Self Modifying Cartesian Genetic Programming: Parity

S. Harding, J. F. Miller and W. Banzhaf

Abstract— Self Modifying CGP (SMCGP) is a developmental
form of Cartesian Genetic Programming(CGP). It differs from
CGP by including primitive functions which modify the pro-
gram. Beginning with the evolved genotype the self-modifyig
functions produce a new program (phenotype) at each iteratin.
In this paper we have applied it to a well known digital circuit
building problem: even-parity. We show that it is easier to ®lve
difficult parity problems with SMCGP than either with CGP or

in that often one must apply some other mapping process
from the developed cellular structure into a computation.

In our previous work we showed that by utilizing self-
modification operations within an existing computational
method (a form of genetic programming, called Cartesian
Genetic Programming, CGP) we could obtain a system that
(a) could develop over time in interaction with environnant

Modular CGP, and that the increase in efficiency grows with
problem size. More importantly, we prove that SMCGP can
evolve general solutions to arbitrary-sized even parity poblems.

inputs and (b) would at every stage provide a computational
function [7]. It could stop its own development, if required
without external input. Thus, if the computational task did
not require development, evolution could decide for itself
not to allow it. Another interesting feature of the approach
In biology, the process of transformation from genotypés that, in principle, programs could be evolved which allow
to phenotype is a complex interaction in which a genotypéhe replication of the original code. In this paper we have
together with the cellular machinery and the environmenmproved on our former work in SMCGP by concentrating
gives rise to a stage of the phenotype, which itself influsncen the scalability problem. Can evolution be used to produce
the decoding of the genotype for the next stage [1]. One cambitrarily large structures that representvably general so-
regard this process as one of self-modification which coullditions to computational problems? We answer this question
take place both at the genotype or cellular level. Implicit i in the affirmative for the case of evolving a general solution
this notion is the concept of time or iteration. Accordinglyto even parity (i.e. we obtain a program that can build a
we define development to be the time-dependent procesarity circuit for an arbitrary number of inputs). We have
whereby genotype and phenotype, in interaction with eaciso compared the computational efficiency of this approach
other and an external environment, produce a phenotype thiatnon-developmental methods that use the same Cartesian
can be selected for. This definition allows us to include mangenetic representation and we show that self-modifying CGP
forms of development, such as models of genetic regulatiois, more efficient.
graph re-writing, and self-modification. It is our beliefath
self-modification is an interesting and unifying way to look
at development. For instance, we can look at multi-cellular Parity is a well studied problem in Genetic Programming.
development as a process in which a phenotype modifi&®za tackled up to 11-parity [8] using a GP system with
itself over time. We can also view development from the pemutomatically defined functions (ADFs), and found them
spective of a single cell, where the genetic regulatoryesyst difficult to evolve. Without ADFs, his approach failed to
are a mechanism for development whereby a cell modifi@volve circuits beyond 5 inputs [9].
its own phenotype through genetic self-modification over In [10] very large parity circuits, with 22-inputs, are
time. Kampis [2] has conducted an impressive philosophicdirectly evolved. The authors describe three different ap-
analysis of the notion and importance of self-modification i proaches to solving the problem using a novel crossover op-
biology and its relevance to ‘emergent computation’. erator, a submachine code level representation and agdarall
In evolutionary computation, the idea of self-modificatiorpopulation approach. This appears to be the largest, firect
was discussed in the ontogenetic programming system e¥olved parity circuit in the literature.
Spector and Stoffel [3], the graph re-writing system of Grua Other approaches have looked at finding general solutions.
[4] and the developmental method of evolving graphs anBor example, in [11] machine language level programs were
circuits of Miller [5]. Recently, however, much work in com- evolved that could iterate over the bits in a string and could
putational development has focused at a multi-cellulaellevbe easily determine parity. The solutions would be suitable
and the aim has been to show that evolution could produéer any length bit string. Recursion has also been succissfu
developmental cellular programs that could construciowesi used to solve the parity problem [12], [13]. These approsache
cellular patterns (i.e. flags, or spheres, etc) [6]. Furtteee, produced programs rather than circuits to solve the problem
another important aim has been to demonstrate that evolvifig contrast, the technique presented in this paper evolves
developmental programs are a better way to evolve systemgrams that produce circuits.
with an arbitrarily large number of parts than to directly An early developmental form of CGP successfully solved
evolve a genetic representation of such a system. While te&cuits up to 5 inputs [5]. However, none of the evolved
former is an interesting goal, it is netplicitly computational solutions appeared to generalize. In [7], Self ModifyinglkCG

