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ABSTRACT 
The process of developing genetic algorithms, genetic programs 
or training neural networks is a time consuming task. When the 
target device is an autonomous mobile robot, this development is 
often performed using software simulation. Software simulations 
are a cost effective tool and provide researchers with the ability to 
test out multiple algorithms quickly and efficiently. However, the 
end result is that the optimized algorithm(s) must be implemented 
and tested on an actual robot to evaluate performance in the real 
world. Significant cost can be associated with this final step. In 
this paper we propose to leverage Radio Frequency Identification 
(RFID) and a low-cost RFID capable mobile robot with the intent 
of creating basic foraging behavior. Additionally, we will present 
experimental results   that demonstrate the effectiveness of using 
Genetic Programming (GP) and a low-cost RFID capable robot to 
create foraging behavior. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– intelligent agents, multi-agent systems. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Microcontrollers, radio frequency identification, mobile robot, 
genetic programming. 

1. INTRODUCTION 
Foraging behavior is easily simulated when expensive sensors and 
hardware are modeled in software. However, when it comes to 
direct implementation on an actual robot, researchers must have 
access to a robot capable of foraging. A foraging capable robot 
must have the ability to detect food, manipulate food and perform 

simple to complex navigation tasks in an unknown or known 
environment. Traditionally this has been achieved through the use 
of a suitable camera system, gripper attachment and expensive 
robot platform. Most commercially available robots that meet 
these foraging requirements are fairly expensive and cost 
prohibitive when used in swarms [3,6]. By leveraging RFID we 
have developed another method for satisfying the foraging 
requirements. This new system comprises passive RFID tags, a 
RFID chip and antenna, and a low cost mobile robot. Food is 
stored virtually on passive RFID tags that can be disseminated 
throughout a robot’s environment. The RFID chip and antenna are 
integrated with the low cost robot so that the agent can explore its 
environment while searching for RFID tags. Upon discovering a 
tag the robot acquires food by simply reading the amount of 
virtual food that is available. 

In this paper we will first describe the robot, its sensors, and its 
capabilities. After that we will explain how RFID can be 
leveraged to develop foraging behavior.  Finally, foraging 
experiments we carried out using GP will be discussed. 
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2. Low Cost Robot 
To help solve the issue of foraging requirements we are using a 
unique low cost robot that was developed under an NSF CCLI 
grant for a new Bioengineering curriculum at Binghamton 
University [5]. This robot is appropriately named BIObot and 
contains several different types of sensors, which allow it to 
explore and interact with its environment and also execute basic 
and complex foraging behaviors. The BIObot robot is shown in 
Figure 1. Currently BIObot is being used in a Bioengineering 
course, Autonomous Agents, where students are exploring 
concepts in control theory, fuzzy logic, neural networks, and 
genetic algorithms. Hands-on interaction with BIObot engages 
students, makes learning fun, and elevates interest in the concepts 
under investigation. For most of the semester, students work with 
BIObot, handheld computers and specially designed software. 
However, near the end of the course students develop code in 
Mathematica and must leverage at least two of the covered 
algorithms to solve a specified problem. The work described in 
this paper will enable us to develop lab modules for a genetic 
programming section.  

2.1 BIObot’s Sensors 
BIObot utilizes a total of ten different sensors: five Sharp 
GP2D120 Infrared Rangers, two cadmium-sulfide light cells, two 
quadrature wheel encoders, and one RFID chip and antenna. 
Basic obstacle avoidance and wall following is achieved with the 
Sharp IR sensors, of which there are three in the front and two in 
the rear of the agent. The two frontward-facing light sensors 
support behaviors that are associated with light such as light 
tracking or avoidance. BIObot is able to move through the 
environment using three different control methodologies: open 
loop wheel velocity, closed loop wheel velocity, and position 
control. Position and closed loop velocity control both utilize the 
quadrature wheel encoders to implement their respective 
proportional, integral, and derivative (PID) controllers. This 
feature helps BIObot to execute semi-precise movements such as 
rotating 90 degrees or traveling forward 12 inches. Such 
rotational and translational motions are required capabilities when 
performing simple or complex navigation. Finally one of the more 
important sensors, the RFID chip and antenna, allows BIObot to 
detect, obtain, and transport virtual pieces of food.  

2.2 Controlling BIObot 
BIObot’s onboard controller is able to integrate most micro-
controller based Bluetooth® transceivers [1, 2]. A higher-level 
controller such as a Bluetooth® equipped laptop, desktop, 
handheld computer or cell phone can wirelessly control BIObot 
when both devices are paired. The onboard controller runs a 
specially designed firmware that provides the user with an easy to 
use set of functions that are accessed via asynchronous serial 
commands across the Bluetooth Serial Port protocol. Users can 
command BIObot to move using open loop wheel velocity, closed 
loop wheel velocity, and position control, to retrieve any of the 
analog to digital (A/D) sensor readings, to check for in-range 
RFID tags, to set and get the states of digital pins, to set sensor 
reflexes or to access a host of other functions that are built into 
the firmware. 

2.3 Programming BIObot 
By using simple asynchronous serial commands BIObot opens up 
the world of programming to virtually any language that supports 
serial communication. Visual Basic .NET, C# .NET, Java, 
Python, Mathematica, C, C++ are some of the more predominant 
software development tools that are compatible with BIObot. 
However, the end target hardware must also support serial 
communication and have built-in Bluetooth® or be able to add 
USB or serial Bluetooth transceivers. Operating system (OS) 
transparency is also achieved by using simple serial commands 

3. Foraging with RFID 
With a RFID chip and antenna built-in, BIObot is able to roam 
through an environment and detect tags as it passes over them. 
Tag detection is accomplished by continuously polling the RFID 
chip. We have installed the tags underneath the environment floor 
so that they will not interfere with the motion of BIObot. Since 
we are using a wireless Bluetooth connection there is a minimal 
amount of latency associated with the serial data transmission. 
Using a serial baud rate of 19,200BPS we realized approximately 
120-140ms of latency for the roundtrip transmission of two 
characters. When polling the RFID chip there is an added delay, 
which brings the total delay to 250ms on average. Having the 
robot’s micro-controller communicate with the RFID chip via 
asynchronous serial commands at 19,200BPS adds this extra time 
delay. Once the RFID chip receives a command it must power an 
antenna, which in turn supplies energy to the passive in-range tag. 
Once powered by the antenna, the tag is able to return the 
requested reading to the higher-level controller. Even with a 
latency of 250ms we have not observed any degraded 
performance during our testing of simple foraging behaviors. 
Future work will investigate the possibility of performing the 
RFID polling local to BIObot so that the time delay can be 
minimized. 

3.1.1 Virtual Food 
Virtual food is stored on tags, which are then disseminated 
throughout the environment. Each tag can have the same or 
varying amounts of food. In this way, the amount and location of 
food sources can be controlled and set up for various experiments. 
BIObot can interact with the tags and procure virtual food by 
simply reading an in-range tag. Heuristics and/or other algorithms 
can be used to determine how much food BIObot is allowed to 
obtain. Additionally, tags can be used as infinite or finite food 
supplies. To use them as finite supplies BIObot first reads the tag, 
determines how much food to take, subtracts this amount from the 
tag amount, and finally writes back the new depleted amount to 
the tag. Finite food supplies will eventually expire, unless there is 
a mechanism for renewal. It should be noted that tags can also be 
mounted in places other than the floor, so long as the RFID 
antennae is mounted on BIObot such that it can be positioned 
parallel to approached tags. 

3.1.1.1 Structure of Virtual Food 
The Q5-T5555 RFID tags that we are using can store up to a total 
of 32-bytes of data [10]. Tag data are stored in 4-byte blocks, 
which results in a total of 8 storage blocks. However, the first two 
blocks are not to be used because they are set aside to store the 
configuration settings and a start sequence. The first block stores 
configuration information with regard to the tag, modulation type, 
maximum number of blocks to be transmitted, and other settings. 



Block two stores a unique 4-byte start sequence, which allows the 
RFID chip to know where the start of the tag data stream begins. 
The eighth block can be configured and used as a password for 
the tag.  
In the case of BIObot we are only using the third block in a tag to 
store virtual food. Since we have a total of 4-bytes available in 
each block we can use block#2 to store a 32-bit unsigned integer 
that represents pieces of virtual food. The remaining 5-blocks 
could be used for storing additional environmental information 
such as x-y coordinates of the tag, number times the tag has been 
read or written, or even identification numbers that correspond to 
robots that have read the tag. Currently there are tags available 
that comprise 31-storage blocks for a total of 124-bytes of storage 
space. 

