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ABSTRACT

Multiobjective methods are ideal for evolving a set of port-
folio optimisation solutions that span a range from high-
return/high-risk to low-return/low-risk, and an investor can
choose her preferred point on the risk-return frontier. How-
ever, there are no guarantees that a low-risk solution will
remain low-risk — if the environment changes, the relative
positions of previously identified solutions may alter. A low-
risk solution may become high-risk and vice versa.

The robustness of a Multiobjective Genetic Programming
(MOGP) algorithm such as SPEA2 is vitally important in
the context of the real-world problem of portfolio optimisa-
tion. We explore robustness in this context, providing new
definitions and a statistical measure to quantify the robust-
ness of solutions.

A new robustness measure is incorporated into a MOGP
fitness function to bias evolution towards more robust solu-
tions. This new system (“R-SPEA2”) is compared against
the original SPEA2 and we present our results.

Categories and Subject Descriptors

I.2.M [Artificial Intelligence]: Miscellaneous

General Terms

Algorithms, Experimentation

Keywords

GP, Multiobjective Optimization, Robustness, Portfolio Op-
timization, Finance, Dynamic Environment

1. INTRODUCTION
At the start of the Summer of 2007, the most attractive

area of the financial markets was structured credit products
— which coupled the advantage of high returns with a con-
trollable level of risk. Credit risk could be divided among
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different tranches and risk exposure would be controlled by
choosing the appropriate tranche. These structured prod-
ucts therefore occupied a range of attractive positions on the
efficient frontier [20] of risk versus reward, and leading in-
vestment banks allocated significant funds to them. All was
well until the markets changed, US homeowners defaulted
on their mortgages, and mortgage-backed structured prod-
ucts (in particular) failed in a spectacular fashion. Merrill
Lynch, for example, lost over $23, 000, 000, 000 as well as
their Head of FICC and their CEO. This was unfortunate.

A key problem with these structured products is that they
are not sufficiently robust to changes in the market. Their
risk-reward profiles change significantly when the market
changes (e.g. when short-term interest rates increase).

Multiobjective (MO) optimization algorithms [3, 5], at-
tempt to solve problems that have multiple, possibly con-
flicting, objectives. In such problems, a single solution that
can optimize all the objectives simultaneously often does
not exist. Rather, the search produces a set of “trade-offs”
between different objectives, known as the Pareto front. Al-
most all algorithms developed to evolve the Pareto front
share the following main ideas:

• A fitness assignment that uses the Pareto Dominance
concept to measure the quality of the solution;

• An external population, where an archiving technique
is used to maintain the solutions found on the front of
each generation;

• A density estimation that measures proximity of so-
lutions, and helps the evolution of a well distributed
and well spread front by biasing against crowding of
solutions.

Research in MO algorithms has been active since the 1980s.
They have been applied in a variety of mathematical and real
life problems. Examples of applying MO Evolutionary algo-
rithms in financial applications include: risk management
[24], bank loan management [22], and management of finan-
cial portfolios [1, 16, 17, 25]. For a review of applications of
MO Evolutionary algorithms in finance and economics see
[27, 4].

Despite the broad range of research in MO algorithms,
most of this work has focused on generating solutions on the
Pareto front that are diverse and well distributed. Little at-
tention has been paid to the robustness of solutions evolved,
and they are rarely validated in unseen environments. In
volatile environments such as the financial markets, robust-
ness is of major importance. If robustness is not achieved,
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the solutions will exhibit unstable performance that may
render them unfit in subsequent environments, and the al-
gorithm is only useful as an analysis tool of historical data.
Investors ideally prefer a solution whose specific risk and re-
turn never changes. Given that this is unlikely ever to be
achieved in a volatile market, the next best solution is one
that sustains the characterstics of its objectives. For ex-
ample, given a solution with the lowest risk relative to the
available alternative solutions, it should continue to give the
lowest relative risk as the environment changes (even though
the precise objective value of risk may change).

In this work, we look at the robustness problem through
consideration of the performance of an evolved Pareto front
in a new environment. We analyse what constitutes a ro-
bust solution in dynamic environments, and define a new
metric for measuring robustness. The SPEA2 algorithm is
altered to include the robustness measure in its fitness cal-
culations. The results of the new algorithm (“R-SPEA2”)
show improved robustness in comparison with the original.

