
Self Modifying Cartesian Genetic Programming: Parity

S. Harding, J. F. Miller and W. Banzhaf

Abstract— Self Modifying CGP (SMCGP) is a developmental
form of Cartesian Genetic Programming(CGP). It differs from
CGP by including primitive functions which modify the pro-
gram. Beginning with the evolved genotype the self-modifying
functions produce a new program (phenotype) at each iteration.
In this paper we have applied it to a well known digital circuit
building problem: even-parity. We show that it is easier to solve
difficult parity problems with SMCGP than either with CGP or
Modular CGP, and that the increase in efficiency grows with
problem size. More importantly, we prove that SMCGP can
evolve general solutions to arbitrary-sized even parity problems.

I. I NTRODUCTION

In biology, the process of transformation from genotype
to phenotype is a complex interaction in which a genotype,
together with the cellular machinery and the environment
gives rise to a stage of the phenotype, which itself influences
the decoding of the genotype for the next stage [1]. One can
regard this process as one of self-modification which could
take place both at the genotype or cellular level. Implicit in
this notion is the concept of time or iteration. Accordingly,
we define development to be the time-dependent process
whereby genotype and phenotype, in interaction with each
other and an external environment, produce a phenotype that
can be selected for. This definition allows us to include many
forms of development, such as models of genetic regulation,
graph re-writing, and self-modification. It is our belief that
self-modification is an interesting and unifying way to look
at development. For instance, we can look at multi-cellular
development as a process in which a phenotype modifies
itself over time. We can also view development from the per-
spective of a single cell, where the genetic regulatory systems
are a mechanism for development whereby a cell modifies
its own phenotype through genetic self-modification over
time. Kampis [2] has conducted an impressive philosophical
analysis of the notion and importance of self-modification in
biology and its relevance to ‘emergent computation’.

In evolutionary computation, the idea of self-modification
was discussed in the ontogenetic programming system of
Spector and Stoffel [3], the graph re-writing system of Gruau
[4] and the developmental method of evolving graphs and
circuits of Miller [5]. Recently, however, much work in com-
putational development has focused at a multi-cellular level
and the aim has been to show that evolution could produce
developmental cellular programs that could construct various
cellular patterns (i.e. flags, or spheres, etc) [6]. Furthermore,
another important aim has been to demonstrate that evolving
developmental programs are a better way to evolve systems
with an arbitrarily large number of parts than to directly
evolve a genetic representation of such a system. While the
former is an interesting goal, it is notexplicitly computational

in that often one must apply some other mapping process
from the developed cellular structure into a computation.

In our previous work we showed that by utilizing self-
modification operations within an existing computational
method (a form of genetic programming, called Cartesian
Genetic Programming, CGP) we could obtain a system that
(a) could develop over time in interaction with environmental
inputs and (b) would at every stage provide a computational
function [7]. It could stop its own development, if required,
without external input. Thus, if the computational task did
not require development, evolution could decide for itself
not to allow it. Another interesting feature of the approach
is that, in principle, programs could be evolved which allow
the replication of the original code. In this paper we have
improved on our former work in SMCGP by concentrating
on the scalability problem. Can evolution be used to produce
arbitrarily large structures that representprovably general so-
lutions to computational problems? We answer this question
in the affirmative for the case of evolving a general solution
to even parity (i.e. we obtain a program that can build a
parity circuit for an arbitrary number of inputs). We have
also compared the computational efficiency of this approach
to non-developmental methods that use the same Cartesian
genetic representation and we show that self-modifying CGP
is more efficient.

II. RELATED WORK

Parity is a well studied problem in Genetic Programming.
Koza tackled up to 11-parity [8] using a GP system with
automatically defined functions (ADFs), and found them
difficult to evolve. Without ADFs, his approach failed to
evolve circuits beyond 5 inputs [9].

In [10] very large parity circuits, with 22-inputs, are
directly evolved. The authors describe three different ap-
proaches to solving the problem using a novel crossover op-
erator, a submachine code level representation and a parallel
population approach. This appears to be the largest, directly
evolved parity circuit in the literature.

