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ABSTRACT
This paper presents a brief outline of a higher-order mutation-
based framework for Genetic Improvement (GI). We argue
that search-based higher-order mutation testing can be used
to implement a form of genetic programming (GP) to in-
crease the search granularity and testability of GI.
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1. INTRODUCTION
Genetic Improvement (GI) seeks to automatically improve

software systems by applying generic modifications to the
program source code [7, 12, 14]. Given a human developed
system as input, GI evolves new candidate implementations,
which improve non-functional behaviours, while preserving
the original functional requirements. Current research on
GI has demonstrated many potential applications. For ex-
ample, GI has been used to fix software bugs [1, 11], to
dramatically speed up software systems [10, 14], to port a
software system between different platforms [9], to trans-
plant code features between multiple versions of a system
[13], to grow new functionalities [4] and more recently the
to improve memory [15] and energy usage [2].
The majority of GI work uses Genetic Programming (GP)

to improve the programs under optimisation [1, 9, 10, 11,
12, 13, 14]. Early GI solutions attempted to apply strongly
typed GP to evolve an entire program [1, 9, 14]. This GP
approach uses a generic BNF grammar file that allows it
to finely control the code generation. For example, the GP
can evolve arbitrary new expressions by combining different
variables and values with valid functions. However, such
generic approaches also limit the scalability of GP-based GI.
As a result only a set of small programs [1, 14] and a small
part of a program [9] have been feasible for this kind of GI.
To scale up and cater for real world programs, later GI

work used a so-called ‘plastic surgery’ GP approach [11, 10,
13]. Rather than evolving an entire program, this approach
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searches for a list of edits from the existing source code.
To reduce search complexity, it uses a specialised grammar
file that tracks the coarse syntactic information at the line-
of-code or statement level. Typical changes generated are
movements or replacements of different lines of code [10,
13]. Although this type of GP scales well and can be used
to improve real world programs, the level optimisation is
limited by the use of a specialised grammar file and the
coarse level of genetic modifications.

In this paper, we propose to develop a GI framework us-
ing mutation testing [8]. We argue that recent advances in
search-based higher-order mutation would allow GI to main-
tain a good level of scalability, while providing a fine-grained
search granularity. Moreover, GI would also benefit from ex-
isting mutation-based test data generation frameworks with
which, automated tests could be generated to improve the
faithfulness of improved programs [5].

2. HIGHER ORDER MUTATION FOR GI
Mutation testing is an effective fault-based testing ap-

proach, which was first proposed in the 1970s [3]. It auto-
matically seeds faults into the program under test to create
a set of faulty version of the program, known as mutants.
These mutants are used to assess the quality of given tests,
as well as to provide a guideline for generating new tests.
Recent evidence indicates that this approach is increasing
in maturity and practical application [8].

The core fault seeding process uses source code manipula-
tion techniques to create mutants. In the parlance of source
code manipulation, each mutant is created by a source-to-
source transformation of the original program. The trans-
formation rules used in mutation testing are called mutation
operators, designed to automatically modify the program
thereby simulating a wide class of programmer changes [8].
This characteristic makes mutation testing a good alterna-
tive approach to evolve programs through GI.

Mutation testing can be classified into two types: first
order and higher order. First order mutation generates mu-
tants by introducing a single syntax change into the source
code. This technique could be used for pre-sensitivity analy-
sis at the beginning of the GI process [10]. Higher-order mu-
tation applies multiple changes at multiple locations. Search-
based higher-order mutation has been used to construct strong
mutants than simulate subtle faults in real world programs
[6]. We propose to use multi-objective search-based higher-
order mutation testing to search for GI mutations that pass
all the regression tests with improved non-functional prop-
erties.
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Figure 1: A higher-order mutation GI framework

The overall structure of the higher-order mutation-based
GI framework is shown in Figure 1. This framework takes
the program under optimisation as input, and applies tradi-
tional first order mutation to find locations that are sensitive
to the non-functional properties under optimisation. This
pre-analysis approach was first introduced by Langdon and
Harman [10], to reduce the search space for GP. Their ap-
proach removes each line of code repeatedly, seeking changes
that have a significant impact on non-functional properties.
Our first-order mutation technique follows the same prin-
ciple, but carries out the analysis at a finer grained level,
including modifications to the variables within expressions.
The second step applies search-based higher-order muta-

tion to find semantic-preserving mutants that could be useful
for GI. It uses a vector to represent a higher order mutant,
in which the indices represent the sensitive program points
located in the previous analysis and the values represent
the types of changes applied at each location. To search
for higher order mutants preserving existing functional be-
haviours, one fitness function seeks to minimise the number
of tests that capture the mutants. The search process could
be implemented by reusing an existing higher-order muta-
tion tool [6] with additional non-functional fitness functions,
such as measuring the memory usage [15] or energy require-
ments [2]. As with ‘plastic surgery’ techniques [10, 11, 13],
the higher-order mutation approach also searches for a list
of changes. However, we believe this way will turn out to
be flexible and provides a finer level of control in the code
generation.
The framework applies a ‘faithfulness’ analysis after gen-

eration of candidate GI mutants. An improved program is
faithful to a set of test data if it passes all of tests. Tradi-
tional GP-based approaches rely on a set of regression tests
to check the faithfulness of the improved program. However,
such regression tests might not be sufficient to thoroughly
exercise the newly generated code. In the faithfulness analy-
sis step, we attempt to apply additional mutation-based test
data generation techniques [5] to find counter examples that
kill the GI mutants. A GI mutant is killed, if a test input
makes the evolved the program produce a different output
to the original program, i.e. the original semantics have
changed. This additional test data generation step would
increase the faithfulness of the GI mutants, thereby provid-
ing additional confidence to the programmer.
Finally, for each candidate program generated, our ap-

proach creates a mutation report. The report summarises
the types of mutation changes that have been applied to
each variable or expression, based upon the mutation oper-
ators that have been used. This report will help to assist
programmers to understand how such GI mutants can be
used to improve the non-functional properties of their pro-
gram. As the mutation operators are designed to mimic
human syntactic changes, this form of report may prove to
be more easily understandable than a report based upon line
modifications.

The applicability of this approach depends on the num-
ber of GI mutants that still pass all tests. From a mutation
testing point of view, the GI mutants are a subset of spe-
cial mutants called equivalent mutants. Equivalent mutants
are programs with syntactic differences, which nevertheless
exhibit identical behaviour. Recent studies on equivalent
mutants suggest that more than 23% of first order mutants
are equivalent mutants on average[16]. Given that the num-
ber of mutants increases as the order of mutation increases,
there are inevitably a large number of equivalent mutants
produced by higher-order mutation. Thus there could be a
sufficient number of equivalent mutants to be used by the
higher-order mutation approach for GI.

3. CONCLUSIONS
Automatic software improvement is difficult for human

developed systems. A good GI solution not only requires a
generic and scalable way to modify programs, but also needs
testing techniques to check for the faithfulness of the im-
proved program. Higher-order mutation testing has proved
to be a very effective source code manipulation approach
for testing software. We therefore believe that this makes
mutation testing a good candidate approach for GI.
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