The paper is organized as follows. Section two presents re-
lated approaches to robustness in a multi-objective context.
Section three describes the portfolio optimization problem,
and explains the system architecture used for experiments.
Section four shows the results of applying SPEA2 to the
portfolio optimization problem on out-of-sample data . In
section five, we introduce and discuss the new robustness
metrics. Experiments and results that compare the new al-
gorithm to the standard algorithm are presented in Section
six. Finally, Section seven draws conclusions.

2. RELATED WORK
Different definitions for robustness in the literature exist.

The majority of research in this area [2, 6, 7, 12, 13] defines
robustness of solutions as insensitivity to small perturba-
tions in the decision variables, and adds a robustness mea-
sure to the fitness assessment. Other definitions of robust-
ness include: consistency of results between different runs
[26], and reliability of results in uncertain environments,
where the fitness function optimum is time varying [8]. Jin
and Mian [14, 18] improve the robustness of a single objec-
tive optimization problem by treating it as a multiobjective
problem where robustness is an extra objective.

In [2], the concept of degree of robustness was introduced
to measure the robustness of solutions against small vari-
ations in decision variables. The aim of the study was to
determine the effect of the value of a threshold p in the de-
termination of the Pareto front of robust solutions. The
degree of robustness measure was embedded in the fitness
assessment of solution to bias the search towards robust so-
lutions. The new concept was tested on two mathematical
functions used in [6], with the Pareto front plotted such that
the solutions are distinguished by their corresponding degree
of robustness with various p values. The new concept was
considered an extra tool to aid the decision maker in her
choice of a solution from the front. However, the robustness
of the identified solutions was not actually tested in a new
environment. Furthermore, the test problems were only 2 di-
mensional; since the perturbations in the decision variables
can occur along any dimension, when the number of dimen-
sions increases, computation of all possible combinations of
perturbations in the hyper-cube that is the neighbourhood
of a solution becomes very expensive.

The authors of [6, 7] came across the same problem when

they extended a definition of robust solutions used in sin-
gle objective optimization to be suitable for multi objective
optimization. The definition of the robust solution was one
such that it is the global minimum of the mean effective func-
tions, defined with respect to a predefined neighbourhood of
size δ. They generated 50 or 100 solutions in the neighbour-
hood, which effectively makes the method 50 or 100 times
slower. Another result common with the previous research
was always discovering that some areas of the Pareto front
seem to exhibit concentration of robust solutions, and some
areas have only a sparse number of robust solutions or none.
Another recent work by Gasper and Covas [12] used a com-
bination of two types of robustness measures; expectation
and variance of fitness of a particular solution x. Expecta-
tion of the fitness is calculated as the weighted average of
several points in the solution neighbourhood, and the vari-
ance assesses the deviation from the original fitness in the
neighbourhood considered.

Robustness in the work of [26] was used to describe the
standard deviation of a multiobjective algorithm between
different runs each using a different random seed. Using this
definition, algorithms based on the Pareto dominance rela-
tionship such as the NSGAII are quite robust. Other multi-
objective algorithms based on the Preferred [10] relationship
instead of dominance lead to poorly robust algorithms.

Our scope of work is on problems where, with the change
of the environment, both the decision variables change, as
well as the objectives’ ranges and the optimal solution. In
such case, the whole fitness hyper-surface is shifted in the ob-
jective space, changing the range of objectives and possibly
its shape, in response to the new environment. For a solu-
tion to be judged as robust, it should retain its optimality on
the new fitness hyper surface. In single objective problems,
measuring the robustness is dependent on how close the so-
lution is to the real optimal value. In the case of multiple
objectives, more needs to be achieved. First, it is necessary
to examine a set of solutions; they are still required to be
as close as possible to the optimal trade-off surface, but also
they should maintain their objectives’ profile ranks as much
as possible, so that a solution that was achieving high val-
ues on some objectives and low on some other, will keep the
same high-low profile of objectives in the new environment.
Second, we will also be interested in a front which retains
its diversity and uniform distribution, so that all regions of
the trade-off hyper-surface are well represented.

