
Problem-Solving Benefits of
Down-Sampled Lexicase Selection

Thomas Helmuth*
Hamilton College
thelmuth@hamilton.edu

Lee Spector
Amherst College
Hampshire College
University of Massachusetts Amherst
lspector@amherst.edu

Keywords
Genetic programming, parent selection,
lexicase selection, down-sampled lexicase
selection, program synthesis

Abstract In genetic programming, an evolutionary method for
producing computer programs that solve specified computational
problems, parent selection is ordinarily based on aggregate measures
of performance across an entire training set. Lexicase selection, by
contrast, selects on the basis of performance on random sequences of
training cases; this has been shown to enhance problem-solving
power in many circumstances. Lexicase selection can also be seen as
better reflecting biological evolution, by modeling sequences of
challenges that organisms face over their lifetimes. Recent work
has demonstrated that the advantages of lexicase selection can be
amplified by down-sampling, meaning that only a random subsample
of the training cases is used each generation. This can be seen as
modeling the fact that individual organisms encounter only subsets of
the possible environments and that environments change over time.
Here we provide the most extensive benchmarking of down-sampled
lexicase selection to date, showing that its benefits hold up to
increased scrutiny. The reasons that down-sampling helps, however,
are not yet fully understood. Hypotheses include that down-sampling
allows for more generations to be processed with the same budget
of program evaluations; that the variation of training data across
generations acts as a changing environment, encouraging adaptation;
or that it reduces overfitting, leading to more general solutions. We
systematically evaluate these hypotheses, finding evidence against
all three, and instead draw the conclusion that down-sampled lexicase
selectionʼs main benefit stems from the fact that it allows the
evolutionary process to examine more individuals within the same
computational budget, even though each individual is examined
less completely.

1 Introduction

Genetic programming is an evolutionary method for producing computer programs that solve spec-
ified computational problems (Koza, 1992). When used as a supervised learning technique, genetic
programming defines a problemʼs specifications by a set of training cases. It then judges the ability of
evolved programs to solve the problem by running each program on each training case, and mea-
suring the distance between the programʼs output and the desired output. Genetic programming

* Corresponding author.

© 2021 Massachusetts Institute of Technology Artificial Life 27: 183–203 (2021) https://doi.org/10.1162/artl_a_00341

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

mailto:thelmuth@hamilton.edu
mailto:thelmuth@hamilton.edu
mailto:lspector@amherst.edu
mailto:lspector@amherst.edu

uses these error values during parent selection to determine which individuals in the population it selects
to reproduce, and how many children they will produce.

The interaction between a program and the training cases is analogous to the interaction between
a biological organism and the challenges presented by its environment. Organisms that are better
equipped to handle these challenges have better reproductive success, and in genetic programming
the programs that produce outputs closer to the desired outputs should produce more children.

Many parent selection methods have been developed for genetic programming, and they vary in
the ways that they model the interactions that biological organisms have with their environments. In
most, the performance of a program on all of the training cases is aggregated into a single value,
referred to as a fitness measure or total error, and the probability that a program will produce offspring is
partially or entirely determined by this aggregate value. Even multi-objective optimization methods,
which select on the basis of multiple objectives, generally nonetheless aggregate performance across
training cases into one objective (Deb et al., 2002; Kotanchek et al., 2006, 2008; Schmidt & Lipson,
2010a). Similarly, the recent development of quality diversity algorithms (Cully, 2019; Cully &Demiris,
2018) such as MAP-Elites (Mouret & Clune, 2015; Vassiliades et al., 2018) use aggregate fitness as part
of the basis for selection.

The aggregation of performance is akin to exposing all organisms to all challenges that they could
possibly face, and allowing those that perform best on average to produce more children. In biology,
by contrast, each organism may face different challenges, and it will produce offspring if it survives
the challenges that it happens to face before it has the opportunity to reproduce.

The lexicase parent selection method differs from most other parent selection methods in that it
avoids the aggregation of performance on different training cases into a single value (Helmuth et al.,
2015; Spector, 2012). Instead, it filters individuals by performance on training cases that are pre-
sented in different random orders for each parent selection event, with the result that different par-
ents will be selected on the basis of good performance on different sequences of training cases.
Additionally, children in the next generation will face different randomly shuffled cases than their
parents did. For these reasons, lexicase selection can be thought of as more faithfully modeling in-
teractions between biological organisms and their environments.

Hernandez et al. (2019) recently proposed two methods for subsampling the training set each
generation when using lexicase selection, which were further studied by Ferguson et al. (2019).
Down-sampled lexicase selection uses a different random subsample of cases for each generation. Cohort
lexicase selection groups individuals into cohorts and exposes each cohort to a different random sub-
sample of the training cases. Both methods effectively change the environment from generation to
generation by exposing individuals to different training cases. Crucially, both methods reduce the
amount of computational effort required to evaluate each individual, since they run each program
only on a subsample of the training cases. These computational savings can be recouped by evalu-
ating more individuals throughout evolution. Results from Hernandez et al. (2019) and Ferguson
et al. (2019) indicate that both of these methods improve problem-solving performance compared
to standard lexicase selection.

In this article we concentrate on down-sampled lexicase selection, as it is simpler in concept and
implementation, and both Hernandez et al. (2019) and Ferguson et al. (2019) found its benefits to be
comparable to cohort lexicase selection. We first conduct a more expansive benchmarking of down-
sampled lexicase selection than has been conducted previously, using more benchmark problems
and subsample sizes. These results confirm earlier findings that down-sampled lexicase selection
produces substantial improvements over lexicase selection and that it is robust to a range of sub-
sample sizes.

We then turn to developing a better understanding of why down-sampled lexicase selection per-
forms so well. One hypothesis put forward by Ferguson et al. (2019) is that down-sampled lexicase
selectionʼs success hinges on it enabling deeper evolutionary searches for more generations given the
same computational effort. We compare this hypothesis to the hypothesis that simply evaluating
more individuals in the search space is more important than deeper evolution specifically. We conduct
experiments using increased maximum generations and increased population sizes (with non-increased

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

184 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

generations) and find that they perform commensurately, indicating that deeper evolutionary lineages
are not crucial to down-sampled lexicase selectionʼs success.

We then examine the idea that by randomly down-sampling, we change the environment encoun-
tered by individuals each generation. In biology, many theorists believe that changing environments
play an important role in evolutionary adaptation and speciation (Levins, 1968). We hypothesize that
changing the training cases on which down-sampled lexicase selection evaluates individuals each
generation contributes to the evolvability of the system, resulting in improved performance. We test
this hypothesis with an experiment that mimics down-sampled lexicase selection, except that it uses
different training cases in every selection, meaning that every training case gains exposure each gen-
eration. The results of this experiment provide evidence against our hypothesis that changing envi-
ronments are important for down-sampled lexicase selection.

One area where down-sampling (without lexicase selection) has proven useful is in avoiding over-
fitting and improving generalization, both in genetic programming (GP) and in machine learning more
generally. We explore the hypothesis that down-sampled lexicase selectionʼs improved performance is
driven by better generalization, and find that it does not hold up to the results of our experiments.

This article extends a preliminary report that was presented at the 2020 Artificial Life conference
(Helmuth & Spector, 2020). Aside from general improvements to the clarity and completeness of
the presentation in the conference paper, this article covers experiments involving more subsampling
levels and more benchmark problems, with both of these extensions producing significant new re-
sults. One key area we explore is in using extremely small subsampled sets of training cases, resulting
in surprisingly good performance with some notable drawbacks.