Other approaches have looked at finding general solutions.
For example, in [11] machine language level programs were
evolved that could iterate over the bits in a string and could
be easily determine parity. The solutions would be suitable
for any length bit string. Recursion has also been successfully
used to solve the parity problem [12], [13]. These approaches
produced programs rather than circuits to solve the problem.
In contrast, the technique presented in this paper evolves
programs that produce circuits.

An early developmental form of CGP successfully solved
circuits up to 5 inputs [5]. However, none of the evolved
solutions appeared to generalize. In [7], Self Modifying CGP



was demonstrated for the first time, and parity circuits of
up to 8-inputs were evolved. It was shown that SMCGP
outperformed the best known results for a CGP based im-
plementation.

Another developmental system uses L-systems to generate
a grammar for modifying GP trees [14]. This approach
is similar in concept to [7]. Circuits of up to 12-inputs
were evolved with high success. The authors also found
that the developmental approach was superior to previous,
similar representations. [15] evolved artificial protein rules
that configured FPGA blocks. The evolved rules were a form
a pattern matching that could be iterated, with the rules
behaviour depended on the matching of proteins at each time
step. Again, circuits of up to 12-inputs were evolved. In
contrast, the authors were unable to evolve circuits larger
than 4 inputs using a direct encoding.

III. SELF MODIFYING CGP

A. Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming was originally developed
by Miller and Thomson [16] for the purpose of evolving
digital circuits and represents a program as a directed graph
One of the benefits of this type of representation is the
implicit re-use of nodes in the directed graph.

Originally CGP used a program topology defined by a
rectangular grid of nodes with a user defined number of rows
and columns. However, later work on CGP always chose the
number of rows to be one, thus giving a one-dimensional
topology, as used in this paper. In CGP, the genotype is a
fixed-length representation and consists of a list of integers
which encode the function and connections of each node in
the directed graph.

CGP uses a genotype-phenotype mapping that does not
require all of the nodes to be connected to each other,
resulting in a bounded variable length phenotype. This allows
areas of the genotype to be inactive and have no influence on
the phenotype, leading to a neutral effect on genotype fitness
called neutrality. This type of neutrality has been investigated
in detail [16], [17], [18] and found to be extremely beneficial
to the evolutionary process on the problems studied.

Fig. 1. The genotype maps directly to the initial graph of thephenotype.
The genes control the number, type and connectivity of each of the nodes.
The phenotype graph is then iterated to perform computationand produce
subsequent graphs.

B. SMCGP

In this paper, we use a slightly different genotype repre-
sentation to previously published work using CGP.

Each node in the directed graph represents a particular
function and is encoded by a number of genes. The first
gene encodes the function the node is representing. This is
followed by a number of connection genes (as in CGP) that
indicate the location in the graph where the node takes its
inputs from. Then three real-valued genes encode parameters
required for the function. Finally there is a binary gene that
indicates if the node should be used as an output. In this
paper all nodes take two inputs, hence each node is specified
by 7 genes. An example genotype is shown in Figure 1.

As in CGP, nodes take their inputs in a feed-forward
manner from either the output of a previous node or from a
program input (terminal). The actual number of inputs to
a node is dictated by the arity of its function. However,
unlike previous implementations of CGP, nodes are addressed
relatively and specify how many nodes back in the graph they
are connected to. Hence, if the connection gene is 1 it means
that the node will connect to the previous node in the list, if
the gene has value 2 then the node connects 2 nodes back and
so on. All such genes are constrained to be greater than 0,
to avoid nodes referring directly or indirectly to themselves.

If a gene specifies a connection pointing outside of the
graph, i.e. with a larger relative address than there are nodes
to connect to, then this is treated as connecting to zero value.
Inputs arise in the graph through special functions. This is
described in section III-C.

This encoding is demonstrated visually in Figure 2. The
relative addressing used here attempts to allow for sub-graphs
to be placed or duplicated in the graph whilst retaining
their semantic validitity. This means that sub-graphs could
represent the same sub-function, but acting on different
inputs.