3. THE MULTIOBJECTIVE PORTFOLIO

OPTIMIZATION SYSTEM
In this section the portfolio optimization problem is de-

scribed, followed by details of the system used in the experi-
ments; including simulation of an investment fund with real
life constraints and parameters, and the GP system used to
evolve equations that determine the attractiveness of stocks,
and hence their probability to be included in the portfolio.

3.1 Portfolio Optimization Problem
A portfolio is a collection of investments or assets held by

an institution or a private individual. In this research, all
the assets are assumed to be stocks. A portfolio provides
diversification and therefore a degree of protection against
the price volatility of underlying individual stocks. In our
experiments, we simulate a sector-neutral portfolio with bal-
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anced investment across several industries to guard against
the price shocks of an individual sector. However, there is a
limit to the protection that diversification can provide and
we do not expect any investment model to be robust against
extreme shocks to the entire market.

The general portfolio optimization problem is the choice of
an optimum set of assets to include in the portfolio, and the
distribution of investor’s wealth among them, such that the
objectives sought by holding the portfolio are maximized.
Markowitz [20] assumed that the objectives of the investor
are maximizing the return on investment and minimizing
the associated risk. Hence, solving the problem requires the
simultaneous satisfaction of maximizing the expected port-
folio return E and minimizing the portfolio variance V (the
average squared deviation of the return from its expected
mean value):

E =

n
X

i=1

xiµi (1)

V =

n
X

i=1

n
X

j=1

xixjσij (2)

where n is the number of securities in portfolio, xi is the
relative amount invested in security i,

Pn

i=1
xi = 1, µi is the

mean expected return of security i, and σij is the covariance
between assets i and j.

These equations are solved by a set of points that consti-
tute the efficient frontier of the problem. The points define
a curve similar to that of Figure 1 plotted in the risk return
space of all possible portfolios. The points that constitute
the curve represent portfolios for which there is the highest
expected return given a certain amount of risk, or the min-
imum amount of risk given a certain expected return [20].

Return

Risk

Efficient Frontier

Figure 1: Efficient Frontier

3.2 System Architecture
Our system consists of a multiobjective GP, as well as

an embedded simulation of an investment strategy, which is
used for fitness assesment of solutions. A system schematic
is given in Figure 2. The MOGP fitness function passes an
individual (an equation representing a factor model) to the
simulator; the equation is used to rank stocks on a monthly
basis during simulation. The rankings drive buy/sell de-
cisions and at the end of simulation various metrics (e.g.
return, risk) are returned to the fitness function.

stock1 stock3stock2 stock4 stock81 stock82…

Compose/Modify Portfolio

by buying stocks in the top

quartile, and selling stocks

in the bottom quartile

Month start

Calculate ROI, StdDev

Return & RiskReturn & Risk

Individual /Individual /

Factor ModelFactor Model

MOGP

Rank Stocks

Figure 2: System Architecture

3.3 Investment Simulator

3.3.1 Investment Strategy

The investment strategy employed is inspired by real world
fund management practices. The portfolio held consists of
one cash line and has a fixed cardinality of n = 25 stocks.
The initial portfolio value is Co = £1, 000, 000 in cash with
no stock holdings. After that, the portfolio will constitute
of n securities, and the current cash holding will be denoted
by C, where we try to keep C less than or equal a maximum
bound Cmax = 3% of the total fund value. S is the universe
of equities, Sn is the set of securities held in the portfolio.
For all buying and selling decisions in any day, it is assumed
that we can trade at the opening price of that day. Dur-
ing the holding period, interest received on cash holdings is
ignored.

For the duration of holding period, we do the following. At
the start of each month, we calculate attractiveness of each
stock in S according to the nonlinear factor model examined,
and sort them accordingly. If any of the stocks we currently
hold falls in the bottom quartile of the rank, it is sold. If
the number of stocks currently in the portfolio is less than
n or C > Cmax, then we need to buy stocks from the top
quartile, starting with the most attractive. The proportion
to be invested in each stock is Ci, and is decided by:

Ci = min(
C

n − |Sn|
, 4% of total fund value) (3)

If we still have cash more than Cmax, and there are some
stock holdings with less than 4% of the total fund value,
then we use all remaining cash to bring each of these stock
holdings up to 4% or at least up to the maximum that the
extra cash allows us to.