Our presentation below continues as follows: We first discuss lexicase selection and subsampling
of training cases in more detail. Once we have covered these fundamental algorithms, we describe
our experimental methods and present our benchmark results. We then address each of the above-
described hypotheses in turn, and conclude with our interpretation of the results and suggestions for
future work.

2 Related Work

Unlike many evolutionary computation parent selection methods, lexicase selection does not aggre-
gate the performance of an individual into a single fitness value (Helmuth et al., 2015). Instead, it
considers each training case separately, never conflating the results on different cases. We give pseu-
docode for the lexicase selection algorithm in Algorithm 1. After randomly shuffling the training
cases, lexicase selection goes through them one by one, removing any individuals that do not give
the best performance on each case until either a single individual or a single case remains. Lexicase
selection has produced better performance than other parent selection methods in a variety of evo-
lutionary computation systems and problem domains (Aenugu & Spector, 2019; Forstenlechner
et al., 2017; Helmuth et al., 2015; Helmuth & Spector, 2015; La Cava et al., 2019; Liskowski
et al., 2015; Oksanen & Hu, 2017; Orzechowski et al., 2018; Metevier et al., 2019; Moore &
Stanton, 2017, 2018, 2019, 2020).

Hernandez et al. (2019) introduced down-sampled lexicase selection, a variant of lexicase selec-
tion that was developed further by Ferguson et al. (2019). Down-sampled lexicase selection aims to
reduce the number of program executions used to evaluate each individual by only running each
program on a random subsample of the overall set of training cases, which are resampled each gen-
eration. This method reduces the per-individual computational effort, which can either be saved for
decreased runtimes, or can be allocated in other ways, such as increases in population size or max-
imum number of generations. In order to compare with methods that do not subsample the training
cases, we take the latter approach, always comparing methods equitably by limiting their total pro-
gram executions per GP run.

Others have used subsampling of training data inGP for reducing computation per individual or for
improving generalization. To our knowledge, the only other work that has combined subsampling with

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 185

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

lexicase selection besides Hernandez et al. (2019) and Ferguson et al. (2019) is in evolutionary robotics,
where subsampling is necessary for improving runtimes because of slow simulation speeds, though this
research did not include comparisons with non-subsampled methods (Moore & Stanton, 2017, 2018).
Outside of lexicase selection, subsampling has been used largely to reduce the computational load of
evaluating each individual, especially when considering large datasets (Curry & Heywood, 2004;
Gathercole & Ross, 1994; Hmida et al., 2016; Martinez et al., 2017; Zhang & Joung, 1999). Others
have proposed subsampling as a technique to reduce overfitting and improve generalization (Goncalves
& Silva, 2013;Martinez et al., 2017; Schmidt & Lipson, 2006, 2008, 2010b). Additionally, subsampling
data is common in machine learning for similar reasons (often referred to as mini-batches), as in
stochastic gradient descent for improving generalization (Kleinberg et al., 2018).

The work we present here, along with that of Hernandez et al. (2019), Ferguson et al. (2019), and
Moore and Stanton (2017), is novel in its application of subsampling when using lexicase selection,
as well as applying subsampling to an already relatively small set of training data. To the latter point,
many previous applications of subsampling aim to subsample a large set of example data (thousands
or millions of cases) to a manageable size, say hundreds of cases. In our case, we start with a set of
about 100 to 200 cases, and subsample to a set of 50 or less. When using a small set of n training
cases, lexicase selection can select parents with at most n! different error vectors, since this is the
number of different shufflings of cases. When n is as small as 4 or 5, this limits selection to a small
portion of the population, and often even less in practice. Lexicase selection typically requires 8 to
10 cases minimum to produce performance benefits, though others have successfully used it with as
few as 4 cases (Moore & Stanton, 2017). With this in mind, it is not self-evident whether or not
lexicase selection can maintain empirical benefits such as increased population diversity and problem-
solving performance with such few cases.

3 Experimental Methods

To explore the effects of down-sampled lexicase selection, we use benchmark problems from the
domain of automatic program synthesis, which previous studies of down-sampled lexicase selection
have used (Ferguson et al., 2019; Hernandez et al., 2019). In particular, we use problems from the
General Program Synthesis Benchmark Suite (Helmuth & Spector, 2015), which require solution
programs to manipulate a variety of data types and control flow structures. These problems originate
from introductory computer science textbooks, allowing us to test the ability of evolution to

Algorithm 1. Lexicase selection (to select a parent)

Inputs: candidates, the entire population;
cases, a list of training cases

Shuffle cases into a random order
loop

Set first be the first case in cases
Set best be the best performance of any individual in candidates on the first training case
Set candidates to be the subset of candidates that have exactly best performance on first
if |candidates| = 1 then
Return the only individual in candidates

end if
if |cases| = 1 then
Return a randomly selected individual from candidates

end if
Remove the first case from cases

end loop

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

186 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

perform the same types of programming we expect humans to perform. We use a core set of 12
problems with a range of difficulties and requirements for many of our experiments, and expand that
set to 26 problems (all of the problems from the suite that have been solved by at least one program
synthesis system) for one experiment. We additionally compare down-sampled lexicase selection to
standard lexicase selection on the 25 problems of PSB2, the second iteration of general program
synthesis benchmark problems (Helmuth & Kelly, 2021).1

As in Helmuth and Spector (2015), we define each problemʼs specifications as a set of input/output
examples, so that GP has no knowledge of the underlying problems besides these examples.2 For each
problem we use a small set of training cases to evaluate each individual: between 25 and 300 cases per
run (see Table 1) and 200 cases for every problem in PSB2. We use a larger set of unseen test cases,
which are used to determine whether an evolved program that passes all of the training cases gen-
eralizes to unseen data. Before testing a potential solution for generalization, we use an automatic
simplification procedure that has been shown to improve generalization (Helmuth et al., 2017); find-
ing a simplified program that passes all of the unseen test cases is considered a successful GP run.
We test the significance of differences in numbers of successes between sets of runs using a chi-square
test with a 0.05 significance level, using Holmʼs correction for multiple comparisons whenever there
are more than two methods run on a single problem in one experiment.

When a run using down-sampled lexicase selection finds a program that passes all of the sub-
sampled training cases, we do not immediately terminate the run. Instead, we run the program on
the full training set (using it as a validation set) and terminate the run if the program passes all of
those cases. If it does not, we continue to the next generation, as the individual (or its children) may
not pass some of the cases in the newly subsampled set of cases. As we will detail in Section 4.2,
with an extremely low subsampling level that leaves the subsampled training set with 1 or 2 cases, it
is easier for GP to generate individuals that perfectly pass those cases without passing the full train-
ing set; with enough of these individuals, the process of verifying that they pass the full training set
may dominate the running time of evolution. Note that if only a single individual passes all cases in
the subsampled training set but evolution continues, it will receive every single parent selection in

1 More information can be found at the benchmark suiteʼs website: https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html.
2 Datasets for these problems can be found at https://git.io/fjPeh.

Table 1. Full training set size and program execution limit for each problem.

Problems
Training
set size Executions

Number IO 25 7,500,000

Sum Of Squares 50 15,000,000

Compare String Lengths, Digits, Double Letters, Even Squares, For Loop Index,
Median, Mirror Image, Replace Space With Newline, Smallest, Small Or Large,
String Lengths Backwards, Syllables

100 30,000,000

Last Index of Zero, Vectors Summed, X-Word Lines 150 45,000,000

Count Odds, Grade, Negative To Zero, Pig Latin, Scrabble Score, String Differences,
Super Anagrams

200 60,000,000

Vector Average 250 75,000,000

Checksum 300 90,000,000

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 187

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://git.io/fjPeh
https://git.io/fjPeh
https://git.io/fjPeh
https://git.io/fjPeh
https://git.io/fjPeh

that generation. These hyperselection events (Helmuth et al., 2016) may have strong effects on popula-
tion diversity, a potential avenue for future study.