3.1.2 Foraging Navigation 
Simple and complex navigation can be accomplished using the 
five infrared range sensors, two light sensors, three motion control 
methodologies and Sensor Reflexes. Sensor Reflexes allow 
BIObot to navigate obstacles without waiting to receive 
instructions from a higher-level controller. Using Sensor Reflexes 
offloads the task of monitoring sensors so that a higher-level 
controller can spend time performing other computations and not 
have to provide continuous instruction to the robot. To use Sensor 
Reflexes the user must define (2) different thresholds: 
Analog/Digital (AD) Reflex Level and Light Reflex Level. After 
setting these levels, the user then prescribes which sensors are to 
be used for the Sensor Reflexes. Now that the Sensor Reflexes 
have been set, BIObot can safely move through the environment 
and when one of the thresholds is exceeded by the appropriate 
sensor(s), BIObot will halt and await further instruction. A 
higher-level controller can periodically check to see if BIObot has 
triggered a sensor reflex and then take the necessary action to 
correct the situation. For example, suppose we want BIObot to 
explore its environment and avoid obstacles, but do not want to 
have the higher-level controller continuously poll the robot for its 
current sensor readings and prescribe motor speeds. In this 
scenario we would need to use the three front IR sensors and set 
the AD Reflex Level to an appropriate value. We can determine 
the necessary AD Reflex Level by knowing the maximum speed 
of the robot and also how far away from the obstacle we want the 
robot to stop. After setting this value we then set the Sensor 
Reflexes for the front left, front center, and front right IR sensors. 
BIObot will now drive with prescribed motor speeds until any one 
of the three front IR sensors exceeds the AD Reflex Level. 

3.1.2.1 Simple Navigation 
BIObot can utilize simple logic, fuzzy logic, genetic algorithms, 
genetic programs or neural networks to create simple navigation 
behaviors. Simple navigation means that BIObot has no a priori 
knowledge of its environment and does not generate or store 
knowledge of its environment during exploration. Having BIObot 
randomly roam through an environment while polling for RFID 
tags and avoiding obstacles or other robots would be an example 
of simple navigation. 

3.1.2.2 Complex Navigation 
Complex navigation takes place when BIObot is provided with 
information about its environment prior to exploration, leverages 
simple logic, fuzzy logic, genetic algorithms, genetic programs, or 
neural networks and/or generates new information and/or 

modifies its existing knowledge during the exploration phase. In 
this scenario BIObot can be supplied with a map of the 
environment that not only includes the location of obstacles, but 
also that of the food tags and coordinate tags. Coordinate tags 
consist of the same basic food tag, but instead of containing food 
they hold coordinate information. BIObot can use the coordinate 
tags to update its current location status by simply referring to its 
map of the environment. There are several published papers that 
reveal how RFID can be used to perform localization on a mobile 
robot [4,7,9]. By using a map, BIObot can better exploit its 
environment and over time learn where the best food supplies are 
located. 

4. Genetic Programming Proof of Concept 
Foraging Experiment 
Basic foraging behavior was investigated using BIObot, simple 
GP based navigation with Sensor Reflexes, eight passive RFID 
tags, and a small four-foot by eight-foot walled environment. 
Figure 2 shows the high-level control program, (GP Robot 
Control), which resides on a Bluetooth® equipped laptop or 
desktop computer and controls BIObot while evolving simple 
genetic programs that control the navigation behavior of BIObot. 

 

4.1 Initial Setup 
Each of the eight RFID tags was randomly loaded with varying 
amounts of virtual food in the range of 5-20 pieces and then 
placed under the environment floor. The list of random virtual 
food values was as follows: 11, 9, 17, 8, 6, 15, 13, and 20. Tags 
were spaced 16 inches apart in the four-foot direction and 19.2 
inches in the eight-foot direction. Figure 3 illustrates the 
environmental layout for the eight RFID tags. 



 

4.2 GP Robot Control Program 
The GP Robot Control application allows a user to generate a 
population of simple linear genetic programs based upon the 
following predefined functional and terminal sets: 
 
T = {FWD_100, SPIN_LEFT_90, SPIN_RIGHT_90, 
SPIN_LEFT_135, SPIN_RIGHT_135} 
F = {IF_FOUND_FOOD_EAT_1, IF_FOUND_FOOD_EAT_5, 
IF_FOUND_FOOD_EAT_ALL} 
 
FWD_100 drives BIObot forward for 100 encoder ticks, which is 
equivalent to 6.4”. SPIN_LEFT_90 and SPIN_RIGHT_90 rotate 
BIObot 90 degrees in the respective direction. Likewise, 
SPIN_LEFT_135 and SPIN_RIGHT_135 rotate BIObot 135 
degrees in the specified direction. The IF_FOUND_FOOD_ 
functionals allow BIObot to procure food from the RFID tags. If 
an IF_FOUND_FOOD_ functional is evaluated and food is 
available then BIObot is able to collect a single piece, five pieces 
or all the pieces of available food depending upon which 
functional is being evaluated.   
The number of generations, number of organisms, AD Sensor 
Reflex Level, program length, number of program loops, 
crossover rate and mutation rate are parameters that the user has 
control over. Sensor Reflexes ensure that BIObot will not collide 
with the environment walls. The initial population of organisms is 
generated randomly with fixed length as specified by the user. 
Organisms are evaluated live on BIObot in four-organism 
tournaments. At the end of a tournament, the two organisms with 
the highest fitness are copied into the two least fit. Next, 
crossover and mutation are performed on the two least fit based 
upon crossover and mutation rates. Single point crossover is 
performed since the genetic programs are linear. Our mutation 
operator utilizes single point mutation and can replace a 
functional with a terminal or vice versa. Fitness is determined 
entirely by the amount of food collected during a specific 
tournament run. 

4.3 Experimental Costs 
All major experimental expenditures are displayed in table 1. 

 
Table 1. Experimental Costs 

Component Description Cost 

Bluetooth & RFID Equipped BIObot $250.00 

USB Bluetooth Adapter for Desktop/Laptop $30.00 

Eight Passive RFID Tags $40.00 

4 x 8 Foot Environment with Perimeter Walls $40.00 

TOTAL $360.00 

 

4.4 Experimental Results 
An initial population of eight organisms each with a fixed length 
of eight instructions was randomly generated. The AD Sensor 
Reflex Level was set to sixty-five for each of the three frontward 
facing IR sensors to ensure that BIObot would avoid collisions. 
Crossover and mutation rates were set to 50% and each program 
was allowed to run for thirty loops during execution. The small 
population size was chosen due to the limited amount of 
functionals and terminals, but also because the genetic programs 
were limited to a linear structure.  
The initial population of eight genetic programs evolved for a 
total of four and a half hours and only covered two and half 
generations. We decided to cease evolution when BIObot’s 
battery voltage dropped below 7.0 volts, which is close to the 
discharge knee of BIObot’s rechargeable NiMH cells.   
 

Table 2. Results of Experimental GP Runs 

 Pieces of Food Collected 

AVERAGE 20.92 

MIN 0 

MAX 104 

STD. DEV. 31.8 

 
Results of the experimental GP runs are shown in Table 2. On 
reviewing the results it can be seen that on average, BIObot was 
able to collect 20.92 pieces of virtual food. The genetic program 
with the highest fitness, organism#3, was able to collect 104 
pieces of food even though this particular program generates a 
circular trajectory when executed. The program for organism#3 is 
listed below. 
 
SPIN_LEFT_90 
IF_FOUND_FOOD_EAT_1 
SPIN_LEFT_90 
SPIN_RIGHT_135 
FWD_100 
IF_FOUND_FOOD_EAT_ALL 
IF_FOUND_FOOD_EAT_1 
SPIN_RIGHT_135 
 



We decided to let the evolutionary process run continuously, 
meaning that each organism is evaluated immediately after the 
previous organism in a tournament. Using this configuration 
makes it possible for a circular program to begin execution within 
close proximity to a food tag if the previous organism was 
terminated close to a tag. In this situation, the executing program 
is able to collect relatively large amounts of food in comparison to 
a program that traverses a larger amount of the environment’s 
total area.  

5. Conclusions 
In this paper we presented a basic framework for utilizing RFID, a 
low-cost robot, and genetic programming to create foraging 
behavior. The low-cost RFID and Bluetooth equipped robot was 
introduced and discussed in some detail. Furthermore, we provide 
the favorable results from of our proof of concept experiment with 
a single BIObot, eight passive RFID tags, a four by eight foot 
environment, and evolution of a genetic program. Future work 
will investigate more complex foraging behaviors by leveraging 
fuzzy logic, neural networks, genetic algorithms, genetic 
programming, complex navigation, and possibly a multi-agent 
schema with several BIObots communicating over a wireless 
network.  
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