3.3.2 Constraints and Additional Costs

In our problem formulation, we have included several re-
alistic constraints and additional costs. The constraints are:
portfolio cardinality, lower and upper bounds on investment
per stock, maximum cash holding, and 2% transaction costs.
With the addition of constraints, no analytic method exists
for solving it (otherwise it can be solved in an exact manner
by quadratic programming). Also, formulating the problem
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with constraints may lead to a Pareto front that is non-
convex or discontinuous making the problem harder to solve
by a single objective evolutionary algorithm with a fitness
function defined as the linear aggregation of objectives [27].

3.4 Multiobjective GP
The multiobjective algorithm used is SPEA2 [28]. The

implementation (in Java) is based on the ECJ package [19].
Experiments have a population size of 1000, archive size 400,
and run for 40 generations. The method of tree generation is
ramped half and half [15]. The terminal set for the tree con-
sists of technical and fundamental financial factors describ-
ing a company’s performance, plus constants. The function
set includes addition, subtraction, multiplication, division,
power 2, and power 3. The MOGP has two conflicting objec-
tives to satisfy; return maximization and risk minimization.
Return is defined as the annualized average return, and risk
is the standard deviation of the annualized average return.
The MOGP solutions are trees, each of which represents a
non-linear model of financial factors.

3.5 Historical Data
Our research uses historical data from the London Stock

Exchange market, the FTSE100 for 80 months, from May
1999 to December 2005. The stock universe consists of 82
stocks that were part of the FTSE100 constituent for the du-
ration of the time period investigated; i.e. companies that
merged split or fell out of the FTSE100 are excluded. For
these 82 stocks, the monthly values of 22 factors describ-
ing the represented companies’ data were downloaded from
Reuters. A small sample of a company’s data is shown in
Table 1. We normalize all the factor values before using
them within the investment simulator and the GP, in or-
der to minimize the effect of a number of parameters with
high ranges dominating the model. Also, normalization of
the parameters should have a positive effect on robustness,
because all perturbations in parameters in different environ-
ments are put into similar perspective with changes in other
parameters and with changes from the values dealt with in
the training environment.

The total period is divided into training and validation.
For training (in-sample), 48 months from May 1999 to April
2003 are used. For validation (out-of-sample), the data is
that of the last 20 months from May 2004 to December 2005.
The return on investment (ROI) of an“Index Fund”portfolio
that invests one million pounds, with equal proportions in
the 82 stocks of the universe, over the two time periods
selected for training and validation, is depicted respectively
in Figures 3 and 4.

Table 1: A sample of Company Data (BT)

Date Close Momen- Volume Price Price

tum toCash toBook

03-05 205.5 -0.0143 0.9517 -2.6E-12 0.4849

04-05 199.75 -0.0278 0.7323 -5.1E-12 0.4989

05-05 213.25 0.0675 0.8774 1.2E-11 0.4673

06-05 230 0.0785 1.2227 1.4E-11 0.43328

07-05 227.5 -0.0108 0.9232 -2.0E-12 0.4380

08-05 215.5 -0.0527 1.0339 -9.7E-12 0.4624

09-05 222.25 0.0313 0.8678 5.8E-12 0.4483

10-05 213 -0.0416 0.9671 -7.7E-12 0.4678

11-05 213.5 0.0023 1.1891 4.3E-13 0.4667

12-05 222.75 0.0433 0.7577 8.0E-1 2 0.4473
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Figure 3: Performance of Index Fund During Train-
ing Period
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Figure 4: Performance of Index Fund During Vali-
dation Period

4. SPEA2 PERFORMANCE
The SPEA2 algorithm [28] is currently one of the best

general-purpose MO algorithms. Furthermore, in a recent
paper, [25] demonstrated that SPEA2 had the best perfor-
mance on a portfolio optimization problem with real life con-
straints. They compared the SPEA2 performance with that
of NSGAII [9], MOGA [11], and VEGA [23], and found that
the SPEA2 had the best performance in terms of quality of
solutions and their distribution even with a small number of
generations.