We evolve programs with the PushGP genetic programming system, which uses programs rep-
resented in the Push programming language (Spector et al., 2005; Spector & Robinson, 2002). Push
was designed with GP in mind, in particular to enable autoconstruction, in which evolving programs not
only need to try to solve a problem, but are also run to produce their children (Spector & Robinson,
2002; Spector et al., 2016). Push programs utilize a handful of typed stacks, from which instructions
pop their arguments and to which instructions push their results. Push programs can be any hier-
archically nested list of instructions and literals, the latter of which the interpreter pushes onto the
relevant stack. We use the Clojush, the Clojure implementation of PushGP, for our experiments.3

We present the PushGP system parameters used in our experiments in Table 2. Our only genetic
operator, uniform mutation with additions and deletions (UMAD), adds random genes before each
gene in a parentʼs genome at the UMAD addition rate, and then deletes random genes at a rate to
remain size-neutral on average. We use UMAD to produce 100% of the children, instead of also
using a crossover operator, since thus far it has produced the best results of any operator tested on
these problems (Helmuth et al., 2018).

Each problem in the benchmark suite prescribes a number of training cases to use (Helmuth &
Spector, 2015). In our default configuration, we run every individual on every training case, meaning
the total number of program executions allowed in one GP run is the number of training cases
multiplied by the population size and generations. Since our down-sampled lexicase selection exper-
iments use fewer cases to evaluate each individual, we limit our GP runs by a program execution
limit, as given in Table 1, to ensure that each method receives equal training time.

4 Benchmarking Down-Sampled Lexicase Selection

In the work introducing down-sampled lexicase selection, experiments benchmarked down-sampled
lexicase selection with subsampling levels of 0.05, 0.1, 0.25, and 0.5 on five program synthesis problems
(Ferguson et al., 2019; Hernandez et al., 2019). We expand on those benchmarks by testing three
additional subsampling levels, 0.01, 0.02, and 0.175, with the first two explicitly trying to gauge
how low the subsampling rate can get before having deleterious effects. Our experiments increase
the number of benchmark problems to 12, and additionally test the subsampling level of 0.25 on 39
other program synthesis benchmark problems to broaden our assessment. As described above, our
experiments use PushGP, showing that the benefits of down-sampling generalize beyond the linear
GP system used in the initial experiments (Ferguson et al., 2019; Hernandez et al., 2019).

3 https://github.com/lspector/Clojush

Table 2. PushGP system parameters.

Parameter Value

population size 1,000

max generations for runs using full training set 300

genetic operator UMAD

UMAD addition rate 0.09

Note. UMAD = uniform mutation with additions and deletions.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

188 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://github.com/lspector/Clojush
https://github.com/lspector/Clojush
https://github.com/lspector/Clojush
https://github.com/lspector/Clojush
https://github.com/lspector/Clojush
https://github.com/lspector/Clojush

4.1 Subsampling Levels
Table 3 presents the success rates for down-sampled lexicase selection using seven different sub-
sampling levels across twelve representative benchmark problems, along with the mean number of
successes. The last column of 1.0 performs no down-sampling, and therefore represents standard
lexicase selection. For these runs, we proportionally increase the maximum number of generations
that evolution can run to keep a constant number of program executions; for example, while stan-
dard lexicase selection runs for at most 300 generations, the runs with a subsampling level of 0.02
run for at most 1

0:02 = 50 times as many, at 15,000 generations. For each problem, we calculate the
rank of each subsampling level, and average those to calculate the mean rank, where lower values are
better. Six sets of runs (five at the subsampling level of 0.01 and one at level 0.02) were not able to
complete in a reasonable amount of time, as discussed in section 4.2.

The subsampling level of 0.02 performed the best on average, propelled by its significantly better
results on the difficult Double Letters and Last Index of Zero problems. However, every subsampling
level performed well, and all considerably better than standard lexicase (i.e., the subsampling level of

Table 3. Number of successes out of 100 GP runs of down-sampled lexicase selection with proportional increases in
maximum generations per run across seven different subsampling levels, as well as 1.0, which is equivalent to standard
lexicase selection.

Problem

Subsampling level

0.01 0.02 0.05 0.1 0.175 0.25 0.5 1.0

CSL 0/4 48/97 38 25 60 51 40 32

Double Letters 5/42 85 87 72 55 50 29 19

LIOZ 94 90 72 68 61 65 63 62

Mirror Image 100 100 100 99 99 99 100 100

Negative To Zero 96 84 84 86 86 82 78 80

RSWN 100 100 99 96 97 100 93 87

Scrabble Score 1/98 7 18 19 24 31 28 13

Smallest 100 100 100 99 100 98 100 100

SLB 100 100 99 96 96 95 94 94

Syllables 11/60 47 48 61 68 64 54 38

Vector Average 100 100 100 98 99 97 95 88

X-Word Lines 25/60 96 98 95 94 91 86 61

Mean 61.0 79.8 78.6 76.2 78.3 76.9 71.7 64.5

Mean Rank 4.8 3.2 3.4 4.2 3.7 4.0 5.8 7.1

Note. Mean Rank calculates the average rank of each method among all methods across the problems, excluding Mirror
Image and Smallest, easy problems where results differ only in random changes in solution generalization. For six sets of
runs at subsampling levels 0.01 and 0.02, we were not able to finish all 100 runs, as described in section 4.2; the number
of finished runs is given after the /.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 189

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

1.0). The level of 0.5 performed worst of the subsampling levels, likely because it only runs for twice
as many generations as standard lexicase selection, whereas the other subsampling levels run longer.

It is surprising that the subsampling level of 0.02 performed best, as it only uses 2 training cases
per generation for seven of the problems, significantly limiting the information contained in the
errors on which lexicase selection bases selection. In fact, with only 2 training cases, lexicase selec-
tion can only select individuals with 2 different error vectors corresponding to the 2 possible order-
ings of the cases! Even so, this extreme constraint on selection introduced by down-sampling seems
to be largely outweighed by increasing the maximum number of generations manyfold.

Even though a subsampling level of 0.02 performed best, subsampling levels 0.02, 0.05, 0.1,
0.175, and 0.25 performed nearly identically, showing that down-sampled lexicase selection is robust
to a wide variety of subsampling levels across an order of magnitude.

4.2 Lower Bounds of Subsampling Level
Since down-sampled lexicase selection performs well at quite low levels of subsampling, are there
any drawbacks? Is there a lower bound to the benefits of subsampling?

First, we will examine the results on our lowest subsampling level, 0.01. We see that it performed
excellently on 7 out of 12 problems, including 4 where it operated on a single training case (Mirror
Image, Replace Space with Newline, String Lengths Backwards, and Smallest) and 3 others with only
2 or 3 cases. These results include producing the absolute best results on 2 problems, Last Index of
Zero and Negative To Zero. However, it gave polarized performance, producing the worst results
on the remaining 5 problems. For 2 of these problems (Scrabble Score and Syllables), there is a clear
trend toward worse performance with the lowest subsampling levels, but for the other 3, down-
sampled lexicase selection performs well even at the 0.02 subsampling level. We interpret these
findings to suggest that, at least for some problems, 1 to 3 cases is not sufficient information to
drive evolution toward solutions, likely resulting in either catastrophic lack of diversity, thrashing of
the population between trying to solve different cases, or other detriments.