Each node in the SMCGP graph is defined by a function
that is represented internally as an integer. Associated with
each function are genes denoting connected nodes and also
a set of parameters that influence the function’s behavior.
These parameters are primarily used by functions that per-
form modification to the phenotype’s graph. In the genotype
they are represented as real numbers but certain functions
can require that they be cast (truncated) to integers.

Section V details the available functions and any associ-
ated parameters.

C. Inputs and outputs

The way we handled inputs in our original paper on
SMCGP was flawed. It did not scale well as sub-graphs
became disconnected from inputs, because self-modifying
functions moved them away from the beginning of the
graph causing them to lose their semantic validity. The new
input strategy we devised, required two simple changes from
conventional CGP and our previous work in SMCGP.

The first, was to make all negative addressing return
false (or 0 for non-binary versions of SMCGP). In previous



Fig. 2. Example program execution. Showing the DUP(licate)operator being activated, and inserting a copy of a section of the graph (itself and a
neighboring functions on either side) elsewhere in the graph in next iteration. Each node is labeled with a function, therelative address of the nodes to
connect to and the parameters for the function (see Section III-D).

work[7], we used negative addresses to connect nodes to
input values.

The second was to change how the INPUT function works.
When a node is of type INP (shorthand for INPUT), each
successive call gets the next input from the available set of
inputs. If the INP node is called more times than there are
inputs, the counting starts from the beginning again, and the
first node is used.

Outputs are handled slightly differently to inputs. We
added another gene to the SMCGP node that defines if the
phenotype should attempt to use that node as an output. In
previous work, we used the last n-nodes in the graph to
represent the n-outputs. However, as with the inputs, we felt
this approach did not scale as the graph changes size. When
an individual is evaluated, the first stage is to identify the
nodes in the graph that have their output gene set to 1. Once
these are found, the graph can be evaluated from each of
these nodes in a recursive manner.

If no nodes are flagged as outputs, the last n nodes in
the graph are used as the n-outputs. Essentially, this reverts
the system back to the previous approach. If there are more
nodes flagged as outputs than are required, then the leftmost
nodes that have flagged outputs are used until the required
number of outputs is reached. If there are fewer nodes in the
graph than required outputs, the individual is deemed to be
corrupt and it is not evaluated (it is given a bad fitness score
to ensure that it is not selected for).

D. Evaluation of the SMCGP graph

From a high level perspective, when a genotype is evalu-
ated the process is as follows. The initial phenotype is a copy
of the genotype. This graph is then executed, and if there are
any modifications to be made, they alter the phenotype graph.

Technically, we consider the genotype invariant during the
entire evaluation of the individual and perform all modifica-
tions on the phenotype which started out as a copy of the
genotype. In subsequent iterations, the phenotype will usually
gradually diverge from the genotype.

The encoded graph is executed in the same manner as stan-
dard CGP, but with changes to allow for self-modification.

The graph is executed by recursion, starting from the output
nodes down through the functions, to the input nodes. In this
way, nodes that are unconnected are not processed and do
not effect the behavior of the graph at that stage.

For function nodes (e.g. AND, OR, XOR) the output value
is the result of the mathematical operation on input values.

Each active (non-junk) graph manipulation function (start-
ing on the leftmost node of the graph) is added to a “To
Do” list of pending modifications. After each iteration, the
“To Do” list is parsed, and all manipulations are performed
(provided they do not exceed the number of operations
specified in the user defined “To Do” list length). The parsing
is done in order of the instructions being appended to the list,
i.e. first in is first to be executed.

The length of the list can be limited as manipulations are
relatively computationally expensive to perform. Here we
limit the length to just 2 instructions. There is a single “To
Do” list for evaluation of each individual, and hence sub-
procedures also share the same list. All graph manipulation
functions require a number of parameters, as described in
section V. These parameters are encoded in the genotype,
and the necessary casts are made when the “To Do” list is
parsed.

IV. EVOLUTIONARY ALGORITHM AND PARAMETERS

We use an (1+4) evolutionary strategy for the experiments
in this paper. We bootstrap the process by testing a population
of 50 random individuals. We then select the best individual
and generate four offspring. We test these new individuals,
and use the best of these to generate the next population.

We have used a relatively high (for CGP) mutation rate
of 0.1. This means that each gene has a probability of
0.1 of being mutated. SMCGP, like normal CGP, allows
for different mutation rates to effect different parts of the
genotype (for example functions and connections could have
different mutation rates). In these experiments, for simplicity,
we chose to make all the rates the same. Mutations for the
function type and relative addresses themselves are unbiased;
a gene can be mutated to any other valid value.

For the real-valued genes, the mutation operator can



choose to randomize the value (with probability 0.1) or add
noise (normally distributed, sigma 20).

Evolution is limited to 10,000,000 evaluations. Trials that
fail to find a solution in this time are considered to have
failed.

The evolutionary parameter values have not been opti-
mized, and we would expect performance increases if more
suitable values were used.

V. FUNCTION SET

The function set is defined in two parts. The first is a set of
modification operators, as described in section V. These are
common to all data types used in SMCGP. The remainder of
the set are the computational operations. The data type these
functions manipulate is determined by the problem definition.
Here, the data is binary strings. The complete set of available
binary operators are defined in table I. Depending on the
experiment, different sub-sets of this set are used.

Self modifying functions are typically defined by 4 vari-
ables. The genotype (and phenotype) nodes contain three
double precision numbers, called “parameters”. In the follow-
ing discussion we denote theseP0,P1,P2. The other variable
is the integer position of the node in the phenotype graph
that contained the self modifying function (i.e. the leftmost
node is position 0), we denote thisx. In the definitions of
the SM functions we often need to refer to the values taken
by node connection genes (which are all relative addresses).
We denote thejth connection gene on node at positioni, by
cij .
There are several rules that decide how addresses and pa-
rameters are treated:

• WhenPi are added to thex, the result is treated as an
integer.

• Address indexes are corrected if they are not within
bounds. Addresses below 0 are treated as 0. Addresses
that reach beyond the end of the graph are truncated to
the graph length.

• Start and end indexes are sorted into ascending order
(if appropriate).

• Operations that are redundant (e.g. copying 0 nodes)
are ignored, however they are taken into account in the
ToDo list length.

The functions (with the short-hand name) are defined as
follows:

Duplicate and scale addresses (DU4) Starting from posi-
tion (P0 + x) copy (P1) nodes and insert after the node at
position (P0 +x+P1). During the copy,cij of copied nodes
are multiplied byP2.

Shift Connections (SHIFTCONNECTION) Starting at node
index (P0 + x), addP2 to the values of thecij of next P1.

ShiftByMultConnections (MULTCONNECTION) Starting
at node index (P0 + x), multiply thecij of the nextP1 nodes
by P2.

Move (MOV) Move the nodes between (P0 +x) and (P0 +
x + P1) and insert after (P0 + x + P2).

Duplication (DUP) Copy the nodes between (P0 +x) and
(P0 + x + P1) and insert after (P0 + x + P2).

DuplicatePreservingConnections (DU3) Copy the nodes
between (P0 + x) and (P0 + x + P1) and insert after (P0 +
x+P2). When copying, this function modifies thecij of the
copied nodes so that they continue to point to the original
nodes.

Delete (DEL) Delete the nodes between (P0+x) and (P0+
x + P1).

Add (ADD) Add P1 new random nodes after (P0 + x).

Change Function (CHF) Change the function of nodeP0

to the function associated withP1.

Change Connection (CHC) Change the(P1mod3)th con-
nection of nodeP0 to P2.

Change Parameter (CHP) Change the(P1mod3)th param-
eter of nodeP0 to P2.

Overwrite (OVR) Copy the nodes between (P0 + x) and
(P0 + x + P1) to position (P0 + x + P2), replacing existing
nodes in the target position.

Copy To Stop (COPYTOSTOP) Copy from x to the next
“COPYTOSTOP” function node, “STOP” node or the end
of the graph. Nodes are inserted at the position the operator
stops at.

Function Operation
BAND a AND b
BOR a OR b
BNAND NOT (a AND b)
BXOR a XOR B
BNOR NOT (a OR b)
BNOT NOT a
BIAND (NOT a) AND b
BF0 FALSE
BF1 (a AND b)
BF2 a AND (NOT b)
BF3 (a AND (NOT b)) or (a AND b)
BF4 (NOT a) AND b
BF5 ((NOT a) AND b) OR (a AND b)
BF6 ((NOT a) AND b) OR (a AND

(NOT b))
BF7 ((NOT a) AND b) OR (a AND

NOT(b)) OR (a AND b)
BF8 ((NOT a) AND (NOT b))
BF9 ((NOT a) AND (NOT b)) OR (a

AND b)
BF10 ((NOT a) AND (NOT b)) OR (a

AND NOT (b))
BF11 ((NOT a) AND (NOT b) OR a

AND (NOT b) OR a AND b)
BF12 ((NOT a) AND (NOT b) OR (NOT

a) AND b)
BF13 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND b)
BF14 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND (NOT b))
BF15 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND (NOT b) OR
a AND b)

TABLE I

BINARY FUNCTIONS



VI. EXPERIMENTAL SETUP

A. Fitness function

Fitness is computed as the number of correctly predicted
bits over all test cases. The fitness function used here tests
the program to produce various sized parity circuits during
development. In the first iteration, it tests for 2 input parity,
then 3 input parity and continues up to a maximum number of
inputs. If the candidate solution fails to find a totally correct
solution for a given input size, it is not tested on other input
sizes - allowing the process to abort development and save
CPU time. We define each of these circuit sizes to be one
test case. We evolve for 18 test cases (2 inputs to 20 inputs).

The fitness function is designed to force the SMCGP to
find a solution that grows through each test case to the
next. In this way, the chance of finding a general solution
is maximised.
The fitness function can be summarized as:

• For each individual:

– For each test case (2 to 20 inputs):

∗ Take the genotype.
∗ Iterate it (inputs− 2 times)
∗ Apply input bit patterns
∗ Count incorrect outputs, and add to fitness sum
∗ If fails to solve test case, continue to next

individual.

VII. R ESULTS

A. Restricted function set

First, we evolved even parity functions from 2 inputs to
20 inputs using Boolean functions: AND, OR, NAND and
NOR.

Table II shows the average number of evaluations required.
We obtained100% success rate for evolving to 18 test cases
(up to 20 inputs). This is a substantial improvement over our
earlier published results where, after 5 inputs the successrate
dropped below100% [7]. From the results, it can be seen
that the number of evaluations required to solve for a given
size stablises to approximately 318,000 evaluations. Thisis
because “general” solutions are often discovered by the time
even 6 parity is solved, and therefore solutions for larger
circuits do not need to be found by evolution.

Table III shows a comparison between other CGP imple-
mentations. The speed up values show the relative perfor-
mance in terms of evaluations. A value above 1 indicates
SMCGP performs better. The results show that for smaller
sizes, SMCGP is slower to evolve than the previous tech-
niques. For parity problems with more than 6 inputs, SMCGP
starts to perform better. It is important to note that these
other techniques do not report results beyond 8 inputs and
that the fitness function is different. We believe that the task
of finding a program that grows these circuits should be
substantially more difficult.

No. Of Inputs Average Evaluations
2 126,095
3 289,824
4 308,643
5 309,990
6 311,022
7 313,489
8 313,978
9 314,056
10 317,700
11 317,712
12 317,931
13 317,936
14 317,941
15 317,950
16 317,960
17 317,965
18 317,979
19 317,994
20 317,999

TABLE II

EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE, USING THE

RESTRICTED FUNCTION SET OFAND, OR, NAND AND NOR.

B. Full function set

We repeated the experiment but with a full function set
(BF0 to BF15) so that we could compare with [10].

Table IV shows the number of evaluations required to
evolve a given sized even parity circuit. Care should be taken
when comparing to other results in the literature, as we are
solving a subtly different problem. Our aim is to evolve a
program that can produce a parity circuit for a given size -
and all smaller sizes. Other approaches typically aim to find
a circuit for a given number of inputs; which probably makes
the problem easier, as their goals are a proper subset of ours.

Next, we investigated the scaling properties of the parity
circuit. We evolved to 20 bits of input and then tested
exhaustively to 24 bits of input. We find that solutions are
often able to scale to solve larger problems beyond what
they were evolved to solve. Table V shows the percentage of
solutions that were able to solve these additional problems.
See section VII-C for a more detailed investigation into the
generality of an individual.

We investigated the stage at which solutions start to act as
“general” solutions. By general we mean that they can solve
all subsequent test sizes up to 20 bits of input. We see that
some solutions can generalise after solving for just 2 inputs
cases (i.e. have been evolved to solve both 2 and 3 bits).
Table VI shows the percentage of solutions that generalise
to all 18 test sizes both at a given point, and cumulatively.
We see that the majority of the “general” solutions are found
between 5 and 7 bits of input. This explains why table IV
shows a stablisation in the number of evaluations required
to find a solution. On average, it takes until 12 inputs for
general solutions to emerge.

Results presented here are based on 251 runs.
We found that for the majority of the runs, the graph size

consistently increases in size. However, for some runs the
graph size does not maintain constant growth and either



Average Evaluations Speedup
Inputs SMCGP SMCGP 2007 CGP ECGP Vs. SMCGP2007 Vs.CGP Vs. ECGP

4 308,643 28,811 81,728 65,296 0.09 0.26 0.21
5 309,990 58,194 293,572 181,920 0.19 0.95 0.59
6 311,022 199,256 972,420 287,764 0.64 3.13 0.93
7 313,489 410,128 3,499,532 311,940 1.31 11.16 1.00
8 313,978 1,080,656 10,949,256 540,224 3.44 34.87 1.72

TABLE III

COMPARISON TO PREVIOUSCGPBASED TECHNIQUES, USING THE RESTRICTED FUNCTION SET OFAND, OR, NAND AND NOR. SMCGP2006 =

FIRST SMCGPPAPER[7]. ECGP = EMBEDDED CGP [19]. CGP = NORMAL CGP [7]

reduces in size or remains constant. Figure 3 shows the
behaviour trends as a whole.

Fig. 3. Plot showing the average, maximum and minimum graph length of
the SMCGP phenotype as it iterates with number of inputs (forthe parity
problem).

C. Generality

It is computationally very expensive to evaluate individuals
greater than 24-inputs, therefore a method is needed to either
prove generality, or, provide a high degree of confidence
that a solution is general. A general solution is defined as
a program that when iterated will always produce the next
sized parity solution. We show that this is indeed the case
for one example.

Consider the individual illustrated in figure 4. Here we
prove that it is indeed the general solution to even-parity.
To begin with we need to show that the first case at the top
of the figure computes even-2 parity. In 5(a) we provide an
annotated version showing the outputs of the active nodes.
The leftmost active node is an INP which returnsx0, the next
call to INP returnsx1. These both connect to the leftmost
BXOR node which computes the binary EXOR of these
inputs. Two identical outputs from this BXOR are provided
as input to the function BNOR, this inverts the input (we
have denoted this as carrying out EXORing with 1). This
output is then provided as the first input to BXOR. We have
denoted the second input to this function asv (which in this

No. Of Inputs Average Evaluations
2 1,429
3 4,013
4 8,656
5 19,894
6 43,817
7 71,857
8 82,936
9 102,868
10 107,586
11 104,343
12 108,356
13 118,790
14 121,835
15 118,477
16 114,116
17 110,216
18 110,223
19 110,255
20 110,262

TABLE IV

EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE.

No. Of Inputs % Solution
21 97.1
22 96.1
23 96.1
24 96.0

TABLE V

PERCENTAGE OF SOLUTIONS THAT GENERALISE TO VARIOUS,

UN-EVOLVED INPUT LENGTHS.

case is zero, as the connection reaches 14 nodes back, which
is beyond the first node of the graph). Thus the output is now
x0 ⊕ x1 ⊕ 1 ⊕ v. The DUP function is a self-modification
instruction and is defined to return the first input, hence it
outputs this quantity. The final (rightmost) active node is
also BXOR and this EXORs with inputu (which is 22
nodes back, which is again beyond the end of the graph
so returns zero). Thus the graph outputsB(x0, x1, u, v) =
x0 ⊕x1 ⊕ 1⊕ v⊕u. In this case this reduces tox0 ⊕x1⊕ 1,
which is the even-2 parity function.

Now we discuss the effect of the DUP operation, which
happens, in this case, to be the only active self modifying
node. This copies the 9 nodes on its left and itself (shown
within the box shown in figure 5(a). It inserts these nodes
twelve nodes back from itself. That is just before the node



Fig. 4. An example of the development of a parity circuit. Each line shows the phenotype graph at a given time step. The firstgraph solves the 2-input
parity, the second solves 3-input and continues to 7-bits. The graph has been tested to generalise through to 24 inputs. This pattern of growth is typical of
the programs investigated.

No. Of Inputs % that generalise
at this step

Total perc. that
generalise by this
stage

2 0.00 0.00
3 0.97 0.97
4 10.68 11.65
5 23.30 34.95
6 24.27 59.22
7 14.56 73.79
8 7.77 81.55
9 3.88 85.44
10 4.85 90.29
11 1.94 92.23
12 0.97 93.20
13 1.94 95.15
14 0.00 95.15
15 0.00 95.15
16 0.00 95.15
17 1.94 97.09
18 0.00 97.09
19 1.94 99.03
20 0.97 100.00

TABLE VI

PERCENTAGE OF SOLUTIONS THAT GENERALISE AT A GIVEN INPUT SIZE.

BOR (the third node from the left). Now consider what
happens when we carry out this operation (shown in figure
5(b). The input denotedu of the even-2 parity function now
activates the INP node of the duplicated code and thev

input activates the BXOR input (immediately on its right).
The input makesu equal tox0. The inputs to the BXOR
function are actually 11 nodes back (first) and ten nodes back
(second), in this case they both reach beyond the end of the
graph and are therefore zero. Thus thev input to B is zero
and we obtain even-3 parity. We denote the sub-function of

copied nodes, after insertion asM(y0, y1), wherey0 andy1

denote its inputs. In this case of even-3 parity this “module”
has two outputs,x0 and 0. This is shown in figure 5(b).
It is apparent that the structure of the leftmost ith copied
modules is given byMi(y0, y1) = xi : y0 ⊕ y1, where the
colon denotes the two outputs of the module. We can see
this because the INP function inside provides a new program
input each time it is called (we begin at 0) and the BXOR
inside provides the EXOR of the two inputs. The general
case has the form of a series ofn − 2 copied modules,M ,
connected to the even-2 parity functionB. This is shown in
5(c). Thus the general parity solution is obtained.

VIII. C ONCLUSIONS

We argue that self-modification is a unifying view of
development. Multi or single cellular systems and re-writing
systems can all be seen as forms of self-modification. In
multi-cellular systems, the cells modify the collection ofcells
(i.e. through self-replication and differentiation). In single-
celled systems running a GRN, the genetic code changes
which pieces of code are expressed over time so that the
“genetic program” being run changes over time.

Self modifying Cartesian Genetic Programming has a
number of virtues. Cartesian GP is a general method for
program evolution and SMCGP builds on that because at
each iteration it represents a CGP graph. So in that sense
SMCGP is a general computational developmental system.
This is, in our view, one of the key strengths of the approach.
We have presented an improved version of SMCGP and
demonstrated that it can solve arbitrary parity problems. It
was also shown to require less computational effort to solve



Fig. 5. The general solution for n even parity. See section VII-C for discussion.

parity functions than either CGP or modular CGP. We have
applied it to a number of other problems with excellent
results and these will be published in due course.

REFERENCES

[1] W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, F. Kps, V. Lefort,
J. F. Miller, M. Radman, and J. J. Ramsden, “From artificial evolution
to computational evolution: A research agenda,”Nature Reviews
Genetics, vol. 7, pp. 729–735, 2006.

[2] G. Kampis,Self-modifying Systems in Biology and Cognitive Science.
Pergamon Press, 1991.

[3] L. Spector and K. Stoffel, “Ontogenetic programming,” in Genetic
Programming 1996: Proceedings of the First Annual Conference, J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Stanford
University, CA, USA: MIT Press, 28–31 1996, pp. 394–399.

[4] F. Gruau, “Neural network synthesis using cellular encoding and the
genetic algorithm.” Ph.D. dissertation, Laboratoire de l’Informatique
du Parallilisme, Ecole Normale Supirieure de Lyon, France,1994.

[5] J. F. Miller and P. Thomson, “A developmental method for growing
graphs and circuits.” inICES, ser. Lecture Notes in Computer Science,
A. M. Tyrrell, P. C. Haddow, and J. Torresen, Eds., vol. 2606.
Springer, 2003, pp. 93–104.

[6] S. Kumar and P. Bentley,On Growth, Form and Computers. Academic
Press, 2003.

[7] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modifying cartesian
genetic programming,” inGECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, D. Thierens, H.-
G. Beyer, and et al, Eds., vol. 1. London: ACM Press, 7-11 Jul.2007,
pp. 1021–1028.

[8] J. R. Koza,Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge Massachusetts: MIT Press, 1994.

[9] J. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection. Cambridge, Massachusetts, USA: MIT Press,
1992.

[10] R. Poli and J. Page, “Solving high-order boolean parityproblems with
smooth uniform crossover, sub-machine code gp and demes,”Genetic
Programming and Evolvable Machines, vol. 1, no. 1-2, pp. 37–56,
2000.

[11] L. Huelsbergen, “Finding general solutions to the parity problem by
evolving machine-language representations,” inGenetic Programming
1998: Proceedings of the Third Annual Conference, J. R. Koza,
W. Banzhaf, and et al., Eds. University of Wisconsin, Madison,
Wisconsin, USA: Morgan Kaufmann, 22-25 Jul. 1998, pp. 158–166.

[12] M. L. Wong and K. S. Leung, “Evolving recursive functions for
the even-parity problem using genetic programming,” inAdvances in
Genetic Programming 2, P. J. Angeline and K. E. E. Kinnear, Jr., Eds.
Cambridge, MA, USA: MIT Press, 1996, ch. 11, pp. 221–240.

[13] M. L. Wong and T. Mun, “Evolving recursive programs by using
adaptive grammar based genetic programming,”Genetic Programming
and Evolvable Machines, vol. 6, no. 4, pp. 421–455, 2005.

[14] T.-H. Hoang, R. McKay, D. Essam, and X. H. Nguyen, “Developmen-
tal evaluation in genetic programming: A position paper,”Frontiers in
the Convergence of Bioscience and Information Technologies, 2007.
FBIT 2007, pp. 773–778, Oct. 2007.

[15] T. G. Gordon and P. J. Bentley, “Development brings scalability to
hardware evolution,” inEH ’05: Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 272–279.

[16] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
of EuroGP 2000, ser. LNCS, R. Poli and W. Banzhaf, et al.,, Eds., vol.
1802. Springer-Verlag, 2000, pp. 121–132.

[17] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutrality
in digital circuit evolution,” inProc. of ICES. Springer-Verlag, 2000,
vol. 1801, pp. 252–263.

[18] T. Yu and J. Miller, “Neutrality and the evolvability ofboolean function
landscape,” inProc. of EuroGP 2001, ser. LNCS, J. F. Miller and M. T.
et al., Eds., vol. 2038. Springer-Verlag, 2001, pp. 204–217.

[19] J. A. Walker and J. F. Miller, “Investigating the performance of
module acquisition in cartesian genetic programming,” inGECCO
’05: Proceedings of the 2005 conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2005, pp. 1649–1656.