To test the SPEA2 performance on out-of-sample data,
results of 15 runs of the SPEA2 algorithms are reported in
this section. In each run, the solutions on the Pareto front
were tested on the validation data of 20 months, equivalent
to using an investment strategy represented by the solution
tree to manage a new financial portfolio. The performance
of the algorithm on the validation data varies between the
runs. Figure 5 presents four runs with the Pareto front in
training and in validation. It is noticed in these graphs not
only that the performance is worse than in training, but
also that the Pareto front as a whole loses its distribution
characteristics. Another more serious problem is illustrated
in Figure 6. The figure shows a solution P1 that in train-
ing displayed relatively high returns at relatively high risk
— but in validation it had relatively the worst return with
low-to-medium relative risk. Another solution P2 that was
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relatively medium-return/medium-risk in training became
relatively low-return with relatively medium-to-high-risk in
validation, and also became dominated by other solutions.
The solution P3 changed from relatively medium-return in
training to relatively low-return in validation and clearly be-
came dominated by several other solutions that achieved the
same risk with higher return.
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Figure 5: SPEA2 Pareto Fronts in Training (black)
and Validation (grey) over four runs

This is of particular importance in our application. A fund
manager employing a investment strategy clearly would re-
quire (at least) that the strategy maintains its objectives’
characteristics relative to the other available strategies. Al-
though the new set of solutions may still be on the efficient
frontier, from the point of view of the fund manager they
would still be wrong for her purpose.

5. NEW METRICS FOR MO ROBUSTNESS

IN VOLATILE ENVIRONMENTS
We propose that in order to quantify robustness we need

to assess several aspects. First, the quality of the solutions in
the new environment. Second, how much they have changed
their objectives cluster and rank, amongst other solutions on
the Pareto front. Third, these solutions were non-dominated
in training; did they continue to be non-dominated in vali-
dation? Finally, how good is the spacing, spread and distri-
bution of solutions on the new front formed in validation?

In this work, we are interested in the analysis of the per-
formance on the new environment in terms of how much the
solutions have changed their objectives profile and rank. In
the following, we will start by defining what is meant by a
cluster of objective values, and rank of a solution. Then,
we will introduce new definitions for robustness. Followed
by, the suggested change in the algorithm to provide bias
towards solutions with robust behaviour across different en-
vironments.

5.1 Definitions
Definition 1: Clusters of Objective Values:
Consider a problem with m objectives to be minimized, and
assume that the value of each objective can be classified
as one of high, medium, low. Solutions on the Pareto front
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(P3)

(P3)

Figure 6: Example of Solutions Changing their Ob-
jectives Profile(Cluster). The vertical axis is per-
centage return on investment, and the horizontal
axis measures risk (standard deviation of monthly
returns).

are then classified into sets (“clusters”) such that members
of a cluster have similar classifications for each of their ob-
jectives. We say that each cluster has a certain profile of
objective values. Thus, there is a maximum of 3m, and a
minimum of 3, clusters (the minimum 3 would be one on
each extreme, and one with medium values for all objec-
tives). Each cluster Cī is a set containing N solutions to-
gether with a centroid c, which is a vector of m real values.
The profile of a cluster is a vector of the m classification
values of the centroid, relative to the other centroids.

Hence, we have:

Profile(Cī) = 〈Profile(c1), P rofile(c2), ..., P rofile(cm)〉
(4)

Where Profile(ci) ∈ {L, M, H}
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Definition 2: Rank of a Solution:
Each solution on the front will have a rank (see Section 5.2)
relative to the other solutions on the front, and based on its
objectives’ values. The objectives’ ranking order of solutions
is not defined by the absolute values of the objectives, but
rather by their relative value in comparison to the other
solutions on the current front. Each solution on the front
has a cluster membership, and a rank.

For any solution xk, the following two functions are de-
fined:

Cluster(xk) = Cī | xk ∈ Cī (5)

Rank(xk) = (ro1, ro2, ...rom) (6)

where roi is the rank of objective i. The algorithm used to
calculate the rank value is explained in Section 5.2.

Definition 3: Robustness of a Solution:
Robustness of a solution to a multiobjective problem is de-
fined qualitatively as the degree of its insensitivity to changes
in the environment, and is measured quantitatively by how
well it preserves its cluster and rank in a new environment.
For example, in a two-objective problem where only three
clusters exist, if a solution moves from a cluster 〈high, high〉
to 〈medium,medium〉 then we measure this as a move of
length 2, whereas if it moves from 〈high, high〉 to 〈low, low〉
then this is given a measure of 4. Changes in rank can
be measured in a straightforward manner, for example us-
ing element-wise differences across the rank vector and then
adding the differences.