Beyond the problem-solving performance considerations, using extremely low subsampling levels
results in other unwanted behaviors of the GP system. Typically in GP, we consider the program
executions to be the time limiting factor of running GP, and therefore tune our experiments to use
the same number of program executions regardless of down-sampling. However, as we proportion-
ally increase the number of maximum generations to make up for fewer program executions per
generation, the remaining components of the GP system (such as genetic operators and data log-
ging) take up a larger proportion of the running time in practice. Additionally, if we run evolution for
many generations (for example, 100 times as many with the subsampling level of 0.01), we will re-
quire that many times more hard drive space to log data from runs. Similar issues exist with reserving
sufficient RAM when increasing the population size instead of the maximum generations.

In Table 3, six of our sets of runs at low subsampling levels were not able to finish all 100 runs in
a reasonable amount of time and were cutoff before finishing. Some of the extreme length of these
runs is likely attributable to the effects discussed in the previous paragraph. However, a subtler and
potentially more harmful effect is at play as well. As described in section 3, when GP finds a pro-
gram that passes all of the subsampled training cases, we must test it on the remaining training cases
before calling it a potential solution and halting evolution; if it does not pass all training cases, evo-
lution continues. With extremely small subsampled sets, it becomes easier for evolution to find
(many) individuals that pass all of the subsampled data, requiring us to fully evaluate those individ-
uals, which many times do not pass the full training set. This problem is compounded for problems
that have Boolean outputs (such as Compare String Lengths), since even if the entire population
chooses between True and False randomly, if there is only one case in the subsampled set, half of
the population will answer that case correctly and need to be evaluated on every training case every
generation, negating the benefits of quick evaluation per generation. This certainly impacted the low
number of finished runs of the Compare String Lengths problem at the 0.01 subsampling level, and
likely contributed to unfinished runs on other problems at that level.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

190 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

With these drawbacks in mind, we see subsampling levels between 0.05 and 0.25 producing good
compromises between problem-solving performance and real running times. In the following sec-
tion, we benchmark down-sampled lexicase selection using a subsampling level of 0.25, though we
expect the results would look similar at a variety of subsampling levels.

4.3 Expanding Benchmarking of Down-Sampled Lexicase Selection to
More Problems
After extensively testing a variety of subsampling levels on 12 benchmark problems, we want to
exhibit its performance on a larger set of benchmark problems. We only had the computational
resources to test one subsampling level on this larger set of problems, and chose 0.25. While the
subsampling level of 0.25 did not produce the best results in Table 3, it performed almost as well as
any level, and was less computationally demanding than much lower subsampling levels for the rea-
sons discussed in section 4.2.

Table 4 compares standard lexicase selection (i.e., the 1.0 column in Table 3) to down-sampled
lexicase selection with a subsampling level of 0.25 on 26 benchmark problems from Helmuth and
Spector (2015), including the 12 from Table 3. Down-sampled lexicase selection produced signifi-
cantly more successful runs than lexicase selection on 9 out of the 26 problems. It additionally found
solutions to 3 of the problems that lexicase selection never solved, and had fewer successes on only
2 of the problems, neither of which were significantly different.

Table 5 continues the comparison from Table 4 on 25 new problems from PSB2 (Helmuth &
Kelly, 2021). These problems were designed to be a step more difficult than those from Helmuth
and Spector (2015), and show lower success rates for both standard lexicase selection and down-
sampled lexicase selection. However, down-sampled lexicase selection continues to clearly outper-
form standard lexicase selection, solving 4 problems that standard lexicase never solved, and
performing significantly better on 8 problems. In fact, down-sampled lexicase never produced fewer
solutions than standard lexicase on any of the 25 problems. This expanded benchmarking confirms
previous findings that down-sampled lexicase selection creates great improvements in performance
compared to lexicase selection.

4.4 Comparison With Static Subsample of Cases
One question raised by Ferguson et al. (2019) is whether down-sampled lexicase selectionʼs method
of randomly replacing the subsampled training cases each generation is beneficial, or if a static sub-
sample of training cases would be just as good. To examine this question, we performed a set of runs
that uses lexicase selection with a static, randomly subsampled set of 10 training cases that do not
change during evolution; this uses an increased number of maximum generations as with down-
sampled lexicase selection. Since each problem uses a different number of training cases (100 or 200
for most benchmark problems), this is not equal in number to any one subsampling level, but is often
equal to a subsampling level of 0.1 or 0.05. We compare down-sampled lexicase selection with the
subsampling level of 0.1 to lexicase selection using a static set of 10 cases in Table 6. Down-sampled
lexicase performed significantly better on 11 of the 12 problems tested. This gives strong evidence
for the importance of randomly changing the subsample each generation, which was the conclusion
also found by Ferguson et al. (2019).

5 Hypotheses for Down-Sampled Lexicase Selectionʼs Performance

All of our results point to the considerable benefits of down-sampled lexicase selection compared to
standard lexicase selection. Additional evidence comes from a recent benchmarking of parent selec-
tion techniques for program synthesis, which found down-sampled lexicase selection to perform
best out of a field of 21 parent selection techniques (Helmuth & Abdelhady, 2020). We therefore
turn to the question of what makes down-sampled lexicase selection better than other parent selec-
tion methods. In this section, we present three distinct hypotheses examining the origins of the

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 191

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

Table 4. Number of successful runs comparing lexicase selection to down-
sampled lexicase selection with a subsampling level of 0.25 on 26 benchmark
problems.

Problem Down-sampled Lexicase

Checksum 18 1

CSL 51 32

Count Odds 11 8

Digits 28 19

Double Letters 50 19

Even Squares 2 0

For Loop Index 5 2

Grade 2 0

Last Index of Zero 65 62

Median 69 55

Mirror Image 99 100

Negative To Zero 82 80

Number IO 99 98

Pig Latin 0 0

RSWN 100 87

Scrabble Score 31 13

Small Or Large 22 7

Smallest 98 100

String Differences 1 0

SLB 95 94

Sum of Squares 25 21

Super Anagrams 4 4

Syllables 64 38

Vector Average 97 88

Vectors Summed 21 11

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

192 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

Table 4. (continued)

Problem Down-sampled Lexicase

X-Word Lines 91 61

Problems Solved 25 22

Note. Underlined values indicate significant improvement of down-sampled
lexicase over lexicase using a chi-square test. Lexicase was never significantly
better than down-sampled lexicase. Problems Solved counts the number of
problems each method solved at least once.

Table 5. Number of successful runs comparing lexicase selection to down-
sampled lexicase selection with a subsampling level of 0.25 on the 25 new
benchmark problems of PSB2.

Problem Down-sampled Lexicase

Basement 2 1

Bouncing Balls 3 0

Bowling 0 0

Camel Case 4 1

Coin Sums 39 2

Cut Vector 0 0

Dice Game 1 0

Find Pair 20 4

Fizz Buzz 74 25

Fuel Cost 67 50

GCD 20 8

Indices of Substring 4 0

Leaders 0 0

Luhn 0 0

Mastermind 0 0

Middle Character 79 57

Paired Digits 17 8

Shopping List 0 0

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 193

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

Table 5. (continued)

Problem Down-sampled Lexicase

Snow Day 7 4

Solve Boolean 5 5

Spin Words 0 0

Square Digits 2 0

Substitution Cipher 86 61

Twitter 52 31

Vector Distance 0 0

Problems Solved 17 13

Note. Underlined values indicate significant improvement of down-sampled
lexicase over lexicase using a chi-square test. Lexicase was never significantly
better than down-sampled lexicase. Problems Solved counts the number of
problems each method solved at least once.

Table 6. Number of successful runs comparing down-sampled lexicase at a
0.1 subsampling level (DS 0.1) to using lexicase selection with a static set of
10 random training cases, which do not change during evolution.