I. INTRODUCTION

Il. RELATED WORK

was demonstrated for the first time, and parity circuits oB. SMCGP

up to 8-inputs were evolved. It was shown that SMCQP In this paper, we use a slightly different genotype repre-

outperformed the best known results for a CGP based indantation to previously published work using CGP.

plementation. Each node in the directed graph represents a particular
Another developmental system uses L-systems to generat

f difving GP 141 Thi fiction and is encoded by a number of genes. The first
a grammar for moditying .tregs [14]. IS approaciane encodes the function the node is representing. This is
is similar in concept to [7]. Circuits of up to 12—|nputsf

ved with_ high h h 5o f llowed by a number of connection genes (as in CGP) that
were evoved wi Igh success. he authors aiso ToUNficate the location in the graph where the node takes its

imil tati 15 ved artificial e lfﬁputs from. Then three real-valued genes encode parasneter
similar representations. [15] evolved artificial proteiries required for the function. Finally there is a binary genet tha

that configured FPGA blocks. The evolved rules were afo”irr"]dicates if the node should be used as an output. In this

a patt_ern matching that could b? iterated, _W'th the rul_e aper all nodes take two inputs, hence each node is specified
behaviour depended on the matching of proteins at each ti 7 genes. An example genotype is shown in Figure 1

step. Again, Gircuits of up 1o 12-inputs were _evo!ved. In As in CGP, nodes take their inputs in a feed-forward
contras_t, the aufchors were unablg to evolve circuits Iarg?ﬁanner from either the output of a previous node or from a
than 4 inputs using a direct encoding. program input (terminal). The actual number of inputs to
I1l. SELF MODIFYING CGP a node is dictated by the arity of its function. However,

A. Cartesian Genetic Programming (CGP) unlike previous implementations of CGP, nodes are adddesse
er((?Iativer and specify how many nodes back in the graph they
are connected to. Hence, if the connection gene is 1 it means
at the node will connect to the previous node in the list, if

e gene has value 2 then the node connects 2 nodes back and
so on. All such genes are constrained to be greater than 0,

Originally CGP used a program topology defined by lo avoid nodes refe_rring directly or indir_ec_tly to the_msﬁiv
rectangular grid of nodes with a user defined number of rows T @ géne specifies a connection pointing outside of the
and columns. However, later work on CGP always chose tf%aph' i.e. with a larger relative address than there aresod
number of rows to be one, thus giving a one-dimensioni® connect to, then this is treated as connecting to zereevalu
topology, as used in this paper. In CGP, the genotype islgputs_ aris_e in th_e graph through special functions. This is
fixed-length representation and consists of a list of integedescribed in section I1I-C. , o
which encode the function and connections of each node in ' NiS €ncoding is demonstrated visually in Figure 2. The
the directed graph. relative addressing use_d here _attempts to allow for supltg:r_a

CGP uses a genotype-phenotype mapping that does ﬁ%tbe placeq or quhcateq in the graph whilst retaining
require all of the nodes to be connected to each Othéhew semantic validitity. This means that sgb—graphs. doul
resulting in a bounded variable length phenotype. Thisallo "€Present the same sub-function, but acting on different
areas of the genotype to be inactive and have no influence typuts.] .) ,
the phenotype, leading to a neutral effect on genotype fitnes Each node in the SMCGP graph is defined by a function
called neutrality. This type of neutrality has been ingstied that is represented internally as an integer. Associate wi
in detail [16], [17], [18] and found to be extremely beneficia®ach function are genes denoting connected nodes and also

to the evolutionary process on the problems studied. a set of parameters that_ inflgence the functiqn’s behavior.
These parameters are primarily used by functions that per-
Genotype: [10121.48.1-10] [1113.23-10] form modification to the phenotype’s graph. In the genotype
[1114551410][1513152.1-10] . ;
(20326 32.1-11 1] they are represented as real numbers but certain functions
V can require that they be cast (truncated) to integers.

Section V details the available functions and any associ-

. ated parameters.

C. Inputs and outputs

Cartesian Genetic Programming was originally develop
by Miller and Thomson [16] for the purpose of evolving
digital circuits and represents a program as a directedwgraﬂz:
One of the benefits of this type of representation is th
implicit re-use of nodes in the directed graph.

Phenotype:

Iteration 1:

The way we handled inputs in our original paper on
SMCGP was flawed. It did not scale well as sub-graphs
became disconnected from inputs, because self-modifying
functions moved them away from the beginning of the
graph causing them to lose their semantic validity. The new
Fig. 1. The genotype maps directly to the initial graph of genotype. jnpyt strategy we devised, required two simple changes from
The genes control the number, type and connectivity of edd¢heonodes. ti | CGP d . K in SMCGP
The phenotype graph is then iterated to perform computatimh produce conven '_Ona and our previous WOF in =
subsequent graphs. The first, was to make all negative addressing return

false (or O for non-binary versions of SMCGP). In previous

Iteration 2:

INP INP |~ 4 DUP MIN DSUB DMULT| DADD)

N

INP INP |/ 4 DUP MIN DSUB| DMULT] MIN DSUB DMULT| DADD)

Fig. 2. Example program execution. Showing the DUP(licaipgrator being activated, and inserting a copy of a sectfothe® graph (itself and a
neighboring functions on either side) elsewhere in the lyiapnext iteration. Each node is labeled with a function, télative address of the nodes to
connect to and the parameters for the function (see Sedtid).|

work[7], we used negative addresses to connect nodes The graph is executed by recursion, starting from the output
input values. nodes down through the functions, to the input nodes. In this
The second was to change how the INPUT function worksvay, nodes that are unconnected are not processed and do
When a node is of type INP (shorthand for INPUT), eachmot effect the behavior of the graph at that stage.
successive call gets the next input from the available set of For function nodes (e.g. AND, OR, XOR) the output value
inputs. If the INP node is called more times than there aris the result of the mathematical operation on input values.
inputs, the counting starts from the beginning again, aed th Each active (non-junk) graph manipulation function (start
first node is used. ing on the leftmost node of the graph) is added to a “To
Outputs are handled slightly differently to inputs. WeDo" list of pending modifications. After each iteration, the
added another gene to the SMCGP node that defines if tfiEo Do” list is parsed, and all manipulations are performed
phenotype should attempt to use that node as an output.(provided they do not exceed the number of operations
previous work, we used the last n-nodes in the graph ®&pecified in the user defined “To Do” list length). The parsing
represent the n-outputs. However, as with the inputs, we fés done in order of the instructions being appended to the lis
this approach did not scale as the graph changes size. When first in is first to be executed.
an individual is evaluated, the first stage is to identify the The length of the list can be limited as manipulations are
nodes in the graph that have their output gene set to 1. One#atively computationally expensive to perform. Here we
these are found, the graph can be evaluated from each liofit the length to just 2 instructions. There is a single “To
these nodes in a recursive manner. Do” list for evaluation of each individual, and hence sub-
If no nodes are flagged as outputs, the last n nodes mocedures also share the same list. All graph manipulation
the graph are used as the n-outputs. Essentially, thistseveiunctions require a number of parameters, as described in
the system back to the previous approach. If there are magection V. These parameters are encoded in the genotype,
nodes flagged as outputs than are required, then the leftmastd the necessary casts are made when the “To Do” list is
nodes that have flagged outputs are used until the requirpdrsed.
number of outputs is reached. If there are fewer nodes in the
graph than required outputs, the individual is deemed to be V. EVOLUTIONARY ALGORITHM AND PARAMETERS

corrupt and it is qot evaluated (it is given a bad fitness score e yse an (1+4) evolutionary strategy for the experiments
to ensure that it is not selected for). in this paper. We bootstrap the process by testing a popualati
. of 50 random individuals. We then select the best individual

D. Evaluation of the SMCGP graph and generate four offspring. We test these new individuals,

From a high level perspective, when a genotype is evaland use the best of these to generate the next population.
ated the process is as follows. The initial phenotype is cop We have used a relatively high (for CGP) mutation rate
of the genotype. This graph is then executed, and if there agé 0.1. This means that each gene has a probability of
any modifications to be made, they alter the phenotype grapghl of being mutated. SMCGP, like normal CGP, allows

Technically, we consider the genotype invariant during thfor different mutation rates to effect different parts otth
entire evaluation of the individual and perform all modifica genotype (for example functions and connections could have
tions on the phenotype which started out as a copy of ttdifferent mutation rates). In these experiments, for siaity|
genotype. In subsequent iterations, the phenotype willllisu we chose to make all the rates the same. Mutations for the
gradually diverge from the genotype. function type and relative addresses themselves are @thias

The encoded graph is executed in the same manner as stargene can be mutated to any other valid value.
dard CGP, but with changes to allow for self-modification. For the real-valued genes, the mutation operator can

choose to randomize the value (with probability 0.1) or add DuplicatePreservingConnections (DU3) Copy the nodes

noise (normally distributed, sigma 20). between £, + x) and F, + = + P;) and insert after £, +
Evolution is limited to 10,000,000 evaluations. Trialstthax + P,). When copying, this function modifies tlg; of the

fail to find a solution in this time are considered to haveopied nodes so that they continue to point to the original

failed. nodes.

The evolutionary parameter values have not been opti- pglete (DEL) Delete the nodes betweeRyd+z) and (P +
mized, and we would expect performance increases if more, p,).

suitable values were used. Add (ADD) Add P; new random nodes afteP{ + z).
V. FUNCTION SET Change Function (CHF) Change the function of nodg,
The function set is defined in two parts. The first is a set db the function associated witR;.

modification operators, as described in section V. These areChange Connection (CHC) Change the P;mod3)th con-
common to all data types used in SMCGP. The remainder @gction of nodeP, to P.

the set are the computational operations. The data type thes Change Parameter (CHP) Change thé P mod3)th param-
functions manipulate is determined by the problem definitio gtar of nodeP, to Ps.

Here, the data is binary strings. The complete set of aJailab .
binary operators are defined in table I. Depending on th Overwrite (OVR) Copy the nodes betweet(+ z) and

experiment, different sub-sets of this set are used. (P + 2 + P1) to position ¢+ +), replacing existing

Self modifying functions are typically defined by 4 vari—nOdes in the target position.

ables. The genotype (and phenotype) nodes contain th(geeCOpy To Sop ("COPYTOST OP) C‘f)py fr(?’m:z: to the next
double precision numbers, called “parameters”. In thefell COPYTOSTOP” function node, “STOP” node or the end

ing discussion we denote thesg, P;,P». The other variable of the graph. Nodes are inserted at the position the operator
is the integer position of the node in the phenotype graptoPs at.

that contained the self modifying function (i.e. the lefsho

node is position 0), we denote this In the definitions of

the SM functions we often need to refer to the values taken

by node connection genes (which are all relative addresses)

We denote thgth connection gene on node at positiorby Function | Operation
AN 2 A0
There are several rules that decide how addresses and pa- BNAND | NOT (a AND b)
rameters are treated: BXOR | a XOR B
o When P; are added to the, the result is treated as an EHS? “g g’" OR b)
integer. BIAND | (NOT a) AND b
« Address indexes are corrected if they are not within ggg (Fa’t'\/'-j\l% b
bounds. Addresses below O are treated as 0. Addresses BF2 a AND (NOT b)
that reach beyond the end of the graph are truncated to BF3 (a AND (NOT b)) or (a AND b)
the graph Iengt.h. . . SE;‘ E?IN%rTae)l)AANNDDbb) OR (a AND b)
. S_tart and gnd indexes are sorted into ascending order BF6 ((NOT a) AND b) OR (a AND
(if appropriate). (NOT b))
« Operations that are redundant (e.g. copying 0 nodes) BF7 E\E’(\;(T)Tb a)OQNDAblzIDOt? (@ AND
are ign_ored, however they are taken into account in the BFS ((NO(T)a)1) ANl(Da(NOT b;)
ToDo list length. BF9 ((NOT a) AND (NOT b)) OR (a

The functions (with the short-hand name) are defined as BF10 ﬁmgTb)a) AND (NOT b)) OR (a
follows: AND NOT (b))

Duplicate and scale addresses (DU4) Starting from posi- BF11 ((NOT &) AND (NOT b) OR a
tion (P, +) copy (P1) nodes and insert after the node at BEL2 QH(ID)T(’;)C)/L\%(()I\T& ﬁ)NgRb%NOT
position (P, + =+ P;). During the copyg;; of copied nodes a) AND b)
are multiplied byP;. BF13 ((NOT a) AND (NOT b) OR (NOT

Shift Connections (SHIFTCONNECTION) Starting at node BE14 E"g@;f;)b e ?Nf;)NTDby)OR (NoT
index (Po + ,T), add P, to the values of theij of next P;. a) AND b OR a AND (NOT b))

ShiftByMultConnections (MULTCONNECTION) Starting BF15 ((NOT a) AND (NOT b) OR (NOT
at node index®; + x), multiply thec;; of the nextP; nodes g):,\'l\‘DDt?)OR a AND (NOT b) OR
by Ps.

yMove (MOV) Move the nodes betwee{+) and (P, + TABLE |
x + P;) and insert after By + = + P). BINARY FUNCTIONS

Duplication (DUP) Copy the nodes betwee®(+ x) and
(Py + x + Py) and insert after + = + P).

VI. EXPERIMENTAL SETUP ;'0' Of Inputs f;gfggg Evaluations
3 289,824
A. Fitness function g ggg,ggg
Fitness is computed as the number of correctly predicted 6 311,022
bits over all test cases. The fitness function used here tests g gig:g?g
the program to produce various sized parity circuits during 9 314,056
development. In the first iteration, it tests for 2 input pari 10 317,700
then 3 input parity and continues up to a maximum number of E ggg%i
inputs. If the candidate solution fails to find a totally et 13 317,936
solution for a given input size, it is not tested on other inpu 14 317,941
; ; 15 317,950
sizes - allowing the process to abort development and save 16 317960
CPU time. We define each of these circuit sizes to be one 17 317,965
test case. We evolve for 18 test cases (2 inputs to 20 inputs). 18 317,979
The fitness function is designed to force the SMCGP to ;?, ﬁ;;ggg
find a solution that grows through each test case to the TABLE I

next. In this way, the chance of finding a general solution
is maximised.
The fitness function can be summarized as:

EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE USING THE
RESTRICTED FUNCTION SET OAAND, OR, NAND AND NOR.

« For each individual:

— For each test case (2 to 20 inputs): _
B. Full function set

Take the genotype.
Iterate it ¢nputs — 2 times) We repeated the experiment but with a full function set
Apply input bit patterns (BFO to BF15) so that we could compare with [10].

Count incorrect outputs, and add to fitness sum Table IV shows the number of evaluations required to
If fails to solve test case, continue to nextevolve a given sized even parity circuit. Care should bertake
individual. when comparing to other results in the literature, as we are
solving a subtly different problem. Our aim is to evolve a
program that can produce a parity circuit for a given size -
and all smaller sizes. Other approaches typically aim to find
A. Restricted function set a circuit for a given number of inputs; which probably makes
the problem easier, as their goals are a proper subset af ours
First, we evolved even parity functions from 2 inputs to Next, we investigated the scaling properties of the parity
20 inputs using Boolean functions: AND, OR, NAND andcircuit. We evolved to 20 bits of input and then tested
NOR. exhaustively to 24 bits of input. We find that solutions are
Table Il shows the average number of evaluations requiredften able to scale to solve larger problems beyond what
We obtainedl00% success rate for evolving to 18 test casethey were evolved to solve. Table V shows the percentage of
(up to 20 inputs). This is a substantial improvement over owolutions that were able to solve these additional problems
earlier published results where, after 5 inputs the suaeses See section VII-C for a more detailed investigation into the
dropped below100% [7]. From the results, it can be seengenerality of an individual.
that the number of evaluations required to solve for a given We investigated the stage at which solutions start to act as
size stablises to approximately 318,000 evaluations. Ehis “general” solutions. By general we mean that they can solve
because “general” solutions are often discovered by the tinall subsequent test sizes up to 20 bits of input. We see that
even 6 parity is solved, and therefore solutions for largesome solutions can generalise after solving for just 2 imput
circuits do not need to be found by evolution. cases (i.e. have been evolved to solve both 2 and 3 bits).
Table Il shows a comparison between other CGP impleFable VI shows the percentage of solutions that generalise
mentations. The speed up values show the relative perfée- all 18 test sizes both at a given point, and cumulatively.
mance in terms of evaluations. A value above 1 indicatéd/e see that the majority of the “general” solutions are found
SMCGP performs better. The results show that for smalléetween 5 and 7 bits of input. This explains why table IV
sizes, SMCGP is slower to evolve than the previous tecishows a stablisation in the number of evaluations required
niques. For parity problems with more than 6 inputs, SMCG find a solution. On average, it takes until 12 inputs for
starts to perform better. It is important to note that thesgeneral solutions to emerge.
other techniques do not report results beyond 8 inputs andResults presented here are based on 251 runs.
that the fitness function is different. We believe that trekta We found that for the majority of the runs, the graph size
of finding a program that grows these circuits should beonsistently increases in size. However, for some runs the
substantially more difficult. graph size does not maintain constant growth and either

EE S

VII. RESULTS

Average Evaluations Speedup
Inputs | SMCGP | SMCGP 2007| CGP | ECGP || Vs. SMCGP2007| Vs.CGP| Vs. ECGP
4 308,643 | 28,811 81,728 65,296 | 0.09 0.26 0.21
5 309,990 | 58,194 293,572 181,920 0.19 0.95 0.59
6 311,022| 199,256 972,420 287,764| 0.64 3.13 0.93
7 313,489 410,128 3,499,532 | 311,940 1.31 11.16 1.00
8 313,978| 1,080,656 10,949,256| 540,224| 3.44 34.87 1.72
TABLE Il

COMPARISON TO PREVIOUSCGPBASED TECHNIQUES USING THE RESTRICTED FUNCTION SET OAND, OR, NAND AND NOR. SMCGP2006 =

FIRSTSMCGPPAPER[7]. ECGP = BMBEDDED CGP [19]. CGP = MRMAL CGP [7]

reduces in size or remains constant. Figure 3 shows the 2‘0' Of Inputs f‘fzrgge Evaluations
behaviour trends as a whole. 3 4,013
4 8,656
500 5 19,894
Maximum Length 6 43'817
450 7 71,857
200 8 82,936
9 102,868
350 10 107,586
£ 200 11 104,343
g 12 108,356
& 250 13 118,790
g‘ Average Length 14 121,835
2 200 15 118,477
150 16 114,116
17 110,216
100 18 110,223
Minimum Length 19 110,255
50 20 110,262
0 ‘ ‘ TABLE IV
0 2 4 6 8 10 12 14 16 18 20 22 24
. EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE
Number of inputs

Fig. 3. Plot showing the average, maximum and minimum grapth of No. Of Inputs Solution
the SMCGP phenotype as it iterates with number of inputs ttier parity 21' P 307.1
problem). 22 96.1
23 96.1
. 24 96.0
C. Generality
TABLE V

Itis computationally very expensive to evaluate individua
greater than 24-inputs, therefore a method is needed tereith
prove generality, or, provide a high degree of confidence
that a solution is general. A general solution is defined as
a program that when iterated will always produce the next
sized parity solution. We show that this is indeed the casmse is zero, as the connection reaches 14 nodes back, which
for one example. is beyond the first node of the graph). Thus the output is now

Consider the individual illustrated in figure 4. Here wexry @ x1 © 1 ® v. The DUP function is a self-modification
prove that it is indeed the general solution to even-paritynstruction and is defined to return the first input, hence it
To begin with we need to show that the first case at the togutputs this quantity. The final (rightmost) active node is
of the figure computes even-2 parity. In 5(a) we provide aalso BXOR and this EXORs with input (which is 22
annotated version showing the outputs of the active nodesdes back, which is again beyond the end of the graph
The leftmost active node is an INP which retunns the next so returns zero). Thus the graph outpBtéro, z1, u,v) =
call to INP returnsz;. These both connect to the leftmostzg ® x1 © 1 ® v @ u. In this case this reduces i ® 1 1,
BXOR node which computes the binary EXOR of thesevhich is the even-2 parity function.
inputs. Two identical outputs from this BXOR are provided Now we discuss the effect of the DUP operation, which
as input to the function BNOR, this inverts the input (wehappens, in this case, to be the only active self modifying
have denoted this as carrying out EXORing with 1). Thisode. This copies the 9 nodes on its left and itself (shown
output is then provided as the first input to BXOR. We havavithin the box shown in figure 5(a). It inserts these nodes
denoted the second input to this functionwa@vhich in this twelve nodes back from itself. That is just before the node

PERCENTAGE OF SOLUTIONS THAT GENERALISE TO VARIOUS
UN-EVOLVED INPUT LENGTHS.

-

(penowEEOmEEEescnonoE
— I —
C DBEoBooB E}f@ aNuNalal gl Na). GI=)-5-7:Naluls i@z
(mop@pooB @j\gm FEE A S ﬁ\g clalalcl-GEG) - GIE) -7 -Naf=]= D/@ﬁ
(mlalaNaNalal g NulaNuluaNaNuNal g -NulNulafaRalaN=N=0-Nals R ls EY'/D/ET\\EI\]ZKjj@)ﬁgﬂjﬂﬂ: B © :jEJ

Fig. 4. An example of the development of a parity circuit. lEéine shows the phenotype graph at a given time step. Thegfiegth solves the 2-input
parity, the second solves 3-input and continues to 7-bite draph has been tested to generalise through to 24 inphitspattern of growth is typical of
the programs investigated.

No. Of Inputs % that generalise] Total perc. that . . .
P i Step generaﬁ’ise by this copied nodes, after insertion a(yo.y:), wherey, andy,
stage denote its inputs. In this case of even-3 parity this “module

2 0.00 0.00 has two outputsgy and 0. This is shown in figure 5(b).
2 269.28 (1)'1?25 It is apparent that the structure of the leftmost ith copied
5 23.30 34.95 modules is given byM;(yo,y1) = x; : yo @ y1, where the
6 24.27 59.22 colon denotes the two outputs of the module. We can see
; %‘?6 ;i;g this because the INP function inside provides a new program
9 3.88 85.44 input each time it is called (we begin at 0) and the BXOR
10 4.85 90.29 inside provides the EXOR of the two inputs. The general
i% (1):3‘71 gg:gg case has the form of a series of- 2 copied modules)M,
13 1.94 95.15 connected to the even-2 parity functiéh This is shown in
14 0.00 95.15 5(c). Thus the general parity solution is obtained.
15 0.00 95.15
16 0.00 95.15
17 1.94 97.09 VIIl. CONCLUSIONS
18 0.00 97.09 e o .
19 1.94 99.03 We argue that self-modification is a unifying view of
20 0.97 100.00 development. Multi or single cellular systems and re-wgti

TABLE VI systems can all be seen as forms of self-modification. In

PERCENTAGE OF SOLUTIONS THAT GENERALISE AT A GIVEN INPUT size ~ Multi-cellular systems, the cells modify the collectiorcetls

(i.e. through self-replication and differentiation). Imgle-

celled systems running a GRN, the genetic code changes

which pieces of code are expressed over time so that the
BOR (the third node from the left). Now consider what‘genetic program” being run changes over time.
happens when we carry out this operation (shown in figure Self modifying Cartesian Genetic Programming has a
5(b). The input denoted of the even-2 parity function now number of virtues. Cartesian GP is a general method for
activates the INP node of the duplicated code and ithe program evolution and SMCGP builds on that because at
input activates the BXOR input (immediately on its right).each iteration it represents a CGP graph. So in that sense
The input makes: equal toxy. The inputs to the BXOR SMCGP is a general computational developmental system.
function are actually 11 nodes back (first) and ten nodes bagkis is, in our view, one of the key strengths of the approach.
(second), in this case they both reach beyond the end of tiie have presented an improved version of SMCGP and
graph and are therefore zero. Thus theput to B is zero demonstrated that it can solve arbitrary parity problerns. |
and we obtain even-3 parity. We denote the sub-function efas also shown to require less computational effort to solve

22 nodes back

"

14 nodes back

X, X,

xoxel

i iy

xoxelev

[

xoxeleveu

xoxelev

0 ™MF%
0—401}-0

22 nodes back

11 nodes back

10 nodes back

TR oz

3

14 nodes back

o]

iy

il]

X, —

x"'4_ M — "'n-3 = j=n-1
j=n-5 j=n-4 B - szi)®]
EB_chi — 1’1—3 _@Zoxi — =0

J= =

Fig. 5. The general solution for n even parity. See sectionG/for discussion.

parity functions than either CGP or modular CGP. We havg2] M. L. Wong and K. S. Leung, “Evolving recursive functmrfor
applied it to a number of other problems with excellent
results and these will be published in due course.

(1]

(2]
(3]

(4]

(5]

(6]
[7]

(8]
9]

(10]

[11]

REFERENCES

W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, 5,Kp Lefort,
J. F. Miller, M. Radman, and J. J. Ramsden, “From artificialetion
to computational evolution: A research agenddlature Reviews
Genetics, vol. 7, pp. 729-735, 2006.

G. Kampis, Saf-modifying Systems in Biology and Cognitive Science.
Pergamon Press, 1991.

L. Spector and K. Stoffel, “Ontogenetic programmingyf Genetic
Programming 1996: Proceedings of the First Annual Conference, J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Stamfo
University, CA, USA: MIT Press, 28-31 1996, pp. 394-399.

F. Gruau, “Neural network synthesis using cellular efing and the
genetic algorithm.” Ph.D. dissertation, Laboratoire deférmatique
du Parallilisme, Ecole Normale Supirieure de Lyon, Frai@94.

J. F. Miller and P. Thomson, “A developmental method foowing
graphs and circuits.” ihCES ser. Lecture Notes in Computer Science,
A. M. Tyrrell, P. C. Haddow, and J. Torresen, Eds., vol. 2606.
Springer, 2003, pp. 93-104.

S. Kumar and P. Bentleypn Growth, Form and Computers. Academic
Press, 2003.

S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modiflg cartesian
genetic programming,” iIGECCO ’'07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, D. Thierens, H.-
G. Beyer, and et al, Eds., vol. 1. London: ACM Press, 7-112007,
pp. 1021-1028.

J. R. Koza,Genetic Programming I1: Automatic Discovery of Reusable
Programs. Cambridge Massachusetts: MIT Press, 1994.

J. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection. Cambridge, Massachusetts, USA: MIT Press,
1992.

R. Poli and J. Page, “Solving high-order boolean papityblems with
smooth uniform crossover, sub-machine code gp and der@esetic
Programming and Evolvable Machines, vol. 1, no. 1-2, pp. 37-56,
2000.

L. Huelsbergen, “Finding general solutions to the fyaproblem by
evolving machine-language representations,Gemetic Programming
1998: Proceedings of the Third Annual Conference, J. R. Koza,
W. Banzhaf, and et al., Eds. University of Wisconsin, Madiso
Wisconsin, USA: Morgan Kaufmann, 22-25 Jul. 1998, pp. 158-1

[13]

[14]

[15]

[16]

[17]

(18]

[19]

the even-parity problem using genetic programming,Agvances in
Genetic Programming 2, P. J. Angeline and K. E. E. Kinnear, Jr., Eds.
Cambridge, MA, USA: MIT Press, 1996, ch. 11, pp. 221-240.

M. L. Wong and T. Mun, “Evolving recursive programs bying
adaptive grammar based genetic programmit@gfietic Programming
and Evolvable Machines, vol. 6, no. 4, pp. 421-455, 2005.

T.-H. Hoang, R. McKay, D. Essam, and X. H. Nguyen, “Degghen-
tal evaluation in genetic programming: A position papérdntiersin
the Convergence of Bioscience and Information Technologies, 2007.
FBIT 2007, pp. 773-778, Oct. 2007.

T. G. Gordon and P. J. Bentley, “Development brings auifity to
hardware evolution,” irEH ’'05: Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 272-279.

J. F. Miller and P. Thomson, “Cartesian genetic prograng,” in Proc.
of EuroGP 2000, ser. LNCS, R. Poli and W. Banzhaf, et al.,, Eds., vol.
1802. Springer-Verlag, 2000, pp. 121-132.

V. K. Vassilev and J. F. Miller, “The advantages of lacaige neutrality
in digital circuit evolution,” inProc. of ICES. Springer-Verlag, 2000,
vol. 1801, pp. 252-263.

T. Yu and J. Miller, “Neutrality and the evolvability dfoolean function
landscape,” irProc. of EuroGP 2001, ser. LNCS, J. F. Miller and M. T.
et al., Eds., vol. 2038. Springer-Verlag, 2001, pp. 204-217

J. A. Walker and J. F. Miller, “Investigating the penfsance of
module acquisition in cartesian genetic programming,”GBECCO
'05: Proceedings of the 2005 conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2005, pp. 1649-1656.

