. We found that even in the long run, the market tends to favor few types of agents. More
specifically, we observed that we only needed four to five types (five to six types), to account for
the behavior of 90% (95%) of market participants. This is a very important finding, because it
indicates that even if a high number of trading strategy types exists, the traders focus only on a few
of these available types. We also found that in general, most types of agents are usually dominant
for a period of up to 2 years, with a few exceptions managing to remain dominant for a period
of 5.5 years. The latter was characterized as ‘long’ dominance, and thus led us to conclude that
evidence for the MFH was quite weak. Lastly, this long dominance allowed us to argue that there
can be winning types of trading strategies. We can thus conclude that the MFH observations made
under ‘real’ markets differ significantly from observations made in the past, under artificial market
frameworks (see Chen et al, 2012). Nevertheless, the investigation of this hypothesis has offered
us valuable information about the dynamics of financial markets.

After these tests, we were interested in examining whether these results could hold under dif-
ferent GP algorithms. If they indeed held, that would allow us to argue that the results from our
tests are independent of the GP algorithm. We hence used EDDIE 7 and EDDIE 8, to test the
previous derived results of the Market Fraction Hypothesis. What we observed was that the same
patterns existed across both test tests that we used, under all three GP algorithms. Therefore, our
results seem to be insensitive to the choice of the algorithm.
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9.3 Summary of the Dinosaur Hypothesis

9.3.1 Motivation of the presented research
Finally, the last research chapter presented, tested and discussed the Dinosaur Hypothesis (DH),
which states that the behavior of a market never settles down and that the strategies in this market
continuously co-evolve with it. This observation was first made by Arthur (1992) and later by
Chen and Yeh (2001). However, these models made this observation under artificial stock market
frameworks. In our current work, we were interested in examining whether these observations
could also hold in the real world. This thus motivated us to examine the behavior of different
financial markets and see whether the findings of Arthur, Chen and Yeh could still hold. In addition,
we were interested in formalizing the DH, since this had not happened before. Doing the above
was very important, because it would allows us to have a better understanding of how the financial
markets behave in the long run.

9.3.2 Novelty of the presented research
In order to investigate the market behavior, we firstly formalized the hypothesis by presenting
its main constituents. As with the MFH, formalizing the DH was an important task because this
allowed us to test for the plausibility of the hypothesis. We again employed GP as the rule inference
engine, and SOM as the clustering machine. In addition, we extended our agent-based financial
model from the previous chapter by allowing the SOM clusters to change throughout time, rather
than being static as was the case in the MFH framework. This offered more realism to our model
and allowed us to investigate complex market behavior dynamics. Finally, we tested the plausibility
of the DH under 10 international markets.

9.3.3 Conclusions
Results showed that parts of the Dinosaur Hypothesis were supported by our data. More specifi-
cally, we found that agents that do not adapt to changes that happen in the markets cannot fit their
environment any more. In other words, these agents, and as a consequence their trading strategies,
become obsolete or dinosaurs. However, only a few markets experienced a continuous decrease
in dinosaurs’ performance. Our tests thus did not confirm the observation made by Chen and Yeh
regarding the continuous decrease in the performance of dinosaurs.

In addition to the standard testing of the hypothesis, where we used the simple GP, we also
presented tests on the DH under two different GP algorithms. The reason for doing this was that we
again wanted to demonstrate that the results under the simple GP are rigorous and not algorithm-
dependent. We thus ran the same tests under EDDIE 7 and EDDIE 8. Results showed that both
versions agree with the original results. This therefore strengthened our argument of non-returning
dinosaurs in financial markets, and allowed us to argue that our results are not algorithm-dependent.
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The implications of these findings are very important, because they indicate that the behavior
of financial markets is non-stationary. In addition, trading strategies seem to have a finite lifetime,
after which they become ineffective. Trading strategies need to continuously co-evolve with the
market in order to remain effective.

9.4 Future work
The work on any of the above projects has by no means finished. Many extensions could take
place. In the first research project, some work has already been done by using hyper-heuristics
(Kampouridis and Tsang, 2011) for improving EDDIE 8’s search effectiveness. We aim to focus
towards that direction. More specifically, we are planning to test different heuristics (e.g. hill-
climbing, tree element swaps, period mutation) to investigate which type of heuristics can have the
greatest improvement effect on EDDIE 8. This would then allow us to combine certain heuristics
into a hyper-heuristics framework, which would then utilize all previously successful heuristics.
We believe that this approach would considerably improve the performance of EDDIE 8 and that it
would also give us valuable insight of how to search in large search spaces, while at the same time
focusing on the small, but also important areas of the space. Lastly, successful results in the above
project would allow us to further extend the grammar of EDDIE, by not allowing any pre-specified
indicators at all. Thus, the user would not have to give an indicator, such as Moving Average, as
input. On the contrary, the GP would use mathematical functions that can re-create the Moving
Average. This would then lead to the creation of completely new indicators that experts in financial
markets have never been aware of.

Regarding the work on the MFH, there are still several questions to be answered. First of all,
are our results sensitive to the other control parameters of our experiments, such as population size,
crossover rate, mutation rate, fitness function, and so on? In addition, we discussed the sensitivity
of the results to different GP algorithms. However, we did not do the same with SOMs. Could
different results be produced if we followed a different SOM clustering method? This also deserves
further investigation.

In addition, we mentioned at the end of Chapter 7 that a limitation of our agent-based financial
model is the absence of the traditional approach of estimation. This is because we cannot know
how close the inferred strategies are to the real strategies that have existed in the market. We
also mentioned that it would be interesting as a future work to investigate this issue. One way of
conducting the above investigation would be to first obtain the trading strategies of ‘real’ traders.
This is not of course straight-forward, because this kind of information is usually not available.
However, there are works in the literature that have used human subjects to act as traders. An
example such work is Hommes et al (2008). In this study, each participant was making a prediction
regarding the price movement. These predictions led to the formulation of the market price. We
could thus apply our GP system to the market prices generated in Hommes et al (2008), and infer
trading strategies. Then, we could examine how close the forecasts of the inferred strategies are to
the forecasts of the real market participants. This could be achieved by using an objective function
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which compares the forecasts made by the GP system to the forecasts made by the real traders.
Furthermore, another future plan that we consider interesting is to understand the underlying

trading strategy types behind the SOM clusters. This would then allow us to understand how
each cluster behaves. We could then compare this behavior to the behavior of other well-known
strategies, such as the chartist and the contrarian. This would thus give us an understanding of
where each cluster “stands” in terms of behavior and would therefore give us insight as to what
makes a strategy type successful and popular.

Moreover, we should say that the above suggestions for future work in the MFH field also
apply to the DH work, since both hypotheses were tested under the same financial model and the
same framework.

Lastly, we mentioned in Chapter 8 that although dinosaurs do not return, there can be times we
observe returning lizards, which means that the market conditions between two different periods
resemble, and thus allowed trading strategies from the past to feel ‘satisfied’ again. We consider
as an interesting future work to examine the underlying market conditions between these periods
and look for similarities that might exist. For instance, one way to do this could be to examine
the statistical properties and stylized facts of these markets, such as calendar effect, skewness,
kurtosis, and so on. Finding similarities between these stylized facts could give as an indication of
why strategies behave similarly in certain time periods, and thus anticipate this behavior in future
periods.
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Appendix A

Kolmogorov-Smirnov tests

Here we present the p-values for the Kolmogorov-Smirnov tests that took place in Chapter 6 (Sec-
tion 6.4.2.1), and more specifically for the comparative results between the average values of Fit-
ness, RC, RMC, and RF, for the 10 FTSE 100 stocks, between EDDIE 7 and EDDIE 8. Table A.1
presents these values in the next page. Whenever the p-value is below 5%, this indicates that the
difference between the average values of the performance measures is significant at 5% level. A
significant improvement by EDDIE 8 is denoted by formatting the number in bold fonts, whereas
a significant improvement by EDDIE 7 is denoted by underlying the respective number.

Overall, EDDIE 7 has better results than EDDIE 8, under more stocks. In terms of Fitness,
EDDIE 7 is doing better in 4 stocks, whereas EDDIE 8 is doing better in 3. In terms of RC, RMC,
and RF, EDDIE 7 is doing better in 5, 5, and 5 stocks respectively, whereas EDDIE 8 is doing
better in 2, 1 and 4 stocks, respectively.
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Table A.1: Kolmogorov-Smirnov test for testing whether the differences between the average val-
ues for the Fitness, RC, RMC, and RF between EDDIE 7 and EDDIE 8 are significant at 5%
significance level.

p-value
Fitness RC RMC RF

BAT 0.507658 0.677937 0.044629 0.000966
BP 0.017144 0.507658 0.002112 2.07e-17

Cadbury 0.008899 0.008899 0.35842 0.000966
Carnival 0.009509 0.039676 0.55034 0.026563

Hammerson 2.76e-05 2.76e-05 1.02e-05 0.095096
Imp.Tob. 0.095096 0.017144 0.095096 0.031661

Next 1.02e-05 1.02e-05 0.000178 0.002112
Schroders 0.004428 0.008899 0.002112 0.017144

Tesco 0.596643 0.442784 0.677937 7.16e-05
Unilever 4.02e-07 1.23e-06 3.76e-08 0.000178
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Appendix B

Additional Performance Measures

Here we present the formulas for the two additional metrics AARR and RPR, as presented in
Li (2001). We would once again like to remind the reader that these metrics should be used for
reference only, since they are not part of the fitness function.

Hypothetical Trading Behaviour: We assume that when a positive position is predicted by a
GDT, one unit of money is invested in a stock reflecting the current closing price. If the closing
price does rise by r% or more at day t within the next n trading days, we then sell the portfolio at
the closing price of day t. If not, we sell the portfolio on the nth day, regardless of the price.

Given a positive position predicted, for example, the ith positive position, for simplicity, we
ignore transaction cost, and annualize its return by the following formula, presented in Equation
(B.1):

ARRi =
255

t
∗ Pt − P0

P0

(B.1)

Where P0 is the buy price, Pt is the sell price, t is the number of days in markets, 255 is the num-
ber of total trading days in one calendar year. Given a GDT that generates N+ number of positive
positions over the period examined, its average ARR is shown in Equation (B.2):

AARR =
1

N

N+∑
i=1

ARRi (B.2)

RPR (Equation (B.3)) refers to the ratio of the number of signals, which turn out to achieve positive
returns, to the total number of positive positions predicted, where a specific GDT is invoked for a
finite period

RPR =
1

N+

N+∑
i=1

Ii (B.3)

where

Ii =

{
1 ifARRi ≥ 0
0 otherwise
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and
0 < i ≤ N+

where N+ is the number of positive positions generated by the GDT, and ARRi is an annualised
rate of return for the ith signal.
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Appendix C

Figures of Cumulative Fractions

In this section we present the figures of cumulative fractions for all ten datasets, as discussed in
Section 7.6.3.2. We can again see here that most of the markets tend to have a few gigantic clusters.
The only exceptions are NYSE and S&P500.

Figure C.1: Cumulative Fraction for CAC 40
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Figure C.2: Cumulative Fraction for DJIA

Figure C.3: Cumulative Fraction for FTSE 100
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Figure C.4: Cumulative Fraction for HSI

Figure C.5: Cumulative Fraction for NASDAQ
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Figure C.6: Cumulative Fraction for NIKEI 225

Figure C.7: Cumulative Fraction for NYSE
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Figure C.8: Cumulative Fraction for S&P 500

Figure C.9: Cumulative Fraction for STI
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Appendix D

Dissatisfaction Rate tables under EDDIE 7
and EDDIE 8

Here we present the tables which show the mean of average and minimum dissatisfaction rates for
the DH test, under EDDIE 7 and EDDIE 8. As we can see, dissatisfaction tends to increase, as the
number of clusters increases. In terms of average dissatisfaction, it is in the range of 4.39 (2 × 1
SOM) to 7.62 (3× 3 SOM), for EDDIE 7, and 4.17 (2× 1 SOM) to 7.14 (3× 3 SOM), for EDDIE
8. In terms of minimum dissatisfaction, results are in the range of 3.58 (2× 1 SOM) to 5.71 (3× 3
SOM) for EDDIE 7, and 3.37 (2 × 1 SOM) to 5.30 (3 × 3 SOM), for EDDIE 8. The differences
between the two GP algorithms are very small.

Table D.1: Average of Average Dissatisfaction Rate per Cluster per Dataset for EDDIE 7.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 4.37 4.84 5.34 6.03 6.27 7.14 7.22 7.60
DJIA 4.57 5.13 5.55 6.25 6.56 7.33 7.47 7.83

FTSE100 4.31 4.83 5.36 5.95 6.27 7.02 7.06 7.52
HSI 4.34 4.83 5.30 5.82 6.17 6.91 6.98 7.37

NASDAQ 4.59 5.18 5.65 6.32 6.65 7.45 7.52 8.10
NIKEI 4.26 4.69 5.11 5.60 5.89 6.73 6.57 7.12
NYSE 4.56 5.11 5.55 6.37 6.60 7.40 7.60 7.98

S&P500 4.35 4.92 5.38 5.96 6.32 7.12 7.30 7.68
STI 4.39 4.89 5.32 5.97 6.17 7.02 7.07 7.51

TAIEX 4.19 4.67 5.20 5.86 6.06 6.95 6.98 7.50

Mean 4.39 4.91 5.38 6.01 6.30 7.11 7.18 7.62
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Table D.2: Average of Average Dissatisfaction Rate per Cluster per Dataset for EDDIE 8.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 4.13 4.54 5.03 5.75 5.95 6.67 6.83 7.11
DJIA 4.43 4.99 5.47 6.15 6.44 7.26 7.32 7.78

FTSE100 4.31 4.86 5.24 5.96 6.18 7.08 7.17 7.56
HSI 3.96 4.45 4.71 5.35 5.57 6.21 6.32 6.66

NASDAQ 4.25 4.83 5.18 5.79 6.08 6.74 6.90 7.29
NIKEI 4.06 4.41 4.74 5.34 5.53 6.19 6.25 6.59
NYSE 4.17 4.61 5.12 5.70 5.99 6.77 6.91 7.25

S&P500 4.19 4.73 5.10 5.71 5.95 6.71 6.79 7.18
STI 4.18 4.63 5.03 5.64 5.86 6.68 6.77 7.12

TAIEX 4.03 4.49 4.91 5.50 5.72 6.38 6.59 6.88

Mean 4.17 4.65 5.05 5.69 5.93 6.67 6.79 7.14

Table D.3: Average of Minimum Dissatisfaction Rate per Cluster per Dataset for EDDIE 7.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 3.66 3.89 4.31 4.77 4.95 5.54 5.65 5.91
DJIA 3.74 4.11 4.34 4.88 5.07 5.65 5.79 6.09

FTSE100 3.55 3.78 4.20 4.62 4.82 5.38 5.47 5.80
HSI 3.50 3.58 3.93 4.12 4.49 4.92 4.95 5.13

NASDAQ 3.75 4.14 4.48 4.92 5.19 5.72 5.87 6.26
NIKEI 3.47 3.65 3.76 4.11 4.22 4.85 4.67 5.03
NYSE 3.80 4.10 4.33 4.99 5.11 5.74 5.90 6.22

S&P500 3.55 3.91 4.21 4.61 4.89 5.41 5.61 5.83
STI 3.37 3.72 3.95 4.45 4.54 5.11 5.22 5.34

TAIEX 3.43 3.71 4.07 4.53 4.58 5.31 5.23 5.54

Mean 3.58 3.86 4.16 4.60 4.79 5.36 5.43 5.71
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Table D.4: Average of Minimum Dissatisfaction Rate per Cluster per Dataset for EDDIE 8.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 3.44 3.68 3.99 4.54 4.66 5.23 5.32 5.50
DJIA 3.56 3.94 4.18 4.66 4.92 5.49 5.49 5.84

FTSE100 3.54 3.89 4.24 4.65 4.83 5.51 5.56 5.84
HSI 3.29 3.56 3.78 4.20 4.19 4.51 4.66 4.88

NASDAQ 3.43 3.72 3.92 4.26 4.44 4.91 4.95 5.24
NIKEI 3.28 3.47 3.58 3.99 4.14 4.54 4.64 4.77
NYSE 3.44 3.72 4.02 4.44 4.56 5.13 5.26 5.47

S&P500 3.25 3.72 3.86 4.30 4.49 4.93 5.04 5.34
STI 3.18 3.52 3.70 4.19 4.28 4.81 4.86 5.10

TAIEX 3.26 3.48 3.68 4.09 4.27 4.68 4.85 5.01

Mean 3.37 3.67 3.90 4.33 4.48 4.97 5.06 5.30
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Appendix E

Standard Deviation Results: Chapters 7 and
8

This chapter provides standard deviations results for MFH and DH tests.

Table E.1: Standard Deviations over 10 runs for MFH Test 1-Max for 2-9 clusters.

Cl. CAC 40 DJIA FTSE100 HSI NASDAQ NIKEI NYSE S&P500 STI TAIEX
2 1.236 3.414 3.642 3.393 0.948 0.816 3.000 3.504 1.776 3.041
3 1.807 1.165 1.864 2.203 0.994 1.663 1.349 1.595 1.201 1.772
4 1.732 0.975 1.873 1.922 0.971 1.337 1.251 1 1.333 3.154
5 1.832 1.581 3.494 1.407 0.994 1.433 2.936 1.813 1.054 2.658
6 1.908 1.618 2.058 1.669 0.971 1.337 2.494 2.658 0.866 3.132
7 1.831 1.302 1.837 1.846 0.942 1.286 2.990 2.643 0.527 1.643
8 1.407 1.889 2.444 2.356 1.092 1.080 3.457 2.603 1.092 2.658
9 1.126 1.481 2.138 1.726 1.166 0.843 2.833 2.602 0.866 2.866
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Table E.2: Standard Deviations over 10 runs for the MFH Test 2 for 2-9 clusters.

Cl. CAC 40 DJIA FTSE100 HSI NASDAQ NIKEI NYSE S&P500 STI TAIEX
2 0.114 0.091 0.122 0.087 0.013 0.020 0.004 0.006 0.002 0.068
3 0.120 0.082 0.124 0.092 0.071 0.074 0.011 0.015 0.079 0.097
4 0.115 0.109 0.111 0.102 0.081 0.062 0.033 0.013 0.081 0.114
5 0.121 0.124 0.105 0.105 0.088 0.079 0.029 0.043 0.106 0.066
6 0.101 0.101 0.125 0.113 0.105 0.087 0.021 0.040 0.094 0.112
7 0.096 0.118 0.103 0.108 0.119 0.093 0.053 0.064 0.107 0.119
8 0.108 0.127 0.090 0.119 0.113 0.119 0.047 0.064 0.120 0.113
9 0.082 0.113 0.093 0.100 0.127 0.112 0.024 0.034 0.118 0.094

Table E.3: Standard Deviations over 10 runs for Table E.3.

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3
CAC40 0.6130 0.6733 0.7159 0.8649 0.8696 1.1295 1.0788 1.0252
DJIA 0.755 0.7964 0.7972 0.9762 1.0256 1.1205 1.1458 1.2519

FTSE100 0.8444 0.9242 0.9744 1.1796 1.2017 1.2958 1.3312 1.4687
HSI 1.0901 1.1832 1.1611 1.4833 1.4611 1.7639 1.7546 1.8979

NASDAQ 0.6748 0.7423 0.8124 0.9436 1.0021 1.1788 1.1377 1.2453
NIKEI 1.1188 1.0078 1.0911 1.3812 1.4042 1.6736 1.6261 1.7493
NYSE 0.5051 0.5483 0.5925 0.6993 0.6855 0.8225 0.7939 0.9160

S&P500 0.6660 0.6791 0.7277 0.8264 0.9114 1.01731 1.0788 1.1257
STI 0.9986 1.1455 1.2410 1.4000 1.4638 1.7425 1.7299 1.8211

TAIEX 1.0322 1.0428 1.03770 1.2596 1.3345 1.5001 1.4510 1.6140
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