Problem DS 0.1 Static

Compare String Lengths 25 0

Double Letters 72 4

Last Index of Zero 68 7

Mirror Image 99 13

Negative To Zero 86 31

Replace Space with Newline 96 57

Scrabble Score 19 13

Smallest 99 40

String Lengths Backwards 96 35

Syllables 61 9

Vector Average 98 71

X-Word Lines 95 35

Note. Underlined successes are significantly better using a chi-square test.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

194 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

benefits bestowed by down-sampled lexicase selection, and conduct experiments to provide evi-
dence for or against these hypotheses.

5.1 Hypothesis: Depth of Search
It seems clear that a primary (and possibly the only) benefit of down-sampled lexicase selection is
that it allows GP to consider more individuals (i.e., points in the search space) within the same
budget of program executions. Ferguson et al. (2019, p. 3) argue in particular that “deeper evolu-
tionary searches” (i.e., having a larger maximum number of generations, leading to longer lineages of
evolution) is responsible for improvements in performance—we call this the generations hypothesis. We
present a competing hypothesis, the search space hypothesis, that down-sampled lexicase selectionʼs bet-
ter performance is simply due to evaluating a larger number of individuals, but not related to the
depth of the search.

To test these hypotheses, we devised an experiment in which we use down-sampled lexicase
selection, but instead of increasing the maximum number of generations per run, we increase the
population size while maintaining a fixed number of program executions. For example, with a sub-
sampling level of 0.25, we will increase the population size by 4 times, from 1,000 to 4,000. This
experiment has GP evaluate the same number of points in the search space as using increased max-
imum generations, but will not allow for longer evolutionary lineages than standard lexicase selec-
tion, as each run is limited to 300 generations. We tested three representative subsampling levels for
increased population size, and compared them to the equivalent subsampling levels with increased
maximum generations, using the same data as in Table 3.

We present results using down-sampled lexicase selection with increased population sizes in
Table 7. We compare results at the same subsampling level between increased generations and in-
creased population sizes. Out of the 36 comparisons, 2 sets of runs were significantly better with
increased population, and 4 were significantly worse. The mean success rates across problems are
comparable to those with increased generations. We additionally present the average ranking of 6
down-sampled lexicase selection methods (3 that increase population size and 3 that increase max-
imum generations) across 10 of the problems, excluding the easy problems Mirror Image and Smal-
lest, for which differences only reflect minor differences in generalization rate. The average ranks are
all quite close to the overall average rank of 3.5, with increased population having a slightly better
average rank across the three subsampling levels, 3.3 versus 3.8.

We take these results as evidence against the generations hypothesis, in that increasing population
size while fixing the maximum number of generations produces very similar performance to increas-
ing generations. These results give credence to the search space hypothesis, that we only need to
have down-sampled lexicase selection increase the number of individuals we evaluate during evolu-
tion, whether that increase comes from increases in population size or more generations. While these
conclusions reflect the general results, there are some interesting problem-specific trends to note in
Table 7. Increasing generations produced significantly better results on the Last Index of Zero prob-
lem at all three subsampling levels, and the inverse was true on Scrabble Score for two of the three
subsampling levels. Keeping this in mind, we recommend utilizing the bonus program evaluations
allowed by down-sampling on increasing the maximum generations or population size, as both lead
to similarly good performance; the choice between the two may come down to other factors within
the GP system or to a particular problem.

5.2 Hypothesis: Changing Environment
One interesting aspect of down-sampled lexicase selection is that it changes the set of subsampled
training cases every generation. If we think of the set of training cases as the challenges encountered
by each individual, this corresponds to an environment that changes over time, requiring the evolving
population to adapt to new circumstances (i.e., cases). In contrast, with a fixed set of training cases,
lexicase selection provides a static environment, though one in which individuals encounter challenges

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 195

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

in a different order for each selection. Changing environments often have interesting effects on
evolutionary dynamics (Levins, 1968), and empirical studies of evolving populations of Saccharomyces
cerevisiae yeast (Boyer et al., 2021), logic functions (Kashtan et al., 2007), and digital organisms (Canino-
Koning et al., 2019; Nahum et al., 2017) have demonstrated that the speed and effectiveness of adap-
tive evolution can be affected, and in some cases enhanced, by environmental variation. This led us to
ask whether environmental variation might be responsible for the benefits of down-sampled lexicase
selection. Here we explore the hypothesis that down-sampled lexicase selection changes the evolution-
ary dynamics in a positive way beyond increasing the number of individuals that are evaluated.

To test this hypothesis, we designed an experiment that uses a static set of training cases, as with
lexicase selection, but has each selection use only a subsample of those cases, as with down-sampled
lexicase selection. In particular, we use truncated lexicase selection, which evaluates every individual on
every training case each generation, but cuts off each lexicase selection after using a fixed number of
cases (Spector et al., 2017). In our experiment, we compared down-sampled lexicase selection at the
0.1 subsampling level with truncated lexicase selection also using only 10% of the cases for each
selection. The main difference between the two is that across all selections, truncated lexicase

Table 7. Number of successes out of 100 GP runs of down-sampled lexicase selection at three different subsampling
levels.

Problem

Population Generations

0.05 0.1 0.25 0.05 0.1 0.25

Compare String Lengths 48 32 42 38 25 51

Double Letters 53 42 35 87 72 50

Last Index of Zero 76 72 77 72 68 65

Mirror Image 100 100 100 100 99 99

Negative To Zero 86 86 91 84 86 82

Replace Space with Newline 99 100 95 99 96 100

Scrabble Score 18 50 64 18 19 31

Smallest 99 100 100 100 99 98

String Lengths Backwards 100 100 98 99 96 95

Syllables 24 55 76 48 61 64

Vector Average 100 93 99 100 98 97

X-Word Lines 94 96 84 98 95 91

Mean 74.7 77.2 80.1 78.6 76.2 76.9

Mean Rank 3.2 3.4 3.2 3.3 4.0 4.0

Note. This compares increasing population size to increasing maximum generations, with the latter being identical to the
data in Table 3. Underlined results are significantly better than the corresponding results at the same subsampling level
using a chi-square test. Mean Rank gives the average rank of each of the six treatments, so that ranks vary from 1 to 6.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

196 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

selection uses every training case each generation, where down-sampled lexicase selection uses the
same subsample for every selection.4

In our experiment, we ran both down-sampled lexicase and truncated lexicase selections for
3,000 generations. As truncated lexicase selection requires every individual to be evaluated on every
training case each generation, this is not a fair comparison in terms of total program executions, but
it is not meant to be. If the changing environments hypothesis holds, then down-sampled lexicase se-
lection should produce better results than truncated lexicase selection, since its environment changes
each generation whereas truncated lexicase selectionʼs does not. We chose three problems for which
down-sampled lexicase selection performed much better than standard lexicase selection over 300
generations, ensuring there is a possibility of performing worse than down-sampled lexicase selection.

Table 8 presents the number of successful runs of down-sampled lexicase selection and truncated
lexicase selection with a maximum of 3,000 generations. Over these three problems, truncated lexi-
case selection performed significantly better than down-sampled lexicase selection on the Scrabble
Score problem, and very similarly on the other two problems. So, not only was down-sampled lexi-
case selection not better, it was a bit worse. This gives some evidence against the hypothesis that the
changing environment of down-sampled lexicase selection contributes to its success, though we ad-
mit that there may be other beneficial evolutionary dynamics at play not captured by this experiment.
We also want to emphasize that this experiment does not suggest that truncated lexicase selection
should be preferred over down-sampled lexicase selection, or even standard lexicase selection for
that matter; truncated lexicase selection used 10 times as many program executions in these runs as
down-sampled lexicase selection, meaning they are not being compared on a level playing field.