δ(xk) =

m
X

i=1

(renv1

oi − r
env2

oi ) (7)

Definition 4: Robustness of the Pareto Front:
Robustness of the Pareto front between two environments is
defined qualitatively by two measures:

1. How well its solutions maintain their cluster of objec-
tives between the two environments.

2. How well its solutions’ ranks have remained closely cor-
related between the two environments.

The former is measured quantitatively by calculating the
mean difference in cluster movements across all n solutions
in the front.

Mean cluster distance change =
n

X

k=1

(δ(xk)) (8)

The latter could be measured quantitatively using a rank
correlation test (e.g. Spearman Rank Correlation [21]), though
the results should be interpreted with care since it presents
a very high hurdle — typically a rank correlation test will
only give high values where almost every individual on the
front retains its rank.

Definition 5: Robustness of a MO Algorithm:
Robustness of a multiobjective algorithm is defined qualita-
tively as its Pareto solutions’ insensitivity to changes in the
environment such that they maintain their profile of objec-
tives in a variety of environments, as well as the Pareto front
maintaining its diversity and uniform distribution.

5.2 Clustering and Ranking Algorithms
In our experiments, clustering of solutions on the front

is implemented using the k-means algorithm to group solu-
tions into 3 clusters (high return/high risk), (medium return,
medium risk), (low return, low risk). The clustering analy-
sis is performed twice: at the end of the last generation of
training, and after validation.

The ranking of solutions’ objectives values is done inde-
pendently for each objective. Each solution rank is a vector
of n values, each corresponding to its rank along a specific
dimension. It is implemented by sorting them in ascend-
ing order, with ties assigned the average rank of all values
with the same value. In the case of SPEA2, ranking is per-
formed in the last generation only for comparison purposes.
In case of the modified algorithm (R-SPEA2 — see below),
it was performed in each generation after the evaluation of
the solutions.

5.3 Fitness Assignment for R-SPEA2
We implement a robust version of SPEA2 — R-SPEA2

— where solutions’ robustness is measured during evolution
and used to bias the fitness as follows:

• In each generation, and after the front has been iden-
tified:

– Identify the ranks of all solutions;

– Run every solution in a different environment (12
months from May 2003 - April 2004), and identify
the rank of each solution in the new environment;

– Assign a robustness value R to each solution based
on how well the solution preserved its rank — the
less the change, the better the robustness value.

– The solution fitness value is incremented by the
robustness value.

• Tournament selection is performed as usual. It will
now prefer solutions which are: non-dominated, in less
dense areas of the front, and which are more robust
across the diverse training environments.

An interesting point here is how to combine the difference
of ranks along all the dimensions. Since we have separate
ranks for each objective dimension, we end up with n rank
differences that need to be combined into one value. The
rank differences have been normalized to a value in the range
[0, 1], with 0 being the best robustness, and 1 the worst. In
situations where a single metric is required, we choose to
multiply these rank differences together, since this slightly
biases in favour of solutions where all rank differences are
very low. Hence, the robustness measure is:

R =

n
Y

i=1

roi (9)

The total fitness of the solution is then incremented by
the robustness value, and is used for mating selection.
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6. RESULTS
In this section, we present the results of applying the ro-

bustness measures to SPEA2, and the Pareto front produced
by four runs of the modified algorithm during validation.

In Figure 7, the Pareto front on validation shows slightly
better spread characteristics than achieved in the original
algorithm, with fewer solutions losing their non-dominance.

Table 2 shows the mean distance of cluster change be-
tween training and validation of all solutions on the front
(and the percentage of solutions that maintained their clus-
ter). R-SPEA2 has on average more than half of the solu-
tions on the Pareto front keeping within the objectives’ pro-
file achieved in training. A non-parametric Ranked T-Test
applied to the two distributions of means gives a p-value of
1.2 × 10−6, indicating that this difference between SPEA2
and R-SPEA2 is statistically highly significant (the p-value
for the percentages is 0.07364).

By contrast, Table 3 indicates the much tougher test of
Spearman rank correlation of all individuals: results of 15
runs show that R-SPEA2 achieved an average improvement
of only 10% of the coefficient value (significant only at the
15% level for Objective 2).
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Figure 7: R-SPEA2 Performance in Training (black)
and Validation (grey) over four runs

7. SUMMARY AND CONCLUSION
Multiobjective methods are ideal for evolving a set of port-

folio optimisation solutions that span a range from high-
return/high-risk to low-return/low-risk, and an investor can
choose her preferred point on the risk-return frontier. How-
ever, there are no guarantees that a low-risk solution will
remain low-risk.

The robustness of a Multiobjective Genetic Programming
(MOGP) algorithm such as SPEA2 is vitally important in
the context of the real-world problem of portfolio optimisa-
tion. We have demonstrated that SPEA2 (acknowledged to
be one of the best general-purpose MOGP algorithms, and
giving good results on portfolio optimisation problems) is,
while being excellent in other respects, unable to guarantee
robust solutions.

We have analysed the robustness of individual solutions
and of a Pareto front in terms of insensitivity to changes in

Table 2: Mean distance of cluster change and per-
centage number of solutions changing cluster for
SPEA2 and R-SPEA2

SPEA2 R-SPEA2

Run Mean Percentage Mean Percentage

1 0.656 57.75% 0.657 100.00%

2 1.615 63.00% 0.340 20.25%

3 1.100 52.00% 0.402 68.50%

4 1.365 62.25% 0.440 47.25%

5 1.120 89.00% 0.720 47.75%

6 1.742 100.00% 0.525 54.00%

7 1.420 61.25% 0.425 28.00%

8 0.965 42.25% 0.295 46.00%

9 0.747 73.00% 0.590 61.25%

10 0.890 44.50% 0.397 70.75%

11 0.365 18.25% 0.590 56.00%

12 1.460 69.00% 0.530 42.00%

13 0.675 33.75% 0.245 35.00%

14 1.575 78.75% 0.085 21.00%

15 1.707 100.00% 0.430 32.25%

AVG 1.160 62.98% 0.444 48.66%

StdDev 0.432 23.27 0.166 21.15

Table 3: Correlating between Training and Valida-
tion: Spearman Coefficients for Objectives 1 and 2

SPEA2 R-SPEA2

Run Obj1 Obj2 Obj1 Obj2

1 0.6491 0.6763 0.7664 0.0922

2 0.0228 0.1440 0.9484 0.7047

3 0.4590 0.3856 0.7482 0.7594

4 0.6331 0.4315 0.6372 0.6868

5 -0.2085 0.7051 0.5859 0.5655

6 0.0361 0.2633 0.3686 0.6912

7 0.5495 0.5905 0.2326 0.3963

8 0.6903 0.3665 0.5740 0.8032

9 0.9494 0.3184 0.5533 0.2687

10 0.7765 0.7307 0.7255 0.4083

11 0.6379 0.8857 0.4605 0.5543

12 0.6119 0.7510 0.8242 0.8078

13 0.7345 0.6060 0.8546 0.8514

14 0.7930 0.0710 0.3325 0.6808

15 0.6957 -0.3042 0.5706 0.7235

AVG 0.5354 0.4414 0.6122 0.5996

StdDev 0.3268 0.3149 0.2043 0.2189

the environment, and have provided new definitions of ro-
bustness for both individual solutions and the whole front.
We have demonstrated the problem by comparing a training
environment with a very different validation environment,
showing how SPEA2 solutions on the Pareto front can swap
their relative positions in terms of their objectives cluster.
We have explained how we obtain quantitative measures of
robustness, and we have utilised one such measure to cre-
ate “R-SPEA2”, a robust variant of SPEA2. The results of
early experiments show that R-SPEA2 offers a statistically
highly significant improvement in the mean number of clus-
ter changes experienced by individual solutions when moving
from a training environment to a validation environment.

Future work includes investigating different methods for
combining ranks, and whether to incorporate these ranks
into fitness measures or use them to exclude solutions that
are low on robustness. We are also developing our definitions
of robustness to facilitate recognition and measurement of a
wide range of robustness behaviour, especially with respect
to the robustness of the Pareto front as a whole. Addi-
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tional further work includes improving population diversity
to improve overall MOGP performance, and the use of the
new robustness metrics for comparison of the performance
of various MOEA algorithms on out-of-sample data.
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