5.3 Hypothesis: Better Generalization
As discussed in section 2 above, down-sampling has been used (without lexicase selection) in both
GP and machine learning more broadly as a method to combat overfitting and increase the gener-
alization of solutions. There is plenty of room for improvement in generalization on some of our
benchmark problems, with 6 problems having generalization rates below 0.7 when using lexicase
selection. Does down-sampling improve generalization when using lexicase selection?

All of our successful run counts above only include generalizing solutions that pass a large set of
random, unseen test cases. We look at the proportion of solution programs that pass the training set
that also pass the test set to calculate the generalization rate for each set of runs. For the extended set
of 26 benchmark problems presented in Table 4, we present the generalization rate for each problem
in Table 9. Even though there are some minor differences in generalization between lexicase and
down-sampled lexicase selections, none of them are significantly different using a chi-square test.
Problems that appear to have a large gap between the two, such as For Loop Index and Super
Anagrams, do not have enough solutions to show significance.

Table 8. Number of successes out of 100 GP runs of down-sampled lexicase
and truncated lexicase selections, both at the 0.1 level, and both over 3,000
generations.

Problem Down-sampled Truncated

Double Letters 72 69

Scrabble Score 19 90

Vector Average 98 100

Note. Underlined results are significantly better using a chi-square test.

4 Ferguson et al. (2019) also conduct an experiment comparing truncated lexicase selection to down-sampled lexicase selection, but to
address a different question; we see no contradiction between their results and the ones we present here.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 197

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

Table 9. Comparing generalization rates of lexicase selection and down-
sampled lexicase selection with a subsampling level of 0.25.

Problem Down-sampled Lexicase

Checksum 1.00 1.00

CSL 0.61 0.49

Count Odds 1.00 1.00

Digits 0.60 0.66

Double Letters 0.98 0.95

Even Squares 1.00 −

For Loop Index 1.00 0.67

Grade 1.00 −

Last Index of Zero 0.66 0.67

Median 0.69 0.57

Mirror Image 0.99 1.00

Negative To Zero 0.83 0.84

Number IO 0.99 0.98

Pig Latin − −

RSWN 1.00 1.00

Scrabble Score 1.00 0.93

Small Or Large 0.42 0.32

Smallest 0.98 1.00

String Differences 1.00 −

SLB 1.00 1.00

Sum of Squares 1.00 1.00

Super Anagrams 1.00 0.80

Syllables 0.96 0.97

Vector Average 1.00 1.00

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

198 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

At this point we have no evidence to suggest that down-sampling improves lexicase selectionʼs
generalization rate. In fact, down-sampled lexicase selection displays poor generalization on many of
the same problems that lexicase selection does. Thus we cannot attribute the improved performance
of down-sampled lexicase selection to avoiding overfitting and improving generalization.

6 Conclusions

In this article we shed additional light on the performance and mechanisms of down-sampled lexicase
selection.We conductedmore extensive benchmarking of down-sampled lexicase selection than has been
previously done, and found that it performs well across a large range of benchmark problems and sub-
sampling levels. We described some of the drawbacks of using very low subsampling levels, despite their
ability to produce competitive problem-solving performance. We found that it is important to change
training cases every generation within a larger set of training cases, as a subsampling method that uses
a static set of cases throughout evolution performed much worse than down-sampled lexicase selection.

We then considered the hypothesis that down-sampled lexicase selection performs well because
of its ability to search for more generations, leading to deeper evolutionary lineages. Our experiment
that makes use of down-sampled lexicase selectionʼs extra program executions to increase the pop-
ulation size rather than extending evolutionary time provides evidence against this hypothesis, since
approximately the same benefit is obtained with larger populations as with more generations. We
also examined the hypothesis that down-sampled lexicase selectionʼs changing of training cases every
generation acts like an environment changing over evolutionary time, contributing to its success.
Our experiment using truncated lexicase selection provides evidence against this hypothesis, though
other environmental effects could be at play. A third experiment showed that down-sampled lexicase
selection does not produce better generalization rates of solution programs compared to lexicase
selection, despite this being a benefit of down-sampling in other machine learning systems. These
experiments lead us to believe that the primary cause of down-sampled lexicase selectionʼs success is
that it allows evolution to consider more programs throughout evolution.

This work and that of Ferguson et al. (2019) and Hernandez et al. (2019) use problems from the
same general program synthesis benchmark suite. We would certainly like to see similar experiments
performed in other problem domains, where training set subsampling has been used previously but
not to our knowledge in conjunction with lexicase selection.

This research points to the importance of maximizing the number of points in the search space (i.e.,
individuals) that GP considers throughout evolution. In this article we pushed the abilities of down-
sampled lexicase selection to increase the number of individuals considered to the extreme, and found
that at the 0.01 and 0.02 subsampling levels, problem-solving performance remains surprisingly good,
while actual processor performance diminishes. We would be interested to see what effects such low
subsampling levels have on population dynamics such as diversity, considering that they allow lexicase
to select only a tiny fraction of the individuals in the population.

Other methods that increase the number of individuals considered by GP without sacrificing
information about individualsʼ performances (or even ones that do sacrifice some information, as in
down-sampled lexicase selection) could provide additional benefits. Exploring this avenue illuminated

Table 9. (continued)

Problem Down-sampled Lexicase

Vectors Summed 0.95 0.92

X-Word Lines 0.98 1.00

Note. These generalization rates are for the success rates in Table 4. None of
the differences in generalization were significant.

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 199

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

by down-sampled lexicase selection may yield other techniques that, possibly in combination with
down-sampled lexicase selection, could continue to drive the field forward.

Acknowledgments
We thank Emily Dolson, Amr Abdelhady, and the Hampshire College Computational Intelligence
Lab for discussions that improved this work.

Funding Information
This material is based upon work supported by the National Science Foundation under Grant No.
1617087. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References
Aenugu, S., & Spector, L. (2019). Lexicase selection in learning classifier systems. In M. López-Ibáñez (Ed.),

GECCO ʼ19: Proceedings of the genetic and evolutionary computation conference (Prague, Czech Republic, 13 July 2019,
pp. 356–364). ACM. https://doi.org/10.1145/3321707.3321828

Boyer, S., Hérissant, L., & Sherlock, G. (2021). Adaptation is influenced by the complexity of environmental
change during evolution in a dynamic environment. PLOS Genetics, 17(1), e1009314. https://doi.org/10
.1371/journal.pgen.1009314, PubMed: 33493203

Canino-Koning, R., Wiser, M. J., & Ofria, C. (2019). Fluctuating environments select for short-term phenotypic
variation leading to long-term exploration. PLOS Computational Biology, 15(4), e1006445. https://doi.org/10
.1371/journal.pcbi.1006445, PubMed: 31002665

Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. In M. López-
Ibáñez (Ed.), GECCO ʼ19: Proceedings of the genetic and evolutionary computation conference companion (Prague, Czech
Republic, July 2019, pp. 81–89). ACM. https://doi.org/10.1145/3321707.3321804

Cully, A., & Demiris, Y. (2018). Quality and diversity optimization: A unifying modular framework. IEEE
Transactions on Evolutionary Computation, 22(2), 245–259. https://doi.org/10.1109/TEVC.2017.2704781

Curry, R., & Heywood, M. I. (2004). Towards efficient training on large datasets for genetic programming.
In A. Y. Tawfik & S. D. Goodwin (Eds.), Advances in artificial intelligence: Canadian AI 2004 (pp. 161–174).
Springer. https://doi.org/10.1007/978-3-540-24840-8_12

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017

Ferguson, A. J., Hernandez, J. G., Junghans, D., Lalejini, A., Dolson, E., & Ofria, C. (2019). Characterizing the
effects of random subsampling and dilution on lexicase selection. In W. Banzhaf, E. Goodman, L.
Sheneman, L. Trujillo, & B. Worzel (Eds.), Genetic programming theory and practice XVII (pp. 1–23). Springer.
https://doi.org/10.1007/978-3-030-39958-0_1

Forstenlechner, S., Fagan, D., Nicolau, M., & OʼNeill, M. (2017). A grammar design pattern for arbitrary
program synthesis problems in genetic programming. In J. McDermott, M. Castelli, L. Sekanina, E.
Haasdijk, & P. García-Sánchez (Eds.), Genetic programming: 20th European conference: EuroGP 2017
(pp. 262–277). Springer. https://doi.org/10.1007/978-3-319-55696-3_17

Gathercole, C., & Ross, P. (1994). Dynamic training subset selection for supervised learning in genetic
programming. In Y. Davidor, H. P. Schwefel, & R. Männer (Eds.), Parallel problem solving from nature—PPSN
III. PPSN 1994 (pp. 312–321). Springer. https://doi.org/10.1007/3-540-58484-6_275

Goncalves, I., & Silva, S. (2013). Balancing learning and overfitting in genetic programming with interleaved
sampling of training data. In K. Krawiec, A. Moraglio, T. Hu, A. Ş. Etaner-Uyar, & B. Hu (Eds.), Genetic
Programming: EuroGP 2013 (pp. 73–84). Springer. https://doi.org/10.1007/978-3-642-37207-0_7

Helmuth, T., & Abdelhady, A. (2020). Benchmarking parent selection for program synthesis by genetic
programming. In GECCO ʼ20: Proceedings of the 2015 annual conference on genetic and evolutionary computation
companion (Cancún, Mexico, July 2020, pp. 237–238). ACM. https://doi.org/10.1145/3377929.3389987

Helmuth, T., & Kelly, P. (2021). PSB2: The second program synthesis benchmark suite. In F. Chicano (Ed.),
GECCO ʼ21: Proceedings of the genetic and evolutionary computation conference (Lille, France, June 2021,
pp. 785–794). ACM. https://doi.org/10.1145/3449639.3459285

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

200 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1145/3321707.3321828
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://doi.org/10.1371/journal.pgen.1009314
https://pubmed.ncbi.nlm.nih.gov/33493203
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://doi.org/10.1371/journal.pcbi.1006445
https://pubmed.ncbi.nlm.nih.gov/31002665
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1007/978-3-540-24840-8_12
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-030-39958-0_1
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3377929.3389987
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285
https://doi.org/10.1145/3449639.3459285

Helmuth, T., McPhee, N. F., Pantridge, E., & Spector, L. (2017). Improving generalization of evolved programs
through automatic simplification. In GECCO ʼ17: Proceedings of the genetic and evolutionary computation conference
(Berlin, Germany, July 2017, pp. 937–944). ACM. https://doi.org/10.1145/3071178.3071330

Helmuth, T., McPhee, N. F., & Spector, L. (2016). The impact of hyperselection on lexicase selection. In T.
Friedrich (Ed.), GECCO ʼ16: Proceedings of the 2016 annual conference on genetic and evolutionary computation
(Denver, CO, July 2016, pp. 717–724). ACM. https://doi.org/10.1145/2908812.2908851

Helmuth, T., McPhee, N. F., & Spector, L. (2018). Program synthesis using uniform mutation by addition and
deletion. In H. Aguirre (Ed.), GECCO ʼ18: Proceedings of the genetic and evolutionary computation conference (Kyoto,
Japan, July 2018, pp. 1127–1134). ACM. https://doi.org/10.1145/3205455.3205603

Helmuth, T., & Spector, L. (2015). General program synthesis benchmark suite. In S. Silva (Ed.), GECCO ʼ15:
Proceedings of the 2015 annual conference on genetic and evolutionary computation (Madrid, Spain, July 2015,
pp. 1039–1046). ACM. https://doi.org/10.1145/2739480.2754769

Helmuth, T., & Spector, L. (2020). Explaining and exploiting the advantages of down-sampled lexicase selection.
In J. Bongard, J. Lovato, L. Hebert-Dufrésne, R. Dasari, & L. Soros (Eds.), Proceedings of the ALIFE 2020:
The 2020 conference on artificial life (Online, pp. 341–349). MIT Press. https://doi.org/10.1162/isal_a_00334

Helmuth, T., Spector, L., & Matheson, J. (2015). Solving uncompromising problems with lexicase selection.
IEEE Transactions on Evolutionary Computation, 19(5), 630–643. https://doi.org/10.1109/TEVC.2014.2362729

Hernandez, J. G., Lalejini, A., Dolson, E., & Ofria, C. (2019). Random subsampling improves performance in
lexicase selection. In M. López-Ibáñez (Ed.), GECCO ʼ19: Proceedings of the genetic and evolutionary computation
conference companion (Prague, Czech Republic, July 2019, pp. 2028–2031). ACM. https://doi.org/10.1145
/3319619.3326900

Hmida, H., Ben Hamida, S., Borgi, A., & Rukoz, M. (2016). Sampling methods in genetic programming learners
from large datasets: A comparative study. In P. Angelov, Y. Manolopoulos, L. Iliadis, A. Roy, & M. Vellasco
(Eds.), Advances in big data: Proceedings of the 2nd INNS conference on big data (Thessaloniki, Greece, October
2016, pp. 50–60). Springer. https://doi.org/10.1007/978-3-319-47898-2_6

Kashtan, N., Noor, E., & Alon, U. (2007). Varying environments can speed up evolution. Proceedings of the
National Academy of Sciences, 104(34), 13711–13716. https://www.pnas.org/content/104/34/13711. https://
doi.org/10.1073/pnas.0611630104, PubMed: 17698964

Kleinberg, R., Li, Y., & Yuan, Y. (2018). An alternative view: When does SGD escape local minima? In
Proceedings of the 35th international conference on machine learning, PMLR 80 (pp. 2698–2707). PMLR.

Kotanchek, M., Smits, G., & Vladislavleva, E. (2006). Pursuing the pareto paradigm tournaments, algorithm
variations & ordinal optimization. In R. L. Riolo, T. Soule, & B. Worzel (Eds.), Genetic programming theory and
practice IV (pp. 167–185). Springer. https://doi.org/10.1007/978-0-387-49650-4_11

Kotanchek, M., Smits, G., & Vladislavleva, E. (2008). Exploiting trustable models via pareto GP for targeted
data collection. In R. L. Riolo, T. Soule, & B. Worzel (Eds.), Genetic programming theory and practice VI
(pp. 145–163). Springer.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press.
https://mitpress.mit.edu/books/genetic-programming

La Cava, W., Helmuth, T., Spector, L., & Moore, J. H. (2019). A probabilistic and multi-objective analysis of
lexicase selection and ε-lexicase selection. Evolutionary Computation, 27(3), 377–402. https://doi.org/10.1162
/evco_a_00224, PubMed: 29746157

Levins, R. (1968). Evolution in changing environments: Some theoretical explorations (Monographs in Population
Biology). Princeton University Press. https://doi.org/10.1515/9780691209418

Liskowski, P., Krawiec, K., Helmuth, T., & Spector, L. (2015). Comparison of semantic-aware selection
methods in genetic programming. In S. Silva (Ed.), GECCO ʼ15: Semantic methods in genetic programming
(SMGP ʼ15) workshop (Madrid, Spain, July 2015, pp. 1301–1307). ACM. https://doi.org/10.1145/2739482
.2768505

Martinez, Y., Naredo, E., Trujillo, L., Legrand, P., & Lopez, U. (2017). A comparison of fitness-case sampling
methods for genetic programming. Journal of Experimental & Theoretical Artificial Intelligence, 29(6), 1203–1224.
https://doi.org/10.1080/0952813X.2017.1328461

Metevier, B., Saini, A. K., & Spector, L. (2019). Lexicase selection beyond genetic programming. In W. Banzhaf,
L. Spector, & L. Sheneman L. (Eds.), Genetic programming theory and practice XVI (pp. 123–136). Springer.
https://doi.org/10.1007/978-3-030-04735-1_7

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 201

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1162/isal_a_00334
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1145/3319619.3326900
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://doi.org/10.1007/978-3-319-47898-2_6
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://www.pnas.org/content/104/34/13711
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://doi.org/10.1073/pnas.0611630104
https://pubmed.ncbi.nlm.nih.gov/17698964
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://pubmed.ncbi.nlm.nih.gov/29746157
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1515/9780691209418
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1080/0952813X.2017.1328461
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7

Moore, J. M., & Stanton, A. (2017). Lexicase selection outperforms previous strategies for incremental
evolution of virtual creature controllers. In Proceedings of the ECAL 2017, the fourteenth European conference on
artificial life (Lyon, France, September 2017, pp. 290–297). https://doi.org/10.1162/isal_a_050

Moore, J. M., & Stanton, A. (2018). Tiebreaks and diversity: Isolating effects in lexicase selection. In Proceedings of
the ALIFE 2018: The 2018 conference on artificial life (Tokyo, Japan, July 2018, pp. 590–597). MIT Press.
https://doi.org/10.1162/isal_a_00109

Moore, J. M., & Stanton, A. (2019). The limits of lexicase selection in an evolutionary robotics task. In Proceedings
of the ALIFE 2019: The 2019 conference on artificial life (Online, July 2019, pp. 551–558). MIT Press. https://
doi.org/10.1162/isal_a_00220

Moore, J. M., & Stanton, A. (2020). When specialists transition to generalists: Evolutionary pressure in lexicase
selection. In Proceedings of the ALIFE 2020: The 2020 conference on artificial life (Online, July 2020, pp. 719–726).
MIT Press. https://doi.org/10.1162/isal_a_00254

Mouret, J.-B., & Clune, J. (2015). Illuminating search spaces by mapping elites. ArXiv:1504.04909. https://arxiv
.org/abs/1504.04909

Nahum, J. R., West, J., Althouse, B. M., Zaman, L., Ofria, C., & Kerr, B. (2017). Improved adaptation in
exogenously and endogenously changing environments. In Proceedings of the ECAL 2017, the fourteenth
European conference on artificial life (Lyon, France, September 2017, pp. 306–313). MIT Press. https://doi.org
/10.1162/isal_a_052

Oksanen, K., & Hu, T. (2017). Lexicase selection promotes effective search and behavioural diversity of
solutions in linear genetic programming. In J. A. Lozano (Ed.), 2017 IEEE congress on evolutionary computation
(CEC) (Donostia-San Sebastian, Spain, June 2017, pp. 169–176). IEEE. https://doi.org/10.1109/CEC
.2017.7969310

Orzechowski, P., La Cava, W., & Moore, J. H. (2018). Where are we now? A large benchmark study of recent
symbolic regression methods. In H. Aguirre (Ed.), GECCO ʼ18: Proceedings of the genetic and evolutionary
computation conference (Kyoto, Japan, July 2018, pp. 1183–1190). ACM. https://doi.org/10.1145/3205455
.3205539

Schmidt, M. D., & Lipson, H. (2006). Co-evolving fitness predictors for accelerating and reducing evaluations.
In R. L. Riolo, T. Soule, & B. Worzel (Eds.), Genetic programming theory and practice IV (pp. 113–130). Springer.
https://doi.org/10.1007/978-0-387-49650-4_8

Schmidt, M. D., & Lipson, H. (2008). Coevolution of fitness predictors. IEEE Transactions on Evolutionary
Computation, 12(6), 736–749. https://doi.org/10.1109/TEVC.2008.919006

Schmidt, M. D., & Lipson, H. (2010a). Age-fitness pareto optimization. In R. Riolo, T. McConaghy, & E.
Vladislavleva (Eds.), Genetic programming theory and practice VIII (pp. 129–146). Springer. https://doi.org/10
.1007/978-1-4419-7747-2_8

Schmidt, M. D., & Lipson, H. (2010b). Predicting solution rank to improve performance. In GECCO ʼ10:
Proceedings of the 12th annual conference on genetic and evolutionary computation (Portland, Oregon, July 2010,
pp. 949–956). ACM. https://doi.org/10.1145/1830483.1830652

Spector, L. (2012). Assessment of problem modality by differential performance of lexicase selection in
genetic programming: A preliminary report. In T. Soule (Ed.), GECCO ʼ12: Proceedings of the 14th annual
conference companion on genetic and evolutionary computation, Session: Understanding problems (GECCO-UP)
(Philadelphia, PA, July 2012, pp. 401–408). ACM. https://doi.org/10.1145/2330784.2330846

Spector, L., Klein, J., & Keijzer, M. (2005). The Push3 execution stack and the evolution of control. In GECCO
2005: Proceedings of the 2005 conference on genetic and evolutionary computation (Washington, DC, June 2005, Vol. 2,
pp. 1689–1696). ACM. https://doi.org/10.1145/1068009.1068292

Spector, L., La Cava, W., Shanabrook, S., Helmuth, T., & Pantridge, E. (2017). Relaxations of lexicase parent
selection. In W. Banzhaf, R. Olson, W. Tozierm, & R. Riolo (Eds.), Genetic programming theory and practice XV
(pp. 105–120). Springer. https://doi.org/10.1007/978-3-319-90512-9_7

Spector, L., McPhee, N. F., Helmuth, T., Casale, M. M., & Oks, J. (2016). Evolution evolves with autoconstruction.
In T. Friedrich (Ed.), GECCO ʼ16: Proceedings of the 2016 annual conference on genetic and evolutionary computation
(Denver, CO, July 2016, pp. 1349–1356). ACM. https://doi.org/10.1145/2908961.2931727

Spector, L., & Robinson, A. (2002). Genetic programming and autoconstructive evolution with the Push
programming language. Genetic Programming and Evolvable Machines, 3(1), 7–40. https://hampshire.edu
/lspector/pubs/push-gpem-final.pdf. https://doi.org/10.1023/A:1014538503543

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

202 Artificial Life Volume 27, Number 3–4

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_050
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00220
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://doi.org/10.1162/isal_a_00254
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1504.04909
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1162/isal_a_052
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1109/CEC.2017.7969310
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1007/978-0-387-49650-4_8
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/1830483.1830652
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
https://doi.org/10.1145/2908961.2931727
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543

Vassiliades, V., Chatzilygeroudis, K., & Mouret, J. B. (2018). Using centroidal voronoi tessellations to scale up
the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary Computation,
22(4), 623–630. https://doi.org/10.1109/TEVC.2017.2735550

Zhang, B.-T., & Joung, J.-G. (1999). Genetic programming with incremental data inheritance. In W. Banzhaf, J.
Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, & R. Smith (Eds.), GECCO-99: Proceedings of the genetic
and evolutionary computation conference (Orlando, FL, July 1999, Vol. 2, pp. 1217–1224). Morgan Kaufmann.
https://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf

T. Helmuth and L. Spector Benefits of Down-Sampled Lexicase Selection

Artificial Life Volume 27, Number 3–4 203

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/27/3–4/183/2003245/artl_a_00341.pdf by guest on 17 April 2024

https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf

