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A B S T R A C T

In today’s technology driven society, software is becoming increasingly important in more

areas of our lives. The domain of software extends beyond the obvious domain of computers,

tablets, and mobile phones. Smart devices and the internet-of-things have inspired the integra-

tion of digital and computational technology into objects that some of us would never have

guessed could be possible or even necessary. Fridges and freezers connected to social media

sites, a toaster activated with a mobile phone, physical buttons for shopping, and verbally

asking smart speakers to order a meal to be delivered. This is the world we live in and it is an

exciting time for software engineers and computer scientists. The sheer volume of code that is

currently in use has long since outgrown beyond the point of any hope for proper manual

maintenance. The rate of which mobile application stores such as Google’s and Apple’s have

expanded is astounding.

The research presented here aims to shed a light on an emerging field of research, called

Genetic Improvement (GI) of software. It is a methodology to change program code to improve

existing software. This thesis details a framework for GI that is then applied to explore fitness

landscape of bug fixing Python software, reduce execution time in a C++ program, and

integrated into a live system.

We show that software is generally not fragile and although fitness landscapes for GI are

flat they are not impossible to search in. This conclusion applies equally to bug fixing in small

programs as well as execution time improvements. The framework’s application is shown to

be transportable between programming languages with minimal effort. Additionally, it can be

easily integrated into a system that runs a live web service.

The work within this thesis was funded by EPSRC grant EP/J017515/1 through the DAASE

project. 1

1 http://daase.cs.ucl.ac.uk/
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1M O T I VAT I O N S F O R I M P R O V I N G P R O G R A M S A U T O M AT I C A L LY

1.1 introduction

In today’s technology driven society, software is becoming increasingly important in more

areas of our lives. The domain of software extends beyond the obvious domain of computers,

tablets, and mobile phones. Smart devices and the internet-of-things [83] have inspired the

integration of digital and computational technology into objects that some of us would never

have guessed could be possible or even necessary. Fridges and freezers connected to social

media sites, a toaster activated with a mobile phone, physical buttons for shopping, and

verbally asking smart speakers to order a meal to be delivered. This is the world we live

in and it is an exciting time for software engineers, computer scientists, and specifically GI

practitioners. The sheer volume of code that is currently in use has long since outgrown

beyond the point of any hope for proper manual maintenance. The rate of which mobile

application stores such as Google’s and Apple’s have expanded is astounding. From 2008 to

2015 both stores accumulated over 1 million applications [134] and most of them are regularly

updated with new features, fixes, and improvements. Some of these applications are updated

more than once a week [135]. In the last decade an academic field has rapidly risen with this

technological growth; Search Based Software Engineering (SBSE) and the related field of Search

Based Software Testing (SBST) emerged as well. The applicability of this research has not only

inspired the next generation of researchers but also grabbed the attention of the software

industry. Many of the methods and techniques stemming from SBSE have been consolidated in

standard and best practices, like e.g. mutation testing.

Ambitious ideas and industrial interest have since made the realisation of projects like

DAASE 1 possible. The ideas and research in this thesis aim to push further the boundaries

of what can be done with search-based approach to programming. Ideally we would like to

produce autonomous software, that maintains itself and dynamically adapts to its environment

but without making it sentient.

The main goals of this work are:

• to provide researchers with empirical evidence for the effectiveness of GI and convince

those that are still sceptical of the merits of GI for real-world live systems;

1 http://daase.cs.ucl.ac.uk/
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• to give developers tools to better cope with the challenges in today’s software environ-

ment;

• to increase the understanding of where and when GI is most effective.

1.2 genetic improvement

GI [154] is a growing area within SBSE [72, 76] which uses computational search methods to

improve existing software. Despite its growth within academic research the practical usage

of GI has not yet followed. Like with many SBSE methodologies, the software industry needs

an incubation period for new ideas where practitioners come to trust in outcomes and see

those ideas as cost effective solutions. GI is in the ideal position to shorten that period for

the latter as it presents a considerable cost decrease for the software lifecycle’s often most

expensive part: maintenance [121, 66]. There are examples of software improved by GI being

used and publicly available [113]. This is impressive considering how young GI is as a field. In

time it can be anticipated that we will see tools emerging that utilise current advances in GI

for various improvements during different stages of development: from early coding, where

programmers might want to statically monitor the performance of their work, to maintenance

and bug fixing [5]; automatically adding new functionality [132]; and adding new hardware

compatibility [105].

Traditionally the application of GI has been done offline where the original program is

copied, improved in a lab, and then the researchers have to convince developers to include

the improvements in later releases, if the researchers have the patience. However GI’s ultimate

goal must be self-improving and self-adaptive systems [74, 35, 42]. They have to include

minimal manual effort by the developers to truly optimise software maintenance costs.

Current research into self-improving systems, consists of early concepts [188, 31], identifying

applicable ideas [79], and highly specified but truly dynamic approach [213]. Adaptive systems

can be altered with changes in their environment, like turning of the wifi feature on a mobile

phone the battery is near empty. Those systems become dynamic adaptive when they do

those alterations automatically and as a response to the changes in the environment. The

research and methods are slowly approaching dynamic adaptive systems but the biggest

obstacle is getting the existing results to market. To achieve that we need to take it in steps,

starting by providing developers with tools before advancing to autonomous software. DAASE

(Dynamic Adaptive Automated Software Engineering)2 is a multiple site project that seeks to

use computational search methods to advance software engineering towards automation and

hence software towards dynamic adaptivity.

2 The author is funded by the EPSRC through the DAASE project, Grant EP/J017515/1
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1.3 thesis structure

The thesis is comprised of four parts:

• Part i (this part) details the motivation and explains the hypothesis along with the

research questions;

• Part ii gives an overview of current relevant literature;

• Part iii is the main body of work that represents my contribution to the field; and

• Part iv summarizes the results, contributions, flaws, and implications for future work.
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2H Y P O T H E S E S

2.1 introduction

This chapter defines the main Hypothesis that is central to the research. It will be separated

into three sub hypotheses, each with an accompanying research question that I will approach

individually.

The hypothesis is expressed in a specific way that can be demonstrated to likely be true

via experimental results that support each claim. However, as with the majority of scientific

processes, we cannot fully prove the hypothesis. I will present evidence and examples to

support or challenge our supposition. The answers to the three research questions will be

collected in Chapter 9 and used to support broader conclusions.

2.2 central hypothesis

The underlying hypothesis of the work presented here is:

Thesis Hypothesis GI can be used autonomously in software systems to decrease maintenance cost

and assist developers to improve various measurable properties of the software.

This hypothesis will be supported or refuted by addressing three paths of research and their

associated research questions.

• For research question 1, I explore the search landscape of bug fixing in small Python

programs.

• For research question 2, I explore the search landscape of execution time improvements

in larger C/C++ software.

• For research question 3, I integrate a GI component into a live system, written in Python,

so to make it semi-dynamically adaptive.

2.2.1 Small Programs’ Landscapes

Research Question 1 Can GI fix bugs in small programs, written in a dynamically typed language

and how does the GI interact with the search space?

5
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Smaller programs should present narrower search spaces and therefore, if an improved version

of the program exists, it should reside in the neighbourhood of the current one. When the

improvement is functional, like fixing a single bug, the competent programmer hypothesis [2, 45]

argues that the correct implementation is just a few edits away. The hypothesis states that

programmers release programs that are, if not correct then nearly correct. To make them

fully correct will only require few changes to the code, such as inserting or moving a single

statement, or changing a boolean expression from < to <=. With this assumption I explore the

landscape around a correct implementation and look at how fitness and GI edits are related

where the fitness is defined as number of test cases passed. This analysis will be conducted on

programs written in the Python language, which is dynamically typed so the structure is

less rigid than in statically typed languages. That might cause unexpected behaviour during

runtime, either beneficial or harmful. This analysis will provide insight into the search process

and serve as a step in GI’s development.

2.2.2 Execution Time Improvements

Research Question 2 Is it possible to implement GI in such way to be portable between different

source languages and different objectives and how does changing these impact on the search?

GI implementations have traditionally been used to target a specific language syntax and

larger programs where Lines of Code (LOC) is generally > 1K. To be considered portable the

user must be able to apply the same implementation on at least two different programming

languages. The user should only have to provide the original source code and an application

programming interface to evaluate variations of the software. Inherent in that statement is

that the objectives are merely an input to the GI framework.

To answer this question I apply the previously implemented GI framework used in RQ 1 to

an existing C/C++ software that is the order of magnitude larger than the targeted programs

from earlier. The formerly defined objective to maximise the number of test cases passed will be

redefined to minimise execution time. In addition to actually trying to improve, I will observe

the search neighbourhood of all trajectories the GI takes.

Answering this question will strengthen our confidence that GI can be used in an environ-

ment of different programming languages. Furthermore, we will be presented with evidence

that the implementation will scale up to larger applications as well as if various properties

can be improved with GI.
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2.2.3 Dynamic Adaptive Software

Research Question 3 Can GI be integrated into an already live system to identify bugs and suggest

fixes, thus assisting developers with maintenance?

Central to the thesis hypothesis is the question if GI can be used autonomously to maintain

software. In a sense the GI works autonomously as in, while it is running there is no human

in the loop optimisation involved. However, most implementations require the user to set

up a testing environment and adjust it for every application, so it is not fully autonomous. I

will demonstrate a GI system that works on its own to recommend patches to the developers

that can fix bugs that have been discovered with regular usage. Research question 3 asks

specifically if a GI framework can be embedded in an already live and running system. To

answer this question I identified a system that is in active development while also in use and

simply implanted the previously mentioned GI framework. Many programs have periods of

high use (e.g. office equipment during daytime) and periods of low use (e.g. office equipment

during nighttime). We aim to exploit the low utilisation periods to employ GI to fix bugs

found during intervals of high utilisation. This would therefore make full use of the hardware

causing little inconvenience to the users. The GI would be activated during periods when the

CPU requirements are low if bugs had been detected during higher load periods. After each

low load interval that activates the GI the human programmer would be presented with a

choice of fixes, if any are found.

2.3 summary

I have defined the research direction of this thesis with a central hypothesis and briefly

explained the three sub hypotheses and questions that will lead the research forward. I will

attempt to answer questions 1, 2 and 3 in Chapters 6, 7 and 8 respectively. Chapter 9 will

then draw together these answers to provide evidence to support the central hypothesis. First,

however, Part ii will review relevant literature about GI and SBSE.
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3G E N E T I C I M P R O V E M E N T O F S O F T WA R E

3.1 introduction

GI is an emerging research area that has been rapidly expanding in recent years. The first GI

survey [154] describes GI as a methodology that uses automated search to improve existing

software. It establishes four criteria that define core GI work:

1. The search for improvements uses metaheuristic methods [128];

2. the search can produce non-semantics-preserving software variants;

3. the GI improvement framework reuses existing software;

4. the modified software is an improvement over the original software for a given criteria.

The GI paradigm rests on the shoulders of The plastic surgery hypothesis, which is based on the

insight that new code added to existing software can often be constructed from fragments

that are already in the source [12]. So we do not need to generate new code but can effectively

cut and paste code from other parts of the program.

Software in general has always been, and still is persistently being improved [15, 162].

Demands for faster, smaller and more versatile devices, mobile or otherwise are constantly on

the rise. Hardware is being developed and improved to keep up with demands and produce

profit for the tech industry. The software needs therefore to keep up with the hardware,

changing architecture and protocols. If a software company wants to remain competitive it

is not sufficient to write a program, release it and forget about it. It has to be continuously

maintained and improved in sync with modern technology. Moreover coding a program in

today’s industry technical environment is not a straight forward venture. For software to

survive it needs to be available and perform consistently on multiple platforms. Manually

optimising a program for multiple competing objectives such as speed, memory efficiency

and bandwidth usage simultaneously, is nigh impossible or would at least be extensively time

consuming.

The concept of automatic programming [11], where the computer is used to alleviate

workload dates as far back as the 1960s and 70s from two related research fields: program

transformation [41, 32] and program synthesis [131, 126]. GI draws from both fields and

extends them by applying the methods to extant software and allowing transformations that
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do not preserve semantics by mainly using software testing for guidance [173, 2, 33, 4]. GI relies

heavily on recent progress in SBST [138], namely automatic test data generation [48, 137, 99, 171]

Much of the SBST research has been about the generation of test data such as Beyene et al. [17]

where they generated string test data. There are many sophisticated ways of generating new

tests. Feldt and Poulding [55, 156] for example use Bolzman samplers [48] to uniformly sample

data with specific properties. A random search algorithm can also be replaced with alternatives

such as hill-climbing [185], an evolutionary method [99] or optimisation algorithms more

generally associated with operation research [56]. Some GI researchers have also opted to

restrict the search with more formal methods of testing [81]. The essential objective of most

test data generation processes is maximum code coverage which is a measurement of how

large proportion of the code is being tested. This measurement can be defined in multiple

ways which all have their merits and faults. The common denominator for all the definitions

is that they tell what parts of the code the execution visits for each test, whether it is counted

in lines, statements, or branches.

GI also borrows from other strands of research, such as program slicing [18, 71, 52, 73, 19,

199] which, in its simplest form, is the act of extracting functionality of interest from a larger

piece of software. The idea is to extract a fully functioning program that contains a subset of

the functionality of the original. It is analogous to taking a specific slice or part from a cake

it is still a cake, you just wanted the frosting. The influence of program slicing is evident in

the work by Barr et al. [13] about auto transplantation. While the extracted functionality was

perhaps not a self-contained program, it was a specific functionality from another program.

Possibly the most notable feature that defines most work on GI is the search element,

which historically has been GP [155] but can be any metaheuristic search [28]. The unifying

identity of GI research is being a part of SBSE [72, 76] which also encompasses SBST [138],

requirements [216], predictive modelling [3], software design [161] and management [57].

In this chapter I will review current and historical GI literature. I will include some work

that does not meet one or two of the criteria here above but either inspired, or was inspired

by, core GI work. The review is divided into overview of different types of representations

(Section 3.2), description of the search methodologies that are used (Section 3.3), and overview

of improved properties (functional in Section 3.4.1, and non-functional in Section 3.4.2).

3.2 representation of changes to programs

One of the main challenges that GI practitioners face when changing program code is the choice

of representation. The representation or the formulation of the problem dictates what options

are available for the search and vice versa. This idea is at the centre of the meta-heuristics

search [28] where domain knowledge guides the implementations.
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GI is closely related to hyper-heuristics [29] where the search space and the solution space are

separated. A solution space is where a single point represents a single solution to a problem,

e.g. in a routing problem the solution space would be represented by some indication of

a single route per solution. Traditionally, the search algorithms will transform one route

to another and thus be searching in the plane of solutions. The search space is where the

algorithm makes transformations from one point to another and in solution space these points

are unique solutions to the problem. By abstracting one level above the solution space, then

you are searching for algorithms that represent a method to search in the solution space. This

abstraction has separated the search and solution space by distinguishing between where the

search makes transformations and the where eventual solutions are found. Hyper-heuristics

searches in the space of heuristics that exploit properties of the solution space while GI

searches in the space of programs that can be used in multiple different ways. The choice of

representations is therefore paramount to be able to effectively map the changes in the search

space to changes in the solution space.

Representation implementations for GI are a non-trivial task with many influencing factors

and categorising them is difficult. There are numerous different examples in the literature and

in the following subsections I list four different perspectives when deciding on representation:

• Whole programs;

• patches or edits to programs;

• programming language differences;

• and everything else that does not fit in with the evolutionary paradigm.

3.2.1 Whole Programs

abstract syntax trees When manipulating source code it is an intuitive choice to

treat the program as a single entity and keep different versions of it. Before the time of version

control services, like GitHub [62], the first obvious way for the common programmer to keep

track of changes was to rename the current working source code file with enumerating suffix

and work with the entire files. Naturally, this perspective influences the choice of evolving

whole programs. However there are different ways to represent whole programs.

As GI can arguably be traced back to work on GP [168] the majority of earlier independent

implementations have kept the ”evolve whole programs“ approach. Traditional GP evolves

tree structures like in Figure 3.1 which is principally the same as an Abstract Syntax Tree (AST)

representation. Each node is either a function if it has children nodes or a terminal when

it is at the end of a branch. To manipulate the source code when it has been parsed into

these kinds of trees one would change or rearrange the nodes before parsing the trees back to
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source code. It is an intuitive method of simplifying the process of changing the code so that

the computer can follow the rules and restrictions put in place by the human. Changes to a

single node are called mutations in this context and they usually involve changing it for an

equivalent node that preserves syntax. Syntactically equivalent nodes accept and return the

same data type from children nodes and to their parent nodes. It is called crossover when

two (or more) program trees are rearranged together to form new nodes. A simple crossover

chooses a node in both trees and swaps the branches from that node (see Figure 3.2).

(a) A simple arithmetic function X× (Z+ Y) (b) A simple conditional function

max(X, max(1, Y))

Figure 3.1: Traditional GP tree representations. Nodes ∗,+ and max are called functions while X, Y,Z and

1 are terminals.

Possibly the earliest examples of GI using this AST representation is in the Paragen sys-

tem [168, 166] and later the updated version, Paragen II [193]. They defined each line in an

existing program as a terminal, introduced parallel specific functions, and then searched for a

rearrangement to maximise parallelism. These functions controlled if the subsequent branches

would be executed in parallel or not. The first version disassembled the target program

completely and tried to rebuild it from scratch, the later version started with the original

program as a template and was therefore much faster. Additionally Paragen II could perform

specific loop transformations. However they both produced the same end results but Paragen

II’s output could be proved to have the same functionality as the original program. This was

possible because the the parallel transformation functions were specifically engineered to

preserve data dependencies and semantics.

A bit over a decade later the pioneering GI work of White et al. [204, 201, 202] and Arcuri

et al. [6, 7, 9, 8] used this same representation with all the traditional GP mutation and

crossover operators. The evolved programs where small in size (maximum 100 LOC) e.g.
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Figure 3.2: A simple crossover of two trees. X× (Z+ Y) and (3+ Y) − (Z/X) become (Z+ Y) − (Z/X).

The clouds constitute the two parts that are in the final program.

pseudo random number generator [201], various mathematical and sort functions [202], and

triangle classification [9]. Their work is of particular interest to GI for their use of seeding

existing programs to improve non-functional properties [9].

Early versions of the automatic bug fixing framework GenProg [122] adapted the same

tree-based representation as did its predecessors [50, 58, 143, 197, 196]. Although the actual

search was made with full representations of the source code as trees, the suggested fixes were

represented as the programmatic difference between the original program and the resulting

fixed variant. To minimise the size of the difference and to increase readability they used

delta debugging methods [58] that search sequentially through each change to the tree and

remove changes that do not affect the fitness [196]. Since the programs they were targeting

were larger than the traditional GP program the trees were very large to begin with. To

counter the problems of the huge search space they weighted the trees to focus the search to

paths where the bugs had been located [143]. Additionally they improved the efficiency and

precision of fitness function by sampling the test suite and pre-processing the instrumented

buggy program to determine a set of predicates and associated conditional probabilities. [50].

Successful program manipulations were mainly made with inserting or deleting nodes in the

trees [159, 141]

13

[ 18th October 2017 at 10:37 ]



More examples of full GP tree evolution include Cody-Kenny et al.’s execution time per-

formance improvements [37, 38, 39]. They tackle the scaling problem in a similar manner as Le

Goues at al. [122], by biasing the search towards sub-trees of interest [37] but with a dynamic

weighting scheme. Kocsis et al. [91] also evolved whole HashCode functions and then inserted

them to the larger system, Apache Hadoop platform. Their approach did not in fact seed

the evolution with an existing program. It evolved a function in isolation with terminals that

were programmatically inferred from the larger system and then manually merged with it

post-hoc. An equivalent idea was used by Swan et al. [188] in Gen-O-Fix, a framework that

can be embedded into software that runs on a Java Virtual Machine to make parts of it (or the

entire program) dynamically adaptable. Furthermore Brownlee et al. [21] also adopted the

same idea for evolving a median approximation to replace the pivot function in a quicksort

implementation. Mrazek et al. [140] also evolved approximation to the median function but for

the purpose of using it in low-cost, mass produced microcontrollers. Wilkerson et al. [205, 206]

designed their system for program repair, called CASC, to evolve ASTs in XML form. Yet

another example of tree based representation is the work of Sitthi-Amorn et al. [183], where

they simplified a set of pixel shaders for better performance. The size of the shader programs

ranged from 28 to 962 LOC.

GP’s tree based representation and visualisation is comprehensible for the human program-

mer while also being easily converted into executable code, like e.g. the Lisp expressions used

by Koza et al. [93, 95, 97, 94, 96]. However GP has historically not been able to evolve large

programs and has only been successful with smaller functions [147, 202, 164] up to programs

that are about 100 LOC at the most [202] when evolving from scratch. Different representa-

tions of whole program evolution have therefore been developed and tested. Later versions

of GenProg for an example have moved away from whole program representations [121].

Additionally there are those that discard the need for the programmer to understand in depth

what the changes are doing, at least while the changes are being made.

machine code representations Orlov et al. [147, 148] store a population of full

programs that are represented directly as Java bytecode, arguing that the purpose of source

code is to be readable for the programmer. This readability directly impedes ease of automation

of the code manipulation but is reduced after being compiled. The population of the evolving

programs are sequences of annotated bytecode which opens up opportunities for more

straightforward crossover operators than having to worry about branches as well as types.

Schulte et al. [175, 176] base their work around a similar idea but also included Windows

x86 assembly code in their linear representation. They search by permutating, deleting and

copying the set of instructions in the compiled code, which each represent a single statement

from the source code. The focus of their target programs lies in embedded software [177],

where efficiency, both energy and memory, is of the utmost importance. Therefore the changes
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cannot add too much to the memory footprint of the improved program and to this end

they define an extra objective of minimising the size difference from the original. They

also use delta debugging to strip the changes of neutral changes [174]. In addition, this

objective has the effect of minimising the risk of introducing regression, new bugs or security

vulnerabilities [178]. Landsborough et al. [101] adapted the same notion but with the strict

objective of reducing the program to minimal required features.

miscellaneous representations Other whole program representations that are

less used in GI include marking all loop definition in the source code while it is being

compiled [207]. Each loop is then gets assigned to an element in a sequence of characters that

can take values from a finite set. Each character specifies what loop transformation should be

implemented instead of the sequential loop in the original program. With this representation

the search problem becomes a static-length Genetic Algorithm (GA) genome. Williams [208]

has used this to develop a compiler that automatically parallelises loops.

The work of Kocsis et al. [89, 90] treats the program improvement task as a mathematical

problem and represents programs as algebraic functions. Providing semantic preserving

transformations and using deterministic proof search with finite number of rules to construct

code segments. This is very effective but has rather limited applicability because behaviour

of software is sometimes not deterministic and developers are humans so their code will

probably not always follow strict programming rules. Mechtaev et al. [139] do similar work

where the represent the whole program as a trace formula and use satisfiability solvers to

repair bugs like in SemiFix by Nguyen et al. [142].

3.2.2 Patches

Apart from few exceptions [183] and special cases [101], the complete program representation

has not been shown to generally scale to larger programs [167, 201]. However, with GI’s

speciality of working on existing software we can move up one level and instead of searching

in program space we search in the space of changes. Evolving patches to software greatly

reduces the memory requirements since we only have to keep a single copy of the original

program. This was the main motive for moving GenProg away from full AST representations

as mentioned in the previous section. In their effort to identify monetary costs of automatic

bug fixing on a cloud out of 105 defects considered 36 populations of 40-80 ASTs were too

much for the memory allocated (1.7 GB) to each node in the cloud [121, 123, 120]. When

inspecting human written patches for the same defects, half of them were 25 lines or less

and therefore two variants might differ by no more than 50 lines while everything else is

identical. The patch representation adopted by GenProg is a sequence of edits to the AST,

where each edit is a tuple containing an operation and node numbers. An example would be
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Figure 3.3: Three-stage lookup of a modification table from a genome as represented in Ackling et al. [1].

The image is taken from the same publication.

Replace(81,41) that replaces node 81 with node 41. Mutations can change a single edit in

a list while crossover concatenates two lists and then randomly removing edits. Weimer et

al. [198] use the same representation but do not use any mutations or crossover and instead

enumerate all possible single edit changes to the target program. They were able to apply

their technique to programs up to 3 million LOC by:

• limiting the search to only single edit changes;

• dynamically prioritising tests and escaping the evaluation when variants failed a test

case.

Subsequently, all GenProg derived systems and frameworks [157, 133, 158, 119, 145] do

not change the fundamentals of the representation by still evolving patches that change the

AST. Qi et al. [157, 158] implement GenProg with random search and test case prioritisation.

However, Oliveira et al. extend the representation into finer grained building blocks to

allow partial recombinations and improved crossover operator. Martinez et al.[133] package

GenProg together with two other automatic repair frameworks (PAR [88] and mutation based

approach [43]) in a generic software package called ASTOR.
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Ackling et al. [1] also extend the GenProg representation to allow for GA search with

variable-length genome. Each edit is a 32-bit binary sequence and is designed to map changes

to a predefined lookup table of possible values for each location. An example of such mapping

can be seen in Figure 3.3. The gene is described in the top row and it is divided into three

parts that correspond with the three stages of the lookup process:

opcode is the first four bits that correspond to the type of modification and indicate which

modification table should be looked up.

location a 20-bit sequence that points to where in the AST the change should occur and

what row in the modification should be looked up

target offset indicates the target value and the column in the modification table.

Similar methods of lookup and genome representations are used in the work of Risco-Martín

et al. [165] and Fatiregun et al. [51]. The main differences are what each gene represents but

both alternatives eliminate the need for decoding: in Risco-Martín’s work a gene is a single

integer that points to a Backus-Naur Form (BNF) grammar lookup table but in Fatiregun’s

work it points to a list of transformation rules. Additionally, Fatiregun et al.’s work evolve a

fixed length sequence, with limited number of possible transformations.

Other work for improving software that use similar genome-based patch representations

include the deep parameter tuning paradigm. It is a strand of GI research that has risen from

the SBST [138, 80] field of mutation based testing [2, 185]. While automatic parameter tuning

searches for the optimal configuration of available parameters for the user, deep parameter

tuning accesses configurations that are not originally available. A finite number of constant

definitions in the source code are connected to a single gene in the sequence. Each value in

the genome then corresponds directly to what value the constant should take, essentially

changing the constant into a variable. These constants are usually what programmers call

”magic numbers“, indicating that these are fixed numerical values that were either arbitrarily

decided or with some domain knowledge [203]. However, there is no requirement that these

constants need to be primitive data types like e.g. strings, sequences, or numbers [43]. Wu et

al. [210, 211] added nine supplementary operator classes (Table 3.1) that represented C and

Java fundamental operators. Bruce et al. [25] used that same representation in their work of

improving the execution time performance of OpenCV’s Viola-Jones face detection algorithm

while Sohn et al. [184] parameterised a single variable of five template matching algorithms in

OpenCV. Improving imaging software or visual properties other programs’ of graphical user

interface has made considerable use of this GA related genome representation. Li et al. [125]

used it to represent pairs of HTML elements when minimising energy usage of smartphones

screens displaying websites. As did Linares-Vásquez et al. [127] but they targeted graphical

user interface of Android apps and each genome corresponded to a bag-of-colour-pixels.
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Table 3.1: Additional operator classes defined as parameter values for deep parameter tuning represent-

ation [210]

Description Operations

Arithmetic operators +,−, ∗, /, %

Arithmetic assignments + =,− =, ∗ =, / =,

Logical constant negation expr, !expr

Increment/decrement ++,−−

Logical operators &&, ||

Logical negation x op y, x op !y

!x op y, !(x op y)

Relational operators <,>,<=,>=,==

Bitwise assignments & =, | =

Bitwise operators &, |

A variation of deep parameter tuning was introduced by Burles et al. [30]. They specifically

targeted Guava container object creations in Google’s Guava library [14] to ensure semantic-

preserving transformations for improving the energy consumption. The process iterates

through the AST of the code, finds all nodes which created such containers, and records

them along with information on possible variations in a sequence object. Orlov et al.’s [146]

representation also took the form of a sequence but it contained a subset of Megavac instruction

set. Megavac is an 18.000 LOC evolutionary-computation platform that uses steady-state linear

genetic programming and it has a large set of parameters.

Grammar has been extensively used in edit list representations by Langdon et al. [78, 84,

104, 102, 103, 105, 106, 107, 109, 113, 113, 112, 111, 117, 115, 116, 108, 110, 114, 24, 153, 152] for

various tasks. They abandon any intermediate rendition of the genome and instead evolve the

lists as a variable-length sequences of texts which are directly readable for the programmer.

The mutations and crossover operators that are mostly used, simply append a single edit or

the whole genome of another edit list. This causes bloating which is reduced post-hoc with a

delta debugging method as depicted in Figure 3.4.

This text based edit list representation has been adapted by the work presented in this

thesis and will be explained in detail in Chapter 5.
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Figure 3.4: An example of a delta debugging process as used in [102]. Process iterates through the edit

list and removes a single edit at a time, then evaluates the reduced edit list and if the removal

of the edit has no effect on fitness it is not reinserted.
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3.2.3 Programming Languages Targeted with GI

In today’s environment there is a plethora of programming languages available to software

developers to choose from. Each language has its specialities, features and properties that

usually are designed with a certain programming paradigm in mind. With the different

languages come various ways to manipulate the source code, useful techniques, and pitfalls.

The impression got while reading through the GI literature is that the choice of problems that

are tackled depend upon each researcher’s preference for a specific programming language or

type of languages which in turn, can heavily influence the choice of representation.

3.2.3.1 C Languages

The majority of GI research target programs written in C or C++ . The two programming

languages are quite closely related since C++ is descendent of C, although they are not

entirely compatible. It is unclear from the literature why these languages seem to be the

choices for most GI researchers. However, the most likely explanation might just be that both

languages have been fairly popular for a long time. C++ is standardised by International

Organisation of Standardisation (ISO/IEC 14882:2014) while C is standardised by American

National Standard Institute (ANSI X3J11) as well as ISO (ISO/IEC JTC1/SC22/WG14). They

are both statically typed, can be compiled with the same compilers and, in general, produce

relatively efficient program code in terms of execution time compared to other languages.

Additionally, a compiled program in either language has small enough memory footprint to

be ideally suitable for low-resource devices. Which is possibly the main reason for White et

al.’s choice in their early examples of GI [201, 204, 202]. Weimer et al. chose target programs

written in C/C++ for GenProg to target, because of the availability, at the time, of legacy

C programs with known bugs [197, 196, 58] and existing test suites [143, 50]. Their later

work is somewhat influenced by this earlier choice and also targets the same programming

language [121, 120, 122] and with the same representation [198, 123]. The work that builds

on GenProg’s success have not added any language specific insight [119, 145, 157, 158] so it

assumed that their choice of target language is based purely on convenience.

Wilkerson et al.’s choice of targeting C/C++ [205] was controlled by their choice of tool for

parsing the source code into an XML tree representation. The same tool can also parse Java

programs but their definition of node classes were specific to C [206]. Similarly, strategic search

definitions affected the choice of Jin et al. when specifically targeting atomicity violations [85]

and general concurrency bugs in C programs [86]. Gao et al. [61] combined a static and

dynamic buffer overflow analysis with a finite set of predefined C specific fixes that were

mined from software development sources which is analogous to what Tan et al. did [189].

Sidiroglou-Douskos et al. implemented their loop perforation tool [179] in the context

of a compiler framework [118] that was setup to compile C source code. Their later work
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on transferring code segments between programs also targeted C code [180] (this time

compiled), however the choice was a consequence of their post-processing tool to translate

the changes back into source code. Their code manipulation approach could have been

applied to any source language that compiles into binary. The same applies to Schulte et

al.’s work [176], where they manipulate x86 code from C compiler but also other types of

machine code [177]. The ease of representing assembly instructions as GA genome is most

likely what motivated them to target this language [174]. Landsborough et al. [101] were

also persuaded by this property to use binary images for removing unused or unnecessary

features from programs. The GA sequence representation of a compiled program makes it

easy for the search algorithm to turn off or on arbitrarily large segments of code. Moreover,

it mitigates various implementations of mutation and crossover operators. Both languages

(C and C++ ) seem to attract work on deep parameter tuning with the GA representation,

both offline optimisation [25, 184, 211, 210] and by turning static configuration parameters

in to dynamic controls [82]. Whether that is due to any property of the languages or just by

convenience is unclear.

The GISMOE framework [75] works by converting C source code into BNF grammar and

evolving edit list representations initially used for this task by Langdon et al. [108] when

porting a compression algorithm to C++ Cuda code for parallelisation. The vast expansion

of this strands of research, and possibly also because Langdon has released the source code

of the framework1, has guided much of the current literature towards targeting legacy C

programs [129, 24, 26, 13, 132, 78, 153] and using grammar [165].

3.2.3.2 Languages Running on Java Virtual Machines

Java is a static typed language and it is inspired by C/C++ which it shares much syntax

with. The most significant factor that contributes to popularity of Java based languages in

GI is not any syntax or properties but the Java Virtual Machine (JVM). It is an emulator that

interprets Java bytecode and can execute it on any computer architecture. Orlov et al. have

made considerable use of this in their evolutionary framework, FINCH [148]. It can evolve

unrestricted programs written in any language that compiles to Java bytecode. They exploited

the type system of the JVM to perform various checks on the stack, variables, and control flow

to ensure compatibility when moving or copying instructions from one place to another [147].

Yeboah-Antwi et al. use the JVM’s architecture to inject already running programs with an

ability to dynamically adapt to environmental changes at runtime. The framework, called

ECSELR, embeds itself into the target program [213]. Although JVM allows programs to run

on any operating system ECSELR is limited to a specific architecture as it consist of native

system functions and data structures [214]. This makes it possible for it to reside in the same

native operating system memory address as the target program.

1 http://www0.cs.ucl.ac.uk/staff/w.langdon/WBL_papers.html#langdon:2010:cigpu
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Swan et al. have also made use of the JVM, more specifically various properties of Scala. It

is a programming language that was primarily designed to address some shortcomings of

Java, such as the expressiveness of the reflection capabilities. They have extensively used it in

developing their many frameworks and packages for GI [31]:

• Gen-O-Fix [188], uses reflection to yield source-to-source transformations. Runs in

parallel with the targeted program and continuously improves it.

• TEMPLAR [187], a templating framework for hyper-heuristics. It uses the higher-order

functions abilities of Scala, where functions can be treated as variables, to simplify rapid

construction of algorithms.

• HYLAS [92], a tool that optimises Apache Spark queries. It also uses the Scala reflection

properties to manipulate the AST of a running program on a JVM.

• AntBox [31], a construction mechanism for domain specific language. It takes in object’s

properties as constraints and builds it with Ant Programming [20].

• PolyFunc [90], a Scala specific tool to facilitate semantics-preserving transformations

between data types that are of the same class. Scala’s the reflection properties make this

possible.

• Hyperion2 [22], a meta- and hyper-heuristic template framework for researchers.

Additional work by Swan et al. have also targeted Java applications, some of which are possibly

because of preference [21, 91, 30, 203] and other because of the type system [89]. Much of

Swan et al.’s work have used deterministic or guaranteed semantic preserving methods by

formulating the transformations as algebraic and constraint functions. DeMarco et al. used

a similar tactic when developing their Java code repair system, NOPOL, which targets if

conditions [44].

JVM languages are currently some of the most popular programming languages, used in

numerous client-server web applications and Java is the main language used to develop

Android applications for mobile devices. Therefore it has been an object of target when

optimising energy efficiency; reducing energy usage by the display by reassigning colours

in HTML elements [125] and other applications [127] as well as dynamically controlling

functionality on mobile phones [36].

The output of Arcuri et al.’s work on automatic bug fixing [9, 8, 6, 7] repaired Java source

code. Convenience is suspected to have motivated the choice, since the evolutionary framework

used in their work (ECJ) is written in Java. A common pattern of choosing which programming

language to target seems to be the available tools to the researchers. Like Dallmeier et al. [40]

who implemented their search algorithm to use ASM [98], a framework for manipulating Java

bytecode.
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3.2.3.3 Python

The Python programming language [192] and was initially intended to serve as a prototyping

language. It has since been adopted by many developers and the open source community of

users. The language provides interactivity and object-oriented programming with dynamic

typing and high level data types. However, despite its popularity it has still not been a

major focus of study in GI. Apart from the research presented in this Thesis and related

publications [66, 67, 69, 65] there are only two contributions that specifically target Python

source code. Ackling et al. adapted GenProg’s philosophy and methods into pyEDB [1], a

software repair tool that evolves patches. It uses an open source package to construct an AST

that it then operates on. A more recent example is presented by Jia et al. [84] where they grow

and graft a Python code into the well known and widely used web framework: Django. The

process involves generating (growing) a function with GP in isolation and then using GI to

insert (graft) it into the original program.

Hopefully, with the extending popularity of the language more examples of GI for and

about Python will emerge. It would be interesting to see what effects the dynamic typing,

the flexibility, and the interactivity of the language will have on automatic programming

and GI results. The comparison with statically typed languages such as Java and C will be of

particular interest.

3.2.3.4 Miscellaneous Programming Languages

The amount of different programming languages available is colossal. While C/C++ , Java,

Python, and derived languages are possibly the most extensively used in today’s technological

environment, they are still just a small subset. So there are a few examples of GI that target

other languages. Some of these samples date back to the nineties, which is not surprising

given that the popularity of the aforementioned favoured languages has been rapidly rising

in the last decade. The earliest work is perhaps on automatic parallelisation by Ryan et

al. [168, 193, 169, 166, 167] and the integration of search for parallelism into compilers by

Williams et al. [207, 208]. Ryan et al. targeted Fortran source code with their Paragen system

and a traditional GP tree structure representation. Williams et al. also targeted Fortran but

while it was being compiled.

Of popular programming languages that have not been as prevalent as GI targets PHP is

probably one of the wider spread as a server side web application. There is only a single

example of in the GI literature describing automatic repair of PHP code. Samimi et al. [172]

pursued faulty HTML generation statements by expressing the input-output pairs of string

literals as satisfiability problem. Regular Expressions are a way to express patterns in sequences

of strings. They have a syntax, albeit with variations depending on context, and could

theoretically speaking be seen as programming languages of sort since they are essentially
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executed when being used. Cody-Kenny et al. utilised this property to improve the efficiency

of Perl based-regular expression patterns [39].

With the growing trend of embedding all appliances and electronic devices with digital

technology and connectivity, more and more software is deployed as firmware. This provides

limited abilities to maintain or repair software in these devices unless the hardware producer

directly supplies updates. This has sparked some interesting paths for GI to tackle problems

where the human programmer cannot possibly understand the code that is being manipulated.

More specifically, targeting binaries with unknown source code like Schulte et al. [178] did

when repairing security vulnerabilities in off the shelf router firmware. Mrazek et al. evolved

median functions for microcontrollers [140] allowing a compromise in accuracy. Perkins et

al. also targeted binaries, although the origins of the source were known and the application

domain was not an embedded system [151]. Nonetheless, they developed a system that

patches security vulnerabilities in Windows x86 binaries to e.g. counteract ongoing external

attacks.

Other languages targeted by GI are quite obscure examples that are either only in use by a

small group or specifically devised for the purpose of the problem at hand.

• The Eiffel programming language with a design by contract paradigm as its central

philosophy. Wei, Yu et al. [195, 150] developed automatic repair methods for Eiffel

• WSL: wide spectrum language, simultaneously high and low level programming lan-

guage. Fatiregun et al. evolved transformation sequences specifically aimed at WSL

source code.

• Katz and Peled have developed a program synthesis tool that produces code for mutual

exclusion algorithm. From their work it is unclear what language the code is in or from

what it draws inspirations [87].

3.2.4 Non-Evolutionary Representations

Apart from whole program and path representations that are historically related to evolu-

tionary strategies in the context of GI there are others that do not exactly fit in to that binary

categorisation. Take for an example BovInspector’s representation by Gao et al. [61]. It keeps

a single copy of the program under repair and systematically searches for buffer overflow

vulnerabilities and reduces their risk with 3 strategies:

1. Adding boundary checks with an if statement in the line above the suspicious one

2. Replacing an API with a predefined known safer API

3. Extending buffers
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It can be argued that this is a whole program representation but the program is not being

evolved. However, this is clearly an improvement of the program with a computational

search so falls under the wider definition of GI. The software repair frameworks, Relifix [189],

CFix [86], and PACHIKA [40] have similar setups but look for different types of errors and

with different strategies.

3.3 search methodologies used for gi

In the science of search and optimisation there are countless tried and tested researches to

proceed from. All have their merits and disadvantages, often connected with the domain in

which they are employed. GI is based around the concept of search, where it searches for

an alternative version, of an existing program, that possesses some particular properties the

developer needs or wants. As one would expect, the search method is strongly codependent

on the representation and the search domain.

Domain specific search methods have been referred to as heuristics and they exploit

some known properties of the search landscape by defining rules to increment towards

better solutions. Metaheuristics have an adaptive nature [128] by re-evaluating the rules at

each step. Hyper-heuristics add another layer of search on top to either select or construct

metaheuristics. Then the algorithm is said to be searching in the space of metaheuristics. Given

the afformentioned definition, GI can be regarded as a hyper-heuristic since it is searching in

the space of programs. The programs can be considered the algorithms that provide solutions

and GI is searching or constructing better programs but not the actual solutions. GI researchers

have mostly utilised meta- or hyper-heuristics as the search layer, where GP and GA have been

recognisably dominant. Nonetheless, there are examples of traditional optimisation methods

which are commonly thought of as a deterministic and mathematical way to find the optimal

solution to a problem. There is even an example of work where the primary search method is

simple random search [158]. In this section we will be inspecting the top layer, exploring the

literature and asking the question: What method is at the top? While disregarding intermediate

(and sometimes convoluted) search layers.

3.3.1 Genetic Programming

GP [94, 155] can be considered to be a hyper-heuristic [29] search methodology. It searches

in the space of programs and has commonly been used to construct functions, models, or

procedures to solve particular problem that depends on some input. For historic reasons it

has been the prevalent GI search method and is from where the ”genetic“ part of the name is

drawn from. The traditional way of evolving programs with GP is by constructing trees (see

Figure 3.1) and evaluating them with input-output testing methods. A large portion of the
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GI literature adopts this method with minimum adjustments in their implementations, only

varying some parameters of the search. More specifically:

• GenProg and related implementations [122]

• White et al. low-resource system improvements [202, 201, 204]

• The Apache Hadoop HashCode repairs [91]

• Arcuri et al.’s pioneering program repairs [9, 8]

• Gen-O-Fix, the embeddable framework for JVM programs [31, 188]

• Sitthi-Amorn et al.’s shader simplification work [183]

• Robert Feldt work on generating numerous equivalent programs that would complement

each others’ faults [53, 54] Closely related to the field of N-version programming [126]

• LocoGP by Cody-Kenny [37, 39, 38]

However, there are other methods of implementing GP as there are many ways of represent-

ing an executable program. One such technique, commonly referred to as linear GP, represents

the program as a sequence of instructions and manipulates that sequence (see Figure 3.5).

Research with a top layer of linear GP include some of the assembly-/binary-based work of

e.g. Schulte et al. [174, 178, 176, 175] and Orlov et al. [148, 147]. Additionally, the work of

Ryan et al.[169, 166, 167, 168, 193] and Williams et al. [207, 208] utilise a so-called grammatical

evolution where the elements in the sequence describe the transformation grammatically.

Figure 3.5: Sequential representation of a GP program. Each block is an instruction in a sequence but

blocks can be repeatedly executed like those inside the for loop

A notable portion of GI literature that manipulates sequences of grammar instructions stems

from the work of Langdon et al. [107]:

• MiniSAT efficiency improvements by Petke et al. [153, 152]

• Grow and Graft; Cuda pknotsRG for RNA analysis [110], interpreter for Babel Pidgin [78],

citation service for Jango [84], call graph and layout feature for Kate [132], and the

realisation of the tool µScalpel [13].

• Efficiency improvements of the DNA analysis tools BarraCUDA (sequencing) [115] and

Bowetie2 (alignment) [109].
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• Imaging software improvements of the execution time of a 3D medical image registra-

tion [112] and a stereo camera program from nVidia [106].

• Energy optimisation in mobile devices by Bruce et al. [23, 24, 26].

• Transform a version of gzip to parallel Cuda source code [102].

The general unifying property of GI-GP work is the use of tests to evaluate fitness and

faithfulness to properties that are to be preserved. Still, Katz and Peled added an element of

a formal verification method alongside testing [87]. The testing mechanism came into effect

when the model checking failed to deliver proof.

3.3.2 Genetic Algorithm

GA is a closely related methodology to GP. It has traditionally been used to directly search for

solutions as in the metaheuristic concept but the generality of the method has promoted it for

the top layer for hyper-heuristics. As such, it is ideally adaptable to be used when searching

in the space of programs. One could argue that it is more constricted than GP but that debate

is beyond the scope of this thesis. The traditional representation for GA is a sequence of values

or genome of genes respectively. The genes map to a choice in the solution and can be a

binary (on/off) mapping, a real value number (R), or any choice from a finite set. Usually, the

genome is of a fixed length but not always. Although this seems indistinguishable for linear

GP, the difference lies in what they represent. While the GP sequence is executed in the order

it is presented, the GA’s genome is not necessarily in the same order as in the executable final

result. What that means is that the first gene in a GA’s genome might affect line 30 in a target

program and the last gene could at the same time affect line 2. Additionally, the genome does

not always represent the whole program but only choice points in the program.

A program repair system by Wilkerson et al. called CASC [206, 205] mapped each gene to

a fixed node in an AST. The choices of each gene depended on the node class such that the

content could only be swapped with syntactically equivalent statement. A few year later Wu et

al. adapted the concept to directly map to the source code instead of an AST and called it deep

parameter tuning [211, 210]. Each gene could contain a finite set of values from C operator

classes. White et al. did the same thing with three algorithms in the Akka toolkit [203] but

they limited the gene values to integer constants in the source code. Additionally they used

covarience matrix adaptation to approximate a gradient for the selection mechanism. Burles

et al. defined each gene as a node in the AST of Google Guava that created a Guava container

object they could then search the choices of possible semantically correct substitutions for the

whole node [30]. Orlov et al. used the GA to search for combinations of the instruction set

of a evolutionary system [146], so not directly in the source code but they were transferable

parameters between solution spaces.

27

[ 18th October 2017 at 10:37 ]



A more traditional GA, in the sense that the genome was a binary sequence, was used by

Cito et al. [36] to dynamically determine which features in a mobile device should be turned

off. Linares-Vásquez et al. [127] had a similar concept in mind for choosing colour maps in a

mobile applications on Android as did Yeboah-Antwi et al. in the slimming procedure with

ECSELR [214, 213].

These are examples of where the genes represented a fine-grained choice in the source but

Ramirez et al. used a GA search to make design choices of a software’s architecture [163]. Thus

each choice had much more impact on the whole program.

3.3.3 Other Search Methods

Search or optimisation methods used in GI research and do not fit into the GP/GA paradigm

are various:

• Exhaustive search of a limited search space, either by natural constraints or design.

• Constraint solving by means of proof search or algebraic methods.

• A stepwise hill climbing algorithm that is either greedy or not. The difference being in

the acceptance rate of improving moves.

• Gradient descent/ascent with estimated or exact measure of gradient.

As well as a single example of simulated annealing to search through colour conflict graphs to

minimise energy usage of displaying a website on mobile devices [125]. Simulated annealing

is a metaheuristic akin to hill climbing but with an adaptable step size parameter, called

temperature.

exhaustive search methods The exhaustive search of the entire search space is

seldom possible in the context of program manipulations because of the sheer volume of

the space. However, artificial constraints can be made to reduce it to a manageable size.

Many automatic software repair methods constrain themselves to searching a limited set

of strategies [86, 61, 85] or patterns [189, 88]. Sometimes the factor that limits the number

of solutions available for the search is a design choice e.g. the framework only targets for

loops [179] or has a low finite number of resources [180, 40]. Debroy et al. for an example

enumerated all first order mutants of a faulty program and then iterated through them to

find a repair. They implemented a clever selection mechanism based on fault localisation

algorithm to determine the order of the iteration and the algorithm escaped the search if it

found a fix. [43] Kocsis et al. had a single transformation strategy and walked it along the AST,

applying it everywhere there was a possibility that the program could create redundant data

28

[ 18th October 2017 at 10:37 ]



structures [92]. In another work, they use proof search which iterates through a finite number

of rules to construct code segments that could be grafted into existing software [90].

mathematical solvers When problems can be modelled as an arithmetic, logical,

or algebraic function it seems like an obvious choice to solve it, deterministically, for the

optimal solution as opposed to searching stochastically. As calculus predates any thoughts

about computers and software, there are well established methods of solving a number of

deterministic problems. Problems that GI has been used to target have been modelled as

satifiability constraints for input-output pairs of string literals [172], and for a execution trace

in the DirectFix system [139]. Satisfiability solvers have also been used to fix conditional bugs

based on preconditions [44], and faulty data structures [49]. Similarly Nguyen et al. employ

symbolic execution with input-output oracle to formulate a set of equations that can be solved

to synthesis a repair [142].

hill climbing Hill climbing is an exemplar heuristic, i.e.: at each step search neighbour-

ing solutions and move in a direction that leads you to a fitter state. Greedy hill climbing

algorithms will accept the first improving move they encounter otherwise they accept the next

move with a fixed probability. It is a search on the path of least resistance. Two GI examples

utilise this method for automatic fixing by considering a single variant at a time, estimating

its neighbourhood of programs, and moving towards higher fitness [150, 195].

3.4 software properties improved with gi

As one would expect a crucial part of the GI paradigm is that there is some property that

is being improved. Programs have a huge number of different properties that they can be

categorised by so the taxonomy of software by some or all of those properties could fill a

thesis. However here we define properties of software as improvable and therefore measurable

characteristics that can be affected by manipulating the code in some way. A list of the

properties that have been the focus of current GI studies can be found in Table 3.2. We have

divided those properties into two groups: Functional (or physical) and Non-functional (or logical)

properties. Which we will address separately in the following subsections.

3.4.1 Functional Properties

Functional properties refer to the purpose of the program or what it was designed to do. They

are often difficult to measure as sometimes they depend on subjective view of the user, like

the optimisation of colours in a graphical user interface [127]. However such opinion-based

measurements are most often a secondary fitness unless it can be measured with input-output
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Table 3.2: The different properties of software that have been improved by GI.

Property Fitness

measurement

Objective Number of

GI examples

References

Correctness Number of test

cases passed

Maximise 48 [53, 7, 6, 8, 197, 196]

[58, 143, 198, 122, 121, 123, 120]

[119, 145, 158, 133, 157, 50]

[85, 43, 40, 176, 175, 205]

[189, 86, 44, 91, 180, 88]

[1, 206, 144, 195, 150, 178]

[111, 117, 66, 67, 69]

Correctness Constraint

equations

– 4 [61, 139, 142, 172]

Correctness Inferred

vulnerability

– 1 [151]

Add feature Number of test

cases passed

Maximise 6 [78, 84, 132, 13, 153, 148]

Remove feature Compiles – 3 [101, 214, 213]

Execution time Time Minimise 41 [193, 168, 169, 167, 166, 207]

[208, 102, 104, 105, 106, 107]

[109, 113, 115, 116, 108, 114]

[110, 103, 112, 153, 152, 179]

[183, 211, 210, 25, 202, 204]

[203, 37, 39, 38, 184, 92]

Energy usage Joules or Watts

per time

Minimise 11 [201, 204, 202, 24, 127, 125]

[36, 82, 21, 140, 187]

Memory usage KB Minimise 6 [165, 210, 211, 213, 214, 51]

pairs. The functional properties that are addressed in current GI literature are either added

functionality or correctness, otherwise known as fixing.

3.4.1.1 Program repair

The largest body of GI work regarding functionality is bug fixing, most of which is purely

search based and dependent on testing with test cases. However there are examples of other
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measurements of correctness. Sometimes it is possible to verify the semantics with formal

methods [61] so the fitness is either correct or not [139]. Bugs can also present themselves as

security vulnerabilities and those can be difficult to measure. Perkins et al. use an inference

method, in their ClearView system to estimate the fitness of a running program to know

where and what it should patch [151].

Dijkstra advocated proof over testing for software correctness measure [46] as he was

of the opinion that programs had to be verified and it should not be done approximately.

Nonetheless, the fitness function when doing bug fixing with GI is most often the number of

test cases passed or some derivative. Although Feldt’s work [53] predated Arcuri et al. by a

decade the paved the way for test based program repair with co-evolving small programs and

test cases [7, 6, 8] Le Goues and Weimer et al. followed shortly [197, 196, 58, 143, 198] with

their GenProg framework [122, 121, 123, 120] which is a generate-validate framework. It has

since been adapted by many GI practitioners [119, 145, 158, 133, 157].

Fast and Le Goues et al. [50] also tried combining test driven repair and dynamic predicates.

The overhead computational cost of calculating the predicate was not justified by the small

increase in precision. However their use of test case selection allowed considerable resource

savings when repairing software with large test suites. There are various implementations of

test strategies in the literature but the majority of GI test-based bug fixing work still measures

correctness with number or proportion of test cases passed. In current literature the following

17 papers, besides those cited here above, only use testing to measure fitness [85, 43, 40, 176,

175, 205, 189, 86, 44, 91, 180, 88, 1, 206, 144, 195, 150] In cases where test suites are small there

is no need for test strategies, e.g. Schulte et al. only have a single test case [178] in their repair

of the router firmware.

Test case fitness can also serve as an analysis of the correctness property of programs.

Langdon’s and Petke’s analysis on the fragility of software was made by measuring correct-

ness with test cases [111] as did Langdon et al.’s work on visualising the landscape [117].

Additionally, the use of test cases, even if they are many, does not explicitly mean that the

proportion of the pass test cases will be used. Nguyen et al. construct a set of equations [142]

with pass-all-tests as a variable, thus the correctness depends on the tests to correctly reflect

expected behaviour but the fitness function essentially returns a binary true or false value.

Samimi et al. had the same two states in their fitness function as they also integrated the

testing as a constraint in a satisfiability formulation [172].

The contributions of this thesis in Chapters 6 and 8 are bug fixing improvements that also

rely entirely on testing [66, 67, 69].

3.4.1.2 Other Functionality Improvements

Adding functionality is a relatively new application of GI but has a lot of potential and draws

attention from the computer science community. From the point of view of the artificial intelli-
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gence community, ideally one would like to be able to give vague and high level description

of a desired functionality and get it as soon as possible. However, current techniques should

not make many programmers unemployed and it does not reflect the goal of GI accurately.

Rather it is to facilitate the process of improving software with tools and techniques.

There are multiple ways of adding new features to a program. A developer might decide

to add specific functionality for the end user, e.g. a translation mechanism in a messaging

application. Harman et al.’s [78] method of Grow and Graft was used to embed the messaging

software Babel Pidgin with such functionality. Other end user specific features that were grown

in isolation and then grafted into existing programs include: a citation service integrated into

a website that uses the python based web service framework Django [84], and a call graph

and layout feature into the open source text editor Kate [132]. Grow and graft is directly

related to the automated transplantation framework of Barr et al. [13]. The framework omits

the grow and substitutes with finding the object to graft either elsewhere in the same source

code, like Petke et al. did with MiniSAT [153], or from another program. These functionality

improvements are all test-driven search processes. However under specific circumstances and

with particular data types the grow process can be done with deterministic proof search [90].

The added feature need not always be connected to the user interface. Orlov et al. developed

FINCH and used it to improve a number of programs, including trail navigation and image

classification [148]. Gen-O-Fix [188] has been used to improve accuracy of a regression model

and the framework presented in this thesis has been used to improve and maintain accuracy

of a prediction mechanism [65]. While Gen-O-Fix was used to predict stock prices this

thesis’ framework was used to predict outcome of rehabilitation for clients in an Icelandic

rehabilitation centre.

Although slimming might be considered more of a memory optimisation problem it is also

a process of removing unwanted or unnecessary features. Landsborough et al. [101] use a GA

to remove code segments from a binary image of compiled programs as do Yeboah-Antwi

et al. [214, 213]. While Landsborough et al. removed features post-compilation, they did so

with dynamic analysis before retesting the program. However, Yeboah-Antwi et al. removed

features at runtime, essentially making the program truly dynamically adaptive.

3.4.2 Non-Functional Properties

Non-functional properties refers to features of the program that do not dictate what it does.

These are measurable characteristics that could directly influence the users perspective but has

no semantic effects on the processes of the software. The only three non-functional properties

that GI researchers have attacked are execution time, energy consumption, and memory efficiency.

In that order of decreasing popularity.
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3.4.2.1 Execution Time

Execution time is the most explored non-functional property [64]. This might possibly be

because implementing a time measurement is relatively easy compared to other non-functional

properties such as memory use or energy consumption [63].

Some of the metrics used in the literature to quantify execution time include the elapsed

time from invocation until termination, the CPU time, or number of lines of code executed.

The elapsed time from program invocation to termination is dependent on multiple outside

factors and is therefore an inaccurate measurement, unless it is made in the exact, unchanging

environment the program will always be running in. That is however nearly never the case

and the CPU time is a much more accurate and reliable measurement of the program’s

performance. The CPU time only counts the time it takes the computer to process the program

in question so environmental variable interference is kept lower than with elapsed time but

not entirely eliminated. Counting the lines of code that are executed has been argued to be the

least biased with respect to the execution environment [153]. Nevertheless, the implementation

would rely on instrumentation of the code or some kind of profiling tool and therefore is not

as portable between programming languages.

Chapter 7 of this thesis adds to an already extensive list of GI work on optimising execution

time. Successes range from subtle 1% gain by mostly removing assertions [152] and moderate

17% reduction [153] to extraordinary 70 and 100 fold speed up [109, 113]. Nearly all of

Langdon’s and Harman’s et al. work aims to make less time consuming computations

whether it is via parallelisation of medical applications [103, 112] or various bioinformatics

software [102, 104, 105, 106, 107, 109, 113, 115, 116, 108, 114]. One of which used the grow

and graft method to evolve improved pknotsRG for the RNA folding software [110]. Much of

it based on their GISMOE concept [75], trading accuracy for efficiency. Sidiroglou-Douskos et

al. [179] followed that idea by perforating loops to shorten execution time. Sitthi-Amorn et

al. [183] worked on the trade-off for graphical shaders, sacrificing some accuracy for increased

rendering speed, which has further imbued other researchers with the idea to seek execution

time improvements [211, 210, 25].

Some of the work in execution time improvements include automatic parallelisation [193,

168, 169, 167, 166, 207, 208], a multi-objective optimisation of embedded systems [202, 204, 203]

and arbitrary small functions [37, 39, 38]. Kocsis et al. [92] reported 10,000 fold improvement

on Apache Spark query optimisation by eliminating unnecessary data structures. Sohn et

al. [184] used GI to tune OpenCV’s group size setting and achieved significant results.

3.4.2.2 Energy

Since the 1980s awareness of climate change and the importance of conserving energy has not

been lost on the computer science community. Efforts have mainly been focused on large scale
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computing and hardware in data centres [70]. Energy consumption of hardware can however

only be optimised to a certain degree. Energy consumption of deleting a single bit has been

shown to have a lower bound [16]. Therefore, hardware and consequently general computer

optimisation pertaining to energy will also have a lower bound. No matter how energy efficient

the hardware we produce, if we do not develop software to follow suit, we can never hope to

get close to reaching the limit of Landauer’s principle [100]. It is derived from the second law

of thermodynamics and states that the energy consumed by computations has a theoretical

lower limit. The principle was introduced in the early 1960s but was experimentally verified

in 2012 by Berut et al. [16]. Like a car is only as energy efficient as the person driving it, the

same applies to computers; the hardware can only be as efficient as the software running on

it.

One could argue that there are four levels to improving energy usage in computing.

1. Hardware optimisation, designing and producing hardware that conserves energy.

2. Optimizing the OS or kernel.

3. Minimizing the amount of computing used for a particular task.

4. End user specific energy conservations like turning off features that are not in use at all

times such as network devices and positioning system.

In GI we have mostly been concerned with the second and third levels where we can

directly apply it to improve certain parts of the OS or specific software. Although we can

specialise software to be energy efficient in isolation, we cannot prevent other applications

from interacting with it. However, GI gives developers the flexibility to specialise software

between platforms, computers and hardware but caution should be taken when measuring

the energy used. Schulte et al. have presented an approach which can potentially be used to

reduce energy usage of compiled x86 programs [177]. Which could serve as a specialisation

tool for platforms.

Smaller scale examples of GI, include energy usage reduction in embedded, low resource

systems [201, 204, 202]. Bruce et al. [24] have made a version of MiniSAT that draws less

energy as measured on the CPU, disregarding memory devices and peripherals. Li et al. [125]

and Linares-Vasquez [127] target colour compositions in mobile devices. Hoffman et al. [82]

and Cito et al. [36] implemented two separate frameworks, also for mobile devices. However

both implementations control which features are turned on and off while the device is running

on battery. Two examples of evolved median functions for conserving energy exist in the GI

literature. Mrazek et al. [140] made one specifically for micro-controllers while Brownlee et

al. [21] tested an estimated median function as the pivot function for quicksort, which has also

been the target of energy optimisation [187]. The latter example could serve as a specialisation

to conserve energy in devices that have to identify denial-of-service attacks. Additionally
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Brownlee et al. developed OPACITOR [30], a tool to measure energy consumption of programs

on JVM.

Until now the only reliable way to measure how much energy a software consumes has

been through highly specialized or customized system. Surrogate objectives are necessary to

achieve dynamically adaptive “green” software. A single point of measurement as a substitute

such as CPU cycles is not enough since they provide no consistency across programs or

platforms. We therefore can not rely on them to make scientific conclusions nor use them in

practice. We would want alternative measurements such as simulations or modelling from

multiple programmatical sources so that we can reliably use them in science or at the very

least make energy optimisation practical. Recent effort has been made by Bruce et al.[26] to

estimate energy measurements and effects on the GI process. They used MAGEEC energy

measurement boards that attach to Raspberry Pi and found that although precise, they lack

accuracy. However the proportional energy decrease translated between devices.

3.4.2.3 Memory

Other non-functional properties that have been explored with GI include a limited work on

memory optimisation. Wu et al. [210, 211] have applied their deep parameter tuning method

to control and minimise memory usage of C programs while Risco-Martín et al. [165] targeted

dynamic memory managers. These two examples of work used a trace and instrumentation

to measure in KB how much memory was in use during execution. Fatiregun et al. [51] took

another path by minimising the size of the program itself, which is the same objective as

Yeboah-Antwi et al. had in their first experiments with the ECSELR framework [213, 214]
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4D Y N A M I C A D A P T I V E S O F T WA R E F O R G E N E T I C I M P R O V E M E N T

The software engineering community has been researching adaptive software implement-

ations [60] and architecture [136] for a long time [35]. In the increasing uncertainty that

today’s software deals with it is imperative that at least large systems are equipped with

some self-adaptability. The rapid expansion of code that is currently in use has long since

outgrown beyond the point where maintaining it all manually is nigh impossible. Software

engineers have come to realise this and have increasingly started integrating dynamic adaptive

capabilities into software before deployment [27].

Many methodologies and programming paradigms are available for the developers to

consider [215, 170, 42], such as feedback loops [27] and reflection [188]. The goal is to apply

changes or adapt online and without disturbing normal activity. Carzaniga et al. [34] for

an example suggested a technique to avoid runtime failures in Java programs. It works by

exploiting redundancy in reusable components but before the program is started the source

code needs to be processed. The pre-process identifies these reusable units and instruments

them so the program can produce execution paths variations. This makes the program resilient

to failure and does not interrupt execution flow when it has to use the backup plan. Runtime

insurance plans are effective but not guaranteed [59].

GI has most commonly been used offline to improve various software properties [154, 64].

As GI is a fairly young field the work on self-improving software with GI is not extensive,

although SBSE literature has been considering self-adaptive systems for some time [74, 35,

42]. A few examples of adaptive or dynamic GI include a framework (Gen-O-Fix [188]) to

continuously improve software on Java Virtual Machines in parallel with the targeted program,

Burles at al.’s list of suggestions for embedded improvement methods [31], and an approach

(ECSELR [213]) that injects dynamic adaptability in an already running target software.

However, JM’s approach (Chapter 8) is inspired by Harman et al.’s suggestion for Dreaming

Devices [79], exploiting the fact that the majority of software is not in continuous use. Even if

that were the case, the usage load will usually be periodic and during lower load times the

device should be able to afford some capacity for improvements.

The common theme is that GI can and should be used to make dynamic adaptive soft-

ware [74, 77] but the differences are the implementations and applications [213]. The debate

is between what is truly dynamic adaptive and semi-dynamic adaptive. Dynamic adaptive

connotes a reaction to changes in environment (outside source), the debate seems to be
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focused on the time frame of those reactions. Do they have to be instantaneous or can they

happen whenever? What defines dynamic adaptive software? Surely it is that it reacts on itself,

without the human middleman but are there other factors? Dynamic literally means that there

is a constant change and adaptive describes an ability to adapt to different circumstances. So

Dynamic Adaptive Software is a software that can constantly adapt to changing environment,

whether the changes are in usage, hardware, or other software. The time frame of the adaption

is irrelevant as long as the software takes care of the adaptation.

The few examples of adaptive software in the GI literature include the framework Gen-

O-Fix [188], written in Scala. It was one of the first implementations of dynamic adaptive

software using GI. The framework makes use of the following features that Scala offers:

• The ability to treat both code and data as first class variables.

• Declarative reflection, which provides complete information about classes, variables,

functions and methods at runtime.

• Powerful pattern matching for object structures

• Implicit conversion, allowing the user to define implicitly what data types are equivalent

The user is only required to provide the initial source code of the application that is to

be improved and a function that measure fitness. The framework instruments the source

code and then runs in parallel updating the software every time it finds a better version

(Figure 4.1) Another framework from Swan et al. named TEMPLAR [187] exploits much the

same capabilities of Scala but to provide researchers with a tool to rapidly prototype Hyper

Heuristics.

Figure 4.1: A system diagram of Gen-O-Fix [188]

Surprisingly in today’s environment with a excessive amount of mobile devices and their

rapidly expanding use, there is only one application of GI that specifically targets software

for that domain and two that can be applied there. Cito et al. implemented an adaptive
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binary modification system that identifies and prevents recurrent background requests in

Android devices when battery charge gets low [36]. The system must be applied to individual

applications but their initial evaluations shows up to 5.8% decrease in battery usage. Although

not specifically aimed at mobile devices, Mrazek et al.’s work for microcontrollers [140] is

at least applicable for devices that use them, e.g. routers and hand-held calculators. Their

approach is based on approximation algorithms and manage to save space (at most 50%

of the available capacity), energy (up to 75% reduction) and time (6 fold speedup) in their

initial evaluation. Hoffman et al. [82] have published PowerDial, a system that turns static

configuration parameters into dynamic variables that can be adjusted as battery levels change.

It is possibly more suited for larger systems but the concept is definitively transferable to

mobile devices or embedded systems. PowerDial performs a pre-processing analysis of the

parameters before the application is started to identify and calibrate the parameters with

sensitivity analysis.

Yeboah-Antwi et al. have developed the ECSELR framework [213, 214] that targets programs

running on a JVM. The framework defines a number of agents that hook into an already running

program with operation system specific methods. It is an event based observations system

that evolves the target program in the same system memory but still separately. The system is

ambitious but still in its infancy so it is still experiencing problems that can be connected with

new development. The brute force tactic that is used to make the evolutionary environment

as similar to what the actual program is running in is quite computationally expensive. Other

issues are regarding unexpected side effects of the evolutionary process. At current time it is

suitable for software that resides within large systems with plenty of resources.

There are two examples of adaptive GI applications that are integrated parts of larger

systems. In those programs, the concept of the Dreaming Device suggested by Harman et al.

with Arcuri et al’s co-evolutionary bug fixing [6, 7, 9, 8] has been realised. They implement

a self healing property [67] and accuracy improvement of a predictive model [65] in a live

system. Both are presented and described in Chapter 8.
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5T H E I M P L E M E N TAT I O N O F T H E F R A M E W O R K

5.1 introduction

In this chapter I will detail the implementation of the GI framework used in this thesis.

The implementation of the GI is inspired by the work of Langdon et al. [102, 78]. Like their

framework, this one operates on the source code with no need to convert the program

to a different representation like AST [1]. Therefore this approach is directly transferable

between programming languages with minimal configuration as is shown in this thesis. In

Chapters 6 and 8 it is applied to Python programs while in Chapter 7 it is being applied to

C/C++ software.

This chapter is structured as follows: Section 5.2 explains the representation the GI frame-

work uses. Section 5.3 gives an overview of inputs and parameters that can be passed to

the framework. Section 5.4 walks through the general procedure that is implemented and

Section 5.5 summarises the framework’s details.

5.2 representation

The framework evolves lists of edits (patches) as seen in Figure 5.1. A single patch consists of

a list of edit operations sampled from the set shown in Table 5.1 and is applied in sequence

from the first edit to the last item in the list. Each edit details how the source code should be

manipulated with one of the operations in Figure 5.2

Figure 5.1: An example of an edit list and how it can evolve with Grow, Prune or Single edit change.
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The information contained in a single edit is controlled by which of the operations is

selected but generally it is a location and the fragment(s) of code involved. Delete and Swap

only manipulate whole lines but Copy and Replace can be used on parts of lines. The reason for

this is that deleting a part of a line will likely cause syntax errors and Swap is a combination

of Copy and Delete. Table 5.1 lists the different ways they can be used and what arguments

should be passed with the operation. Location is denoted with a line number Li and column

number Ci, which is character number C counted from left in line Li

Table 5.1: The choice of edit operations and their arguments. Granularity can either be

Operation Granularity Arguments

Location Code before/after Description

Copy
Whole line [L1,L2] Just the line being

copied

Copy line number L1

above line number L2

Part of line [L1,C1],

[L2,C2]

Just the snippet be-

ing copied

Copy code snippet in line

L1 starting from column

C1 in front of column C2

in line L2

Delete Whole line [L1] Line being deleted Add the appropriate com-

ment character at start of

line L1

Swap Whole line [L1,L2] Both lines Swap the contents of lines

L1 and L2

Replace
Whole line [L1,L2] Both lines Copy line L1 and replace

line L2 with the copy

Part of line [L1,C1] Code snippet be-

fore and after

Replace the before code

snippet found in line L1

starting from column C1

with the after code snippet

The granularity of an edit is determined by the code snippets it manipulates. They can be

whole lines from the source code, or one of various single operators or numerical constants that

are defined separately for each programming language. A table of Python specific operators

can be found in Section 6.3 and for C++ in Section 7.4.1. As seen in column four in Table 5.1

the code before/after argument can be either one or two pieces of source code.

The edits are constructed from the source code which is read as a text file and stored in a

data structure of program lines. Each line’s data structure holds the following information:

• The raw text as it appears in the source file.
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Figure 5.2: The four types of edits that can be applied to the source code. More detailed descriptions

and list of arguments to each can be found in Table 5.1

• Line types as defined by the GI practitioner (see Section 5.3).

• Indentation as the number of space characters1.

• If the lines immediately following should be indented or not. This is only relevant when

the target source code is in a language like Python where otherwise it has no effect.

• Whether the line can be altered or not. This can be varied by including or excluding

certain line types in a list of untouchable line types. Empty lines, function and class

definitions, imports, multiple line comments, and a few others are included by default

(see Section 5.3).

• A list of variables, and operators that the line contains, along with their location on

the line. Regular expression patterns are used to identify and locate the operators. The

patterns are kept simple to minimise constrictions to the search so the identification is

vulnerable to false positives and might make changes available to the GI that do not

always make sense. For an example the GI might find the operator < in a string constant

which has no effect on any semantics nor syntax.

1 Code blocks are defined by indentation in Python and not by {} as in JAVA/C
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5.3 input and parameters

The GI framework requires five inputs to work with:

target source files: A list of paths to files it has access to and can edit.

evaluation function : A callable script or a command that returns a comparable value

to assign fitness to program variants. This can measure correctness by running software

tests, performance by recording execution time and memory use, or energy efficiency by

inspecting the energy use when executing the target program.

line types : A list of different line types as defined by the GI practitioner. Each element in

the list contains: a name for the type, regular expression pattern to identify the lines, an

indicator if it can be modified, and another if it starts a block like a for loop. An example

of defined line type list can be found in Tables 6.1 and 6.2 in Section 6.3.

operators: A list of sets that are interchangeable as defined by the GI practitioner. An

example of such list can be seen in Table 6.3 in Section 6.3, a single set might contain

arithmetical operators (+ − × /).

comment character : A symbol that the programming language defines as the start of

an in-line commented text. In Python it is e.g. # while in Java one can use //. It is used

for the edit operation: Delete.

There are three compulsory inputs, the two first are like in Harman et al. [76] the target

source files and evaluation function, and the third is the comment character. The other two

can be omitted if the GI practitioner wants to put less restrictions on the search space. The

line type list defines what lines can be modified and restricts line swaps and replacements

between lines of same type. If omitted, then every line, that is not a comment, is tagged as

generic, modifiable, and replaceable with any other line. If the operator sets are not provided

the framework uses regular expressions to try to identify all operators used in the target files

by searching for variable names and connecting symbols. It searches for whole words and any

sequence of non-alphabetical characters or digits are determined to be operators that can be

modified. It then puts all the symbols it finds in the same operator set and so they all become

interchangeable.

In addition to inputs the framework has a number of parameters to control the algorithm

that have default values but can be controlled by the GI practitioner. Table 5.2 lists these

parameters, expected type, what values can be chosen, and the default value if the practitioner

does not provide one. It includes the traditional Evolutionary Algorithm (EA) parameters,

such as:

number of generations is the number of iterations of generate, evaluate, and select the

algorithm goes through;

43

[ 18th October 2017 at 10:37 ]



population size defines how many edit lists should be generated for each iteration;

number of parents counts how many are selected to be mutated in each iteration. This

number can be anywhere between 0 and population size, if it is less than 1 then it is

interpreted as a proportion of the population.

elitism factor sets the number of edit lists that are copied without change from one

iteration to another.

There are other less traditional parameters like penalty that is added to or subtracted from

the fitness for non-compilable or non-testable variants, line range and granularity. The line

range parameter specifies what lines in the target files are open for modifications and can

be used to focus the GI on specific methods, functions or classes. For each target file a pair

of integers denote the beginning and end of the line range, if omitted the whole file will be

modified. Granularity and is defined as the “size” of the code snippets that are modified and

the framework distinguishes between two levels:

macro Moving or modifying whole lines.

micro Moving or modifying variables, operators and parts of lines.

The framework uses both types as a default. Initial edit list size is equivalent to GP’s initial

tree size and defines the maximum number of edits to generate when constructing a new

list. An additional parameter, called Termination time limit is the maximum execution time an

evaluation has before the variation is forced to terminate and determined to be non-halting.

The parameters for the Breeding and Selection functions in Table 5.2 are limited to the options

that have been implemented, so only require the GI practitioner to choose. The choices for a

breeding function are displayed in Figure 5.1 and are as follows:

grow is where a randomly generated edit is appended to the edit list. The edit is generated

by a stochastic selection from all possible mutable locations in the source with a equal

probability. The location is a line and a column (if micro) or just a line (if macro). If the

case is a line, then another uniform random selection is made from possible replacements

for the content of the location (see Table 7.5). For the latter case, either one or two more

selections are made. First a selection of what operation will be applied to the selected

line; delete, replace, copy or swap. The random edit build stops here if delete is selected. For

replace and swap another line of same type is randomly selected with equal probability

to be the replacement or the line that swaps places. For copy a random line number in

the source is selected to be the location above which the selected line is copied to.

prune is when an edit in the list is selected with uniform random distribution and every

subsequent edit in the list is removed. The reason for removing all and not just one is

that the following edits might depend on changes of previous edits.
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single edit change is perhaps the least disruptive mutation. A single edit is selected and one

of its features is randomly changed, such as the replacement code is re-selected or the

copy location is altered.

all gives the three above equal chance of being selected for each time an edit list is modified.

The selection function has three options: weighted selection, truncated selection, or random

selection. Weighted selection gives each edit list i a probability (p) of being selected, which is

its fitness f in proportion to the population’s overall fitness (eq. 5.1).

pi = fi

/ N∑
j=1

fj for edit list i (5.1)

Truncated selection sorts the edit lists by fitness in descending order and selects the upper

part of the population. How many are selected is controlled by the number of selected parents

parameter. It is a number anywhere between 0 and the population size. If set between 0 and 1

then it is interpreted as a proportion and the default value is half the population, otherwise it

denotes the actual number of parents.

5.4 procedure

When the framework is first initiated it parses the targeted files into the line data structures

(see Section 5.2) and tags the line type by matching them with regular expression patterns.

If the line does not match up with any of the predefined patterns it is assigned the default

Generic line type. Comment is the only line type that possibly can change types as the GI has

the option of deleting the comment characters from the start of the line but only if that line

was previously a target of a delete edit. If that happens the GI searches through the patterns

again to redefine the line type.

The search method of the framework is a simple population based evolution as seen in

Figure 5.3. Every stage of the algorithm is customisable with the parameters detailed in

Section 5.3. The general outline of the procedure is to start by initiating a population of

randomly generated edits and evaluate them with the given evaluation (fitness) function. If

the termination criteria is not satisfied, then select parents from the population to base the

next generation on. Together the breeding and selection functions initiate each subsequent

generation and the available remaining spaces are filled up with new edit lists.

The evaluation involves applying the edits to the source code in sequence and then measure

the specific property the intention is to improve. The GI terminates programs that do not halt

after a specified execution time and assigns them the appropriate penalty value (Table 5.2). The

default penalty is zero when the objective is to maximise but ∞ when it is to minimise. The

resulting outcome from the procedure is a list of edits that can either be manually inspected

by the GI practitioner or directly applied as a patch to the original program.
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Figure 5.3: The general outline of the search algorithm implemented in the framework.

5.5 summary

I have described the general structure of the framework used in the experiments for this thesis.

It uses an EA to generate lists of edits that can be used to change the source code directly. It

parses relevant information about the source code into data structures to restrict the changes

to correct syntax. The source code is treated as a string type variable when edits are applied.

The framework has a number of parameters that control the search, most of them are optional

arguments but can be set to specific values, depending on the purpose of the search. The edit

list representation of this framework was inspired by Langdon et al.’s framework introduced

in Part ii. The difference is that theirs is a series of BNF grammar rules while this one produces

human readable instructions. This framework is also only as restricted as is needed each time.

It can be provided with as many or few rules to follow while modifying the source like any

string without structure. Other GI implementations usually enforce some kind of structure by

using tree based structures with predefined nodes, types, and blocks. All subsequent chapters

in this thesis use this overall framework. Each chapter uses it in different ways showing

the framework’s versatility and will contain an explanation of the specialised setup for its

experiments.
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Table 5.2: Parameters to the GI framework.

Parameter Type Possible options Default value

Line range [xi,yi] ∈ Z2

for each file i

0 < xi 6 yi 6 ni

where ni is

number of lines in file i

[0,ni]

Breeding function String “grow”,

“prune”,

“single”,

“all”

(see Figure 5.1)

“all”

Selection function String “weighted”,

“truncated”,

“random”

“weighted”

Objective String “minimize”,

“maximize”

“minimize”

Granularity String “macro”,

“micro”,

“both”

“both”

Penalty x ∈ R 0 < x <∞ 0 or ∞
Depending on objective

Number of generations N N ∈ Z 0 < N <∞ 50

Population size P P ∈ Z 0 < P <∞ 40

Number of parents x ∈ R 0 < x < P 0.5

Elitism factor x ∈ R 0 < x < N 0

Initial edit list size x ∈ Z 0 < x <∞ 1

Termination time limit x ∈ R seconds 0 < x <∞ 60
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6T H E F I T N E S S L A N D S C A P E O F M U TAT E D P Y T H O N P R O G R A M S

6.1 introduction

Nearly one third of the GI literature is dominated by examples of automatic bug fixing

while approximately another third is concerned with improving non-functional properties

[64, 200]. Whether GI is used to fix faulty programs or improve some non-functional aspects it

always searches in the space of program variants of the existing software. Like in most search

algorithms the search is guided by fitness and in the case of bug fixing it is commonly defined

as number of test cases passed.

The relationship between the program space and fitness is seldom simple and often quite

difficult to analyse. Yet, this relationship, often called the “the fitness landscape”, has a direct

bearing on the efficiency of the search [194]. When investigating it we need to consider

multiple factors both related to the search space and the evaluation of the fitness. On the

search space side there are factors such as step size and ruggedness. For the evaluation side

we might consider code coverage, size, and overlap of the test suites.

The main emphasis in the literature to date has been on research of applying GI to determine

the improvement in performance, rather than an understanding of the GI search space. There

is a need for empirical and theoretical analysis of the GI process. Is it easy or difficult to

traverse the search space of programs. What can possibly be done to increase the chance that

the programs improve? We begin to answer this question in the space of smaller programs.

Understanding the landscape of small programs can lead to insight to landscapes of larger

programs. The landscape of smaller programs also allows us to analyse the full impact of

changes introduced to the code and keeps uncertainties introduced by the rest of the program

to a minimum.

This chapter aims to answer RQ 1:

Research Question Can GI fix bugs in small programs, written in a dynamically typed language and

how does the GI interact with the search space?

We do that by exploring the relationship between fitness and number of accumulated incre-

mental changes. We use GI to introduce bugs into correct programs and gain an understanding

of the program repair process in a controlled setting. We chose three small Python programs

to make a preliminary study on empirical properties of GI’s fitness and edit lists. The following

questions were addressed in conjunction with the research question:
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• Is it feasible to apply GI to fix multiple bugs at a time?

• Will fixing one bug introduce another?

• If a fix needs multiple edits, will GI be able to find it within reasonable time/number of

iterations?

• Can we identify any similarities or patterns in fitness distance relationship that might be

worth exploring in more detail on larger sets of programs? I.e. is there some rule there

that has not been discovered yet?

Although the experiments with only three programs are limiting for generalisation of the

answers we find, they help us narrow down the most promising route of research for larger

and more resource consuming experimentation. Choosing to operate on Python programs

also serves two purposes:

• Most examples of GI are applications on C/C++ and Java but very few applied to Python

programs [1] and given that it is a very popular language, there is a corresponding gap

in the literature.

• Because of dynamic typing of Python programs, the search space is possibly less

restricted than for statically typed languages. Therefore changes to the source code

might have more possibilities than a static typed language.

The remainder of this chapter is organised as follows: Section 6.2 gives a short overview of

the Python programming language in the relevant context of this chapter. Section 6.3 details

how the GI framework from Chapter 5 is specifically set up for this chapter’s experiments.

Section 6.4 explains the experiment conducted to answer the above questions. Section 6.5

examines the results and Section 6.6 gathers the findings into a cohesive summary of the

chapter. Part of this chapter’s work has been published in Haraldsson et al. [66].

6.2 the python programming language

The Python programming language was first developed in 1989-1990 by Guido van Ros-

sum [192] and was intended as an interpreted prototyping language. It has since become

widely popular and much more than just a prototyping language due to, in large, the open

source community of users and developers. The programming language offers interactivity

and object-oriented programming with dynamic typing and high level data types.

Although the dynamic typing offers a lot of flexibility, it also poses a problem for debugging.

The dynamic nature can introduce well hidden bugs by subtly changing a type of a variable or

assigning value to an already defined variable name. If the programmers are not careful they

can easily code in such a way that a variable assignment in one function has side effects on
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output from another function at runtime. It can then take an experienced Python programmer

considerable time to locate and fix even a single such bug.

The dynamic typing of Python could also have an impact on the GI’s performance, for better

or worse on various levels. The search process can be impacted in the sense that the search

space is potentially larger than for static typed languages and so the search will take longer.

Less restrictions and a finer grained search space might also result in clever or unconventional

solutions that the developers might not have identified themselves. That however might in

turn cause them to distrust the outcome because they are unable to verify its results.

6.3 the framework setup

Chapter 5 describes the framework which was used for these experiments. Each of the three

programs is contained in its own file which are the targeted files. The files are read into

memory and each line gets tagged as one of the types in tables 6.1 and 6.2 by matching them

with regular expression patterns. If the line does not match up with any of the predefined

patterns it is assigned the default Generic line type. The framework also searches each line for

numerical constants and the operators in Table 6.3. The fitness landscape that we explore in

this chapter is limited to micro mutations that only do replacements of the sets in Table 6.3.

The evaluation functions are basic scripts that run unit tests and count the number of passed

and failed test cases.

Table 6.1: List of defined line types that cannot be altered and therefore not accessible to the GI.

Line type name Indent following line/s Regex pattern

Empty False ^$

Import False ^(import|from).*$

Multiple line comment False ^\s*""".*$

class definition True ^class .*:.*$

Function definition True ^\s*def .*:.*$

try statement True ^\s*try\s*:.*$

finally statement True ^\s*finally.*:.*$

assert statement True ^\s*assert .*:.*$

with statement True ^\s*with .*:.*$
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Table 6.2: List of defined line types that can be altered and targeted by the GI

Line type name Indent following line/s Regex pattern

Generic False ^.*$

Return False ^\s*return\s*.*$

Comment False ^\s*#$

If statement True ^\s*if .*:.*$

else statement True ^else\s*:.*$

elif statement True ^\s*elif .*:.*$

for loop True ^\s*for .*:.*$

while loop True ^\s*while .*:.*$

except statement True ^\s*except .*:.*$

Table 6.3: Sets of single operators and constants available to the GI. One member of a given set can be

changed to another member of the same set.

Description Set of operators and constants

Numerical constants Can increment by ±1

Arithmetic operators +,−, ∗, /, //, %, ∗∗

Arithmetic assignments + =,− =, ∗ =, / =,

Relational operators
<,>,<=,>=,==, ! =,

is, is not,not

Logical operators and, or

Logical constants True, False

6.3.1 Search algorithm

Generally, the GI’s search algorithm is guided by a fitness function, applying selection pressure

towards better programs. GI methods that evolve edit lists also have to produce a new

generation of edit lists from a previous generation. For the experiment in this chapter the

implementation uses only the first type of mutation illustrated in Figure 5.1 that is applied to

parents to produce offspring: Append a generated edit to the parent (Grow).

For our experiments, analysing the relationship between edit list size and fitness, we start

from an assumed correct implementation of the program and apply a single edit. We do this

for every possible single-edit change to the original to exhaustively record the neighbourhood

fitness. From there on a random walk is implemented by incrementally adding a single edit to
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the edit list by using Grow. There is no selective pressure to search and the edit list is reset

to a single random edit when these two conditions are met; maximum size of edit list and

minimum fitness. In general terms such a random walk is not new and has frequently been

used in analyses of various problems in physics and computer science [186].

A program’s minimum fitness is zero, which can be obtained by failing to produce correct

output on any input, throwing an exception, or not halting for every test case. The GI terminates

programs that do not halt after a specified execution time and assumes they have failed that

particular test case. Defining test suite T̂ and Ti as test case i and n is the total number of test

cases, then Ti = 1 if the variant passes that test otherwise it is zero. Given those definitions

the fitness function (0 6 f(x) 6 1) for variant x can be formalised like in equation 6.1

f(x) =


0 if not halting or compiling,

1

n

n∑
i=1

Ti else
(6.1)

6.4 experimental setup

The experiments are divided into two parts:

random walk analysis where starting from the assumed correct program and the fitness

is monitored as the edit list incrementally grows by one edit at a time.

exhaustive neighbourhood analysis where we evaluate the fitness of every first order

mutant of the original program. A single edit change to a program is called its first

order mutant.

The former part explores the fitness landscape globally, while the latter will indicate the local

gradient the GI has to work with.

6.4.1 Random walk analysis

Each program source code is subjected to experiments to assess fitness distance which is

the change in fitness given a particular number of mutations. The proportion of passed test

cases is the chosen measurement for the fitness function while the distance is measured in the

number of edits applied to the original to obtain the variant.

The experiment is repeated 100 times by initiating an edit list x with a single randomly

chosen edit and then appending it to the list incrementally. The pseudo code for the exper-

imental process can be seen in procedure 1. Apart from recording the fitness f(x) for each

added edit in every experiment, three metrics (∆,Ω and Ψ) are recorded for each run. These

are the size of the edit list (|x|) when the fitness:
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Procedure 1 A single experimental run for a random walk

1: MinX← 20 {Minimum size of edit list}

2: MaxX← 50 {Maximum size of edit list}

3: F← empty array {list of fitnesses}

4: x← [random edit] {edit list}

5: for i = 0 until i 6 50 do

6: append f(x) to F

7: if |x| > 20 and f(x) = 0 then

8: break

9: end if

10: append [random edit] to x

11: end for

- decreases for the first time ∆:

i.e., when f(xi) < f(x0) and f(x0) = f(xj) ∀j ∈ {1, ..., i− 1} ⊂ Z

- reaches zero Ω:

i.e., when f(xi) = 0 and f(xj) > 0 ∀j ∈ {0, ..., i− 1} ⊂ Z

- starts to increase again Ψ:

i.e., when f(xi) > f(xi−1) and f(xj) 6 f(xj−1) ∀j ∈ {1, ..., i− 1} ⊂ Z

These measurements provide us with data to empirically explore the nature of the rela-

tionship between fitness and the size of the edit list for the three programs described in

Section 6.4.3. Each program is accompanied by a test suite of different sizes so the fitness is

normalised to represent the fraction of test cases passed.

6.4.2 Exhaustive Local Neighbourhood Analysis

For the second series of experiments each program is systematically mutated. The complete

neighbourhood of the original program at distance one (first order mutants) is generated.

This comprises of a variant for every possible replacement of every identified operator. Then

each test case is individually recorded passed or failed for those variants. The evaluation of

a mutated program returns a list containing ones and zeros of (passed, failed) for each test

case. The same index in any two lists refers to the same test case so it is possible to compare

the entire neighbourhood on a case by case basis. Fitness is a vector as opposed to a single

measurement.
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6.4.3 Description of the programs targeted by GI

The three programs summarised in Table 6.4 were selected for the experiment, their source

code can be found in Listings A.1– A.3. They are all comprised of 3 or fewer python functions.

They are not complete Python modules but are either part of a module, like P2 or a standalone

functions like P1 and P3. However they can be integrated into any Python module and have

well defined input, output types.

P1 is a simple text input calculator that reads text from left to right, parses a single character

at a time into (operator, digit) bins and calculates a result using a reverse Polish notation.

It is a beginner’s programming exercise and has proved difficult for automatic methods to

evolve from scratch [212]. It is the only program of the three that is made specifically for

this chapter’s experiments. It branches out for each of the four basic arithmetic operations;

addition, subtraction, multiplication and division as well as a special branch for parentheses.

This adds redundancy to the source code but allows us to observe partial failures and a

partition of the test suite.

P2 is an initialisation function for the K-means clustering method and is a part of the

Scikit-learn Python toolbox [149]. It determines the initial k centres for the algorithm. P2 does

this with a random number generator that can be seeded for consistency.

P3 is a string manipulation function that reads through a text replacing HTML tags with

latex equivalent commands. It is a part of a larger software system, Janus Manager that is in

commercial use by a vocational rehabilitation centre in Iceland. It implements a purely string

manipulation method unlike P1 and P2 that are numerical and mathematical in nature.

Table 6.4 shows basic info about the programs, P1, P2 and P3. The numbers in the second

column are the number of lines of code and the number of lines that can be changed, i.e.

excluding definitions, comments that do not include executable code and functions out of

scope. The third and fourth columns are the count of mutable points, the number of instances

in the source that fit into any of the sets defined in Table 6.3 and the count for each set. The

fifth column describes the input and output of each program and the last column is a short

description of its purpose.
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Table 6.4: Information about the programs that were used in the experiments

Program Total lines of code (∗) Total number of

mutable points

Mutable points by type

(Table 6.3)

Size of distance -1

neighbourhood

Input

⇓

Output

Description

P1 143 (98) 147 S1: 19

S2: 37

S3: 50

S4-6:41

376 String

⇓

Float

Simple text

input calculator

P2 177 (75) 106 S1: 11

S2: 14

S3: 57

S4-6:24

317 Cluster data∗∗

⇓

Matrix

Initiation of K-

means cluster

centers

P3 66 (63) 59 S1: 26

S2: 3

S3: 29

S4-6:1

401 HTML

⇓

Latex

Html to Latex con-

version tool

∗Lines of code that the GI was allowed to modify.

∗∗Data points, number of clusters, initialization method and 3 optional arguments.
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P2 and P3 are accompanied by test modules which are used to evaluate fitness. However

P2’s test suite, comprising of approximately 60 test cases, was expanded to 500 by sampling

with replacement from the inputs of the original tests and using P2 as an oracle. P3 comes

with 124 test cases based on HTML input from users and their verified output, so expanding

that test suite is not feasible. The test suite for P1 is 600 cases made by combining two sets;

A = {0, 1, 2, 3, 4} and B = {+,−, ∗, /}. The set of numbers was chosen because we can use it

to test boundary conditions with an additive identity (0), a multiplicative identity (1), an odd

number (3), and an even number (4). Adding more numbers would increase the evaluation

time but would be unlikely to increase the information provided with larger test suite. Two

categories of test cases were made:

a) All possible combinations of a single operator from Bwith two digits from A, an example

would be 2+ 2.

b) All combinations of (Xo1Y)o2Z where {X, Y,Z} ⊆ A , o1 ∈ {+,−} ⊆ B and o2 ∈ {∗, /} ⊆ B.

An example would be (4+ 2) ∗ 2.

P1’s test suite was verified with the Python built in eval function.

The time it takes any of the original programs to execute its full test suite is on average

under a second so the limit for execution time is set to 3 seconds. This was found to be enough

to account for any delays due to other processes on the testing machine.

6.5 results

We consider four points for analysis in the following subsections:

1. Size of edit list versus a specific change in fitness

2. Average fitness as a function of edit list size

3. Unique and discrete steps in fitness

4. Every possible combination of pass and fail for the test suites and single-edit program

variant

When comparing the mean of two metrics we use Welch’s t-test for statistical significance

between two independent samples with unequal variance.

hypothesis for welch’s t-test The means (µ) of a given metric for program i and

program j are equal.

H0 : µi = µj

H1 : µi 6= µj
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For testing the likelihood of two metrics coming from the same distribution, we compute a

two sample Kolmogorov-Smirnoff statistic.

hypothesis for kolmogorov-smirnoff Metric Xi from program i and Xj from pro-

gram j are drawn from the same distribution D.

H0 : Xi ∼ D and Xj ∼ D

H1 : Xi ∼ D and Xj ∼ G and D 6= G

H0 states that the metric for both program i and j are drawn from distribution D. H1 states

that the metric for i is drawn from distribution D, the same metric for j is drawn from G, and

G and D are not the same distribution.

6.5.1 Size Versus Change in Fitness

Table 6.5 lists the basic descriptive statistics for the edit list size (|x|) for the three different

changes in fitness (see Section 6.4) and the total number of fitness evaluations for each program.

The number of evaluations varies between programs due to the termination conditions which

are to continue adding an edit to the list until either it is of size 50 or if it has fitness 0 after it

grows to size 20 as described in Section 7.4. Firstly we measure the edit distance required for

the fitness to decrease for the first time (i.e. f(x) < 1).

Table 6.5: Statistics for the variables defined in section 7.4, edit list size |x| when changes in fitness f(x)

are detected and total number of fitness evaluations during the experiments.

Variable Mean (std) (Min, Max) Number of occurances Evaluations

P1

∆ 8.91 (9.83) (1, 50) 99 2213

Ω 12.68 (10.55) (1, 50) 97

Ψ 12.0 (7.53) (3, 25) 12

P2

∆ 2.56 (3.20) (1, 19) 100 2267

Ω 10.28 (8.33) (1, 42) 100

Ψ 7.64 (5.42) (2, 26) 34

P3

∆ 2.69 (3.30) (1, 19) 100 1980

Ω 3.92 (3.74) (1, 19) 100

Ψ 4.76 (3.44) (2, 16) 17

For P1, ∆ occurs on average when the edit list is 9 edits long, although there is a lot of

variation as shown by the standard deviation and the range (1, 50). As seen in Figure 6.1 the

mean is a poor measure of the average. Although programs are fragile to multiple changes,
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there are a significant number of neutral paths that random walks can follow, even when the

size of the programs is 100 LOC or less. It should also be noted that in 1 run out of the 100

repeated experiments the fitness did not drop at all, reaching the maximum size of 50 edits.

There is a highly significant difference (p < 0.001) between P1 and P2 for the mean ∆. We can

also reject the null hypothesis that the samples come from the same distribution (p < 0.001)

as is evident when comparing Figures 6.1a and 6.1b. However statistically we cannot rule

out the possibility that the distribution (p = 0.99) and mean (p = 0.78) are the same for those

measures when comparing P2 and P3. Notice that the bar plots in Figures 6.1b and 6.1c are

very similar. Both resemble the probability mass function of a geometric distribution where

the probability decreases inversely by an exponential factor with respect to edit list size.
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(a) P1.
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(b) P2.
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(c) P3.

Figure 6.1: Distributions of the edit list size when the fitness decreases for the first time during the experiments for each program (∆ Table 6.5).
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Figure 6.2: Distributions of the edit list size when fitness reaches zero for first time (Ω Table 6.5).
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Figure 6.3: Distributions of the edit list size when (if) fitness starts increasing again (Ψ Table 6.5).
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P1 and P2 are however closer together when comparing the number of edits it takes to

reach zero fitness and until the fitness might increase again. Testing for the same distribution

gives p = 0.08 and p = 0.10 for Ω and Ψ respectively and we also cannot reject the hypothesis

that the means are the same (0.08 and 0.09). Figures 6.2a and 6.2b corroborate the observation

about zero fitness. However looking at Figures 6.3a and 6.3b we are less sure about the number

of edits it takes to increase the fitness again and might infer that we do not have enough data

to be confident the test results are accurate.

P3 has very different means and distributions than P1 on all measured variables (p < 0.01)

which is validated on looking at Figures 6.3a–6.3c. The lack of data for Ψ is further verified

by the outcome of tests comparing increased fitness between P3 and P2: Rejecting that they

have same mean (p = 0.025) but failing to reject that they come from the same distribution

(p = 0.09).

These results indicate that: P1 is unaffected by many edits and P2 and P3 are easily broken

and fixed even though they are very different.

6.5.2 Average Fitness with Respect to Edit List Size

The experiments were repeated 100 times, from which fitness distance graphs were generated.

These allow us to approximate the distribution of fitness for each increment in edit list size.

Looking at the boxplots in Figures 6.4a–6.4c we see that overall, the distributions are quite

different. P1’s first three increments (Figure 6.4a) have very narrow distributions close to

f(x) = 100% and then the distributions widen considerably until increment 15 where they

start narrowing towards the bottom. For P2 it is a smoother transition (Figure 6.4b) from

top to bottom, maintaining a similar rate of descent for the mean, maximum and minimum

throughout. Then P3 stands out completely with seemingly only two distributions; covering

the entire range and nearly collapsed on either extreme (Figure 6.4c).

62

[ 18th October 2017 at 10:37 ]



1 5 10 15 20 25

Distance [n edits]
0%

20%

40%

60%

80%

100%
Fi

tn
e
ss

(a) P1.

1 5 10 15 20

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(b) P2.

1 5 10 15 20

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(c) P3.

Figure 6.4: Fitness distribution with respect to edit list size for each increment. The tapering denotes the 95% confidence interval for the median fitness of each edit list size.
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Figure 6.5: Mean fitness (95% error) with respect to edit list size for each increment.
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Figure 6.6: Median fitness (95% error) with respect to edit list size for each increment.
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Having a closer look at how the mean fitness changes in Figures 6.5a–6.5c we see that

these programs are as dissimilar as initially assumed. While both P2 (Figure 6.5b) and P3

(Figure 6.5c) both follow curves that are concave upwards, P3 follows a sharper curve. Now

P1 is the outlier (Figure 6.5a) following a noisy line with a negative slope until the edit list

reaches size 22 when it jumps up to f(x) = 80% again. This seems very unexpected as the

subsequent edits start to repair the program but given the size of the program and the number

of edits this is quite possible. P2 shows signs of starting to recover in increment 22 as well but

on a much slower rate than P1 and P3 shows no such signs at all.

The plots for medians in Figures 6.6a–6.6c paint a completely different picture, displaying

no hint of smoothness to the transition from one increment to another. This, again, verifies

that the mean is not a good indicator for the average of these measurements. However there

are obvious steps that highlight the discreteness of each program’s fitness function. We see in

Figure 6.6b that P2 has the most number of steps, while P1 comes second (Figure 6.6a) and P3

last (Figure 6.6a).

6.5.3 Discrete steps in fitness

Following the observation of the different steps for each program’s median fitness seen in

Figures 6.6a–6.6c, we counted the unique number of fitness evaluations throughout the entire

experiment. As previously inferred, P2 has by far the largest number of discrete steps, with 46

in total as seen in Figure 6.7. P2 had its fitness evaluated 2067 times, as seen in Table 6.5, and

Figure 6.7 shows how often the fitness changed from one value to another by adding a single

edit to the list. The histogram matrix is very sparse as can be seen by the white squares that

denote zero counts, for example the fitness never went from 0.655 to zero with one edit. The

diagonal line of shaded boxes from (0, 0) to (1, 1) indicates that the majority of single edits

had little to no effect on the fitness, especially when the fitness is already zero. However there

is an abundance of blue squares at the bottom which tells us that a single edit can often lead

to complete failure of the program.

P1 has the second largest number of discrete steps, 15 as seen in Figure 6.8, the total

number of counts is 2213 (Table 6.5). This chart looks like a scaled version of P2’s (Figure 6.7),

displaying the same dominant diagonal line as well as the number of single edits that make

the program pass 0% of test cases. We also see here that there are a lot of single edits that

decrease the fitness from 1, shown by the large number of non-white squares in the right most

column. This is to be expected since every experimental run starts with a correct program, so

it visits that state at least once each time while it is not guaranteed to visit other specific steps.

Figure 6.9 is the least sparse of the three, only 5 fitness steps in total. What is surprising

however, is that even though there were 1980 fitness evaluations there are still some zero

counts. As with P1 and P2, there are more of them above the diagonal line than below,
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Figure 6.7: Frequency chart of fitness changes after a single edit is appended to the edit list for P2. Each

square is a count of how often the fitness changed from fitness before to fitness after.

meaning that adding an edit is more likely to decrease fitness than to increase. The highest

counts are also on the diagonal line, so the same behaviour can be observed: most likely a

single edit will leave the fitness unchanged.

6.5.4 Exhaustive Neighbourhood Evaluation

The exploration of the nearest neighbours to the original program revealed interesting in-

formation. Figures 6.10–6.13b are obtained by gathering the pass/fail lists for all the program

variants in a matrix so that each row represents a program variant and each column represents

a single test case. We then collapse the matrix so that each row and column are unique and

keep count of how many instances each represents. The collapse is done by grouping together

identical rows and columns, count the members of each group, and show only a single pattern

but record the counts. Those counts are on the y- and x-axes, indicating the number for each

pattern of program variants and test cases respectively.
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Figure 6.8: Frequency chart of fitness changes after a single edit is appended to the edit list for P1. Each

square is a count of how often the fitness changed from fitness before to fitness after.
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square is a count of how often the fitness changed from fitness before to fitness after.
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Figure 6.10: Unique patterns of passed/failed for every program variant (P1) and every test case. Green indicates a pass while red is fail. The columns and rows are sorted by

the number of occurrences for each unique combination of passed/failed.
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Figure 6.11: Unique patterns of passed/failed for every program variant (P1) and every test case. Green indicates a pass while red is fail. The columns and rows are sorted by

fitness (maximum green) for each unique combination of passed/failed.
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(a) The columns and rows are sorted by the

number of occurrences for each unique com-

bination of passed/failed.

(b) The columns and rows are sorted by fitness

(maximum green) for each unique combin-

ation of passed/failed.

Figure 6.12: Unique patterns of passed/failed for every program variant (P3) and every test case. Green

indicates a pass while red is fail.

Of the three programs P1 has the most variation in its single-mutation programs (Fig-

ures 6.10 and 6.11), with 37 unique combinations. However the number of unique fitness

values is 14, one less than from Figure 6.8 meaning that one of the fitness steps needs at least

2 or more edits to be reached. P2 has 4 unique combinations (Figure 6.13) and only 2 fitness

variations, which is far less than the 46 in Figure 6.7. P3 has 7 combinations (Figure 6.12 and 5

fitness variations.

Random mutations to P1 and P3 will most likely have no effect but P2 is equally likely to

fail all test cases. The immediate practicality of the results presented in Figures 6.10–6.13b

is not apparent. They represent a condensed information about groups of test cases as well

as program variants. The most obvious usage of such data is in test case selection problems.

In situations where one needs to save resources they could largely decrease the number of

test cases by selecting one from each group. Take for an example P2. The expanded test suite

counted 500 test cases but according to Figure 6.13 only 3 would have sufficed, one from each

group on the horizontal axis.

6.6 summary

This exploration of three Python programs’ fitness distance provides us with a greater

understanding of the search process encountered by GI. The experiments allow us to come to

a conclusion for these three programs. In general we are unable to state the conclusions as
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(a) Unique patterns of passed/failed for every

program variant and every test case. Green

indicates a pass while red is fail. The

columns and rows are sorted by the number

of occurrences for each unique combination

of passed/failed.

(b) The columns and rows are sorted by fitness

(maximum green) for each unique combin-

ation of passed/failed.

Figure 6.13: Unique patterns of passed/failed for every program variant (P2) and every test case. Green

indicates a pass while red is fail.

affirmative because we do not have enough data. Additionally, we assume that the landscape

has no inaccessible areas to our GI implementation. Since we are using the GI to break correct

programs and concluding about the opposite search direction, we assume that bugs will be a

variation of something that the GI can modify.

Revisiting the four questions asked at the beginning of this chapter and given our assump-

tions:

• We observe that it is feasible to apply GI to fix multiple bugs simultaneously. The search

space from the original program to a variation is most likely contained within 10 edits.

Starting from any variation of these programs and applying search pressure can result

in a fix. However since the space has large areas that are flat and provide no gradient

for the search to follow the search method has to contain a powerful escape mechanism.

The GI framework in this thesis has essentially a repeated soft restart built-in by filling

half of every generation with randomly generated new edit lists.

• If a fix needs multiple edits, GI will be able to find it. The same reasoning applies for this

statement as the last. If it takes on average 10 edits to completely break these programs
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(i.e. zero test cases passed), then if we are starting from a nearly correct program it is

likely to be found within 10 edit distance.

• We have identified a similarity in fitness distance relationship that is worth exploring in

more detail on larger set of programs. Programs are robust with respect to small changes

in the source code. That is, most small changes will have no impact on the number of

passed test cases. However, those changes that do affect it could possibly cause failure

of all test cases.

Although we cannot conclude general rules or patterns from these experiments, the difference

of the programs that were tested gives us hope that these patterns can be found in a larger set

of programs.

It would be interesting to explore the cause of the difference in sparsity of the frequency

matrices in Figures 6.7–6.9. The programs and the test suites were quite different in nature

which might explain the stark contrast in discreteness of our programs. While P1 and P3 had

a single input argument, P2 had 6, and the test suites reflected this difference. P2’s test suite

could be divided into multiple categories, testing various aspects and combinations of input

arguments. P1’s test suite could also be categorised but only in 4-6 groups and it would be a

stretch to try and group P3’s test suite.
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7R E D U C I N G E X E C U T I O N T I M E W I T H G I

7.1 introduction

This chapter analyses the GI’s capabilities to improve a non-functional property of ProbA-

bel [10], a bioinformatics program written in C. Non-functional properties have been of

particular interest [200], mainly due to the popularity in mobile computations and the need to

save resources [63, 23, 24].

Execution time has been a popular GI target, specifically for computationally expensive

programs for bioinformatics. Target software has included Bowtie 2 [109] which is used to align

genome sequences and the sequence mapping software BarraCUDA [113]. The traditional

program targeted by GI is relatively large (>10K lines of code), with a few exceptions [201, 153].

We consider how well the GI is able to target execution time. We also briefly analyse the

landscape of the non-functional property improvement which is measured with a continuous

variable from R. Our intentions are to informally compare this landscape with that of bug

fixing which is represented with a discrete variable from N. GI work on landscape analysis in

general is sparse and even more so when considering non-functional properties.

Specifically, we want to see if a GI framework that has initially been applied to Python code

can also operate on C code and answer two questions:

1. Can GI, within reasonable time, find improvements to ProbAbel that decrease its execu-

tion time?

2. What does the landscape for the execution time look like?

The term: “reasonable time” as stated in question 1, is subjective and therefore we have to

define it in this context. Let us start by imagining a program that executes in X time units. The

GI’s improvements decrease the execution to X ′ time units and it took the GI, Y time units to

find them. If said program is only supposed to be used once, then the overall gain would be

∆ = X−X ′ + Y. However if the program is going to be used on n occasions, then the overall

gain is accumulated for every execution (eq. 7.1).

∆ = Y +

n∑
i=1

(X−X ′) (7.1)

So we define the limit for the GI’s reasonable time to be when ∆ < 0. More informally: the

time it takes GI to decrease execution time is reasonable if the improved version can be found
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in less time than the accumulated saved time. The overhead of running GI will pay off even if

the improvement is small if the resulting program is executed many times. In other words,

the trade-off between investing in GI and running the improved version of the code multiple

times is less than running the original code multiple times.

The remainder of this chapter is as follows: Section 7.2 gives a short explanation of ProbA-

bel’s functionality. Section 7.3 describes the data set that was used for the experimentation

and how it was generated. Section 7.4 lays out the experimental procedure. Section 7.5 details

our results. Lastly, Section 7.6 summarizes and concludes the chapter.

Part of this chapter’s work has been published in Haraldsson et al. [68]

7.2 probabel: a bioinformatics software package

ProbAbel is a specific piece of software widely used in bioinformatics for Genome-Wide Asso-

ciation (GWA) studies. It is a collection of programs for regression models; linear, logistic and

Cox proportional hazard. A GWA study is the analysis of genetic variants in groups of people.

The purpose is to identify which variations, if any, are associated with a certain trait or disease.

An examples of such studies include identifying correlations between genome locations and

known risk factors for coronary artery disease [190] and cardiovascular disease [124]. Gen-

eralised Linear Models (GLM) are typically used to approximate the effect size of a genetic

variation by calculating the odds ratio (logistic models only) and a significance (p-value). There

are multiple different methods and programs available to perform the computation of a

GLM [130, 191] but the details of the process is beyond the scope of this thesis. The data

input to a GWA study is a record of multiple single-nucleotide polymorphisms (SNPs) for a

population of people and the trait or disease of interest. An SNP is a variation of a nucleotide

in a specific location of a genome. Most GWA studies gather DNA samples from multiple

people and consider millions of SNPs from each person [124]. Given that the studies are

analysing correlation between millions of data points and perhaps multiple traits in hundreds

or thousands of people the computation is often expensive.

ProbAbel is versatile and relatively fast because it uses estimations and floating point

data types instead of double precision numbers. The Icelandic Heart Association is one

of ProbAbel’s users. They conduct GWA studies on a regular basis, trying to identify an

underlying genome variation associated with increased risk of many diseases or conditions.

Typically the data consists of approximately 30 million SNPs from 10-20 thousand people.

Each run of the software can take up to 12 hours as reported by researchers in the Icelandic

Heart Association.

ProbAbel is written in C and C++ and utilises the R project’s [160] GLM functionality for

the bulk of the computations. The source code is approximately 8k lines of code, including

comments, divided between 31 source files in total.
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Table 7.1: The 16 targeted files from ProbAbel’s source code

File name Size (LOC) Number of

mutable points

reg1.cpp 879 1236

main.cpp 619 284

coxph_data.cpp 556 201

coxfit2.c 465 696

main_functions_dump.cpp 448 159

eigen_mematrix.cpp 433 348

gendata.cpp 276 218

phedata.cpp 275 217

data.cpp 273 152

regdata.cpp 270 261

cholesky.cpp 154 216

maskedmatrix.cpp 154 105

chinv2.c 64 71

cholesky2.c 60 68

chsolve2.c 46 43

dmatrix.c 19 22

Total 4991 4297

ProbAbel was profiled before any modifications were made to it. The profiling revealed that

the majority of the execution time was spent in 16 files which the GI was set to target. Table 7.1

lists these files, their sizes and the number of operators that were marked as being changeable

given the mutation operators in Table 7.5. The program can be changed in multiple ways but

assuming we only consider the sets of operators from Table 7.5 there are 18993 first order

mutants and over 360 million second order mutants for the total 4297 locations of mutable

points. The GI’s search space for ProbAbel is vast since the number of all possible variations

of the program is over 2.5× 102683, without counting variations that can be made by also

moving lines within the source.
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Table 7.2: Sampled distributions for generating larger data set

Trait Data type Distribution Parameters

Sex Categorical Discrete Uniform [0, 1]

Height Continuous Truncated Normal µ = 172

σ = 8

a = 150,b = 200

Age Continuous Truncated Normal µ = 55

σ = 15

a = 10,b = 99

7.3 test data

ProbAbel ships with a small set of example data for testing purposes and to enable potential

users to become familiar with its use. The example data has 5 SNPs for 200 people and the

recorded trait is height in centimetres. It also has a record of age and sex of each person

because GWA studies often have to account for confounding variables such as these. The data

has intentionally missing values and marks them as NA value to test the imputation ability

of ProbAbel. Running the program with the example data takes less than a second, most of

which is due to overhead like initiation and reading the data into memory. To successfully

measure the impact of the GI’s improvements on execution time we generated a larger set of

data from the example set.

Statistical sampling was used to increase the data set’s size, both generating samples of more

people and SNPs. Each trait (height, age and sex) was sampled independently to avoid having

identical samples in the generated data set and to emulate a sample of real life population.

This sampling scheme has more possibilities for the trait combinations than either sampling

from a conditional probability distribution or bootstrapping from the example data. Sampling

by bootstrapping would generate a population that has multiple people with identical traits.

Furthermore, conditional probability distribution biases towards homogeneous population,

especially when constructing the distributions from such a small group. Nonetheless, sampling

the traits independently ensures that the underlying distribution for each trait is the same as

that from the example data. Table 7.2 lists the estimated distributions from the example data

set used to generate each trait. Gender has equal likelihood of being male or female, height is

drawn from a truncated normal distribution, as is the age.

The SNP data was expanded using bootstrapping with replacement for allele, frequency

and dosage. An allele is a variation of the gene expression and can be multiple combinations

of the nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T). Frequency is
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the frequency of each allele and is a real number in the open interval (0, 1) and dosage is

the number of copies of the SNP. The detailed description of these variables is not within

the scope of this thesis and is not necessary for applying GI to ProbAbel. There is generally

no need to be a domain expert or have intricate knowledge of the end-user purpose of the

software to be able to utilise GI.

Table 7.3 lists the 7 generated data sets; their size and average execution time for the original

program and two best GI variants as trained on data set D3. We assume that the random

sampling of the traits from continuous distributions ensures that training on D3 will not

overfit for the other datasets. As seen in Figure 7.1 the relationship between both the number

of people and SNPs, and execution time is linear. Additionally the computational cost of the

GWA is more affected by the number of SNPs than the number of people as demonstrated by

the much higher gradient on the axis with the number of SNPs. Both program variants exhibit

the same behaviour.

Table 7.3: Seven different data sets of different sizes (population and SNPs). Execution time is measured

in seconds (CPU) and averaged over 20 test runs for each, data set and program variant. For

the program variants the p-value of the Student’s t-test for two independent variables is also

listed. Each variant is tested against the original.

Data set Number of People SNPs Original program Variant 1 (p-value) Variant 2 (p-value)

D1 200 5 0.0050 0.005 (0.81) 0.005 (0.70)

D2 5,000 100 0.1600 0.158 (0.25) 0.158 (0.10)

D3 10,000 1000 2.9625 2.957 (0.36) 2.959 (0.46)

D4 20,000 1000 6.0020 5.985 (0.42) 5.998 (0.84)

D5 20,000 5000 29.895 29.781 (< 0.01) 29.782 (0.01)

D6 20,000 10000 60.020 59.722 (< 0.001) 59.708 (< 0.001)

D7 30,000 20000 182.000 182.110 (0.84) 181.920 (0.46)

7.4 experimental setup

The experiments were conducted to answer the two questions from Section 7.1:

1. Can GI, within reasonable time, find improvements to ProbAbel that decrease its execu-

tion time?

2. What does the landscape for the execution time improvements look like?

To answer both we focused on the execution time of linear modelling with ProbAbel. We

focused only on one model in order to reduce the amount of code modified and thereby
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Figure 7.1: Execution time of the original program with respect to data set size; number of people,

and SNPs. The graph shows a surface that is approximately linear with respect to both

independent variables. Both variants,1 and 2 produce near identical figures as suggested by

the values in Table 7.3

ensuring that we only had to compile part of the software and decreasing the overhead time

for every evaluation considerably, from approximately 50 seconds for all models down to 12.

For both questions we utilise data set D3 because it is the smallest of the datasets such that

the measurements’ variations are guaranteed to be less than the average execution time. The

timing mechanism we used measures in milliseconds and executing ProbAbel on D3 takes

more than a second. However, we do test the original and two of the best performing variants

on all seven sets (see Table 7.3).

Statistical tests were run to determine whether the variants performed better than the

original. For each set of results we give the outcome of a two-tailed Student t-test where:

H0: The means are equal.

H1: The means are different.

The significance level is predetermined and set at 5%, so we reject H0 if p < 0.05.

7.4.1 GI Parameters

The first part of the experiment, unlike the setup for Chapter 6, uses the framework (Chapter 5)

to its full extent and searches with a population based evolutionary algorithm and parameters

as listed in Table 7.4. No attempt was made to optimise the parameters since one of the goals

was to apply the framework on a different programming language with minimal effort. The

improvement process iterates for 50 generations with a population size 40. The entities being
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evolved are, like before, edit lists as described in Chapter 5. We use both types of edits: Macro

(moving whole lines) and micro (changing a sub-string of a line). We provide the framework

with the sets of C syntax operators in Table 7.5 for micro edits and the line types in Table 7.6

for macro edits.

The first generation is a set of edit lists of length one. There is no elitism and half of each

generation is selected as parents to the next generation. Selection is made by weighing each

program with normalised fitness, so even those with poor performance have a chance of

being picked. Every parent undergoes a single mutation to make a single child for the next

generation, making half of the generation. The remainder of the 40 edit lists are randomly

generated with single-edits. So the search effectively has a soft restart implementation which

should prevent early convergence or too much homogeneity in the population. However it

might also promote homogeneity if the newly generated edit lists all have lower fitness than

the lists that are there from before.

Table 7.4: GI parameters.

Number of generations 50

Population size 40

Initial edit list size 1

Survival rate 0

Table 7.5: Sets of single operators available to the GI. One member of a given set can be changed to

another member of the same set.

Description Operations

Numerical constants Can increment by ±1

Arithmetic operators +,−, ∗, /, %

Arithmetic assignments + =,− =, ∗ =, / =,

Incremental operators ++,−−

Relational operators <,>,<=,>=,==, ! =

Bit assignments & =, | =

Bit operators &, |

Logical constants True, False
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Table 7.6: List of defined line types for improving ProbAbel

Line type name Can be altered or moved

Empty False

Include False

Function or class definition False

Compiler macro instructions False

Log statement False

Comment False

Generic True

If statement True

else statement True

else if statement True

for loop True

while loop True

Return True

7.4.2 Fitness evaluation

Fitness is the accumulated time in seconds the CPU is occupied by the program. The objective

is to minimise this value. Each variant’s fitness was the mean execution time for 20 runs to

even out the effect of background CPU processes. Additionally, every program variant is

first tested by compiling, then running the test suite to confirm if the output is as required.

A part of the test suite compares the actual output values with known correct values. If a

program does not compile it is not completely discarded but given a fitness of approximately

twice the original execution time. The test suite contains 52 tests and for each failed test case

a proportion of the original execution time is added to the fitness evaluation. So for each

failed test case 1/52 of the original execution time is added to the measured CPU time. This

translates to roughly twice the original execution time for most variants that compile but fail

all test cases. The penalty scheme ranks the following sub-performing programs in this order

of preference:

1. Variants that compile, fail all test cases but run faster than the original

2. Uncompilable variants

3. Compilable, fail all test cases, and run slower than the original.
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This penalty scheme encourages shorter execution time.

The experiments were conducted on Ubuntu 14.04, with Intel i7-3820 and 16GiB RAM.

Each program’s execution time evaluation was measured with the Linux command time that

returns the total number of seconds a process occupies the CPU. To decrease the likelihood

of dynamic overclocking from the base frequency of 3.60 GHz to 3.80 GHz, and to address

the inherent noisy environment of a running machine we have done three things: 1) Ensured

a single run of ProbAbel at a time, with no other intensive tasks running, 2) used the same

specific machine for all experiments, and 3) we show the variation as box plots in Figure 7.2.

7.4.3 Exploring the Execution Time Landscape

There is essentially no limit to the number of combinations a variable length list of lines can

represent but there are a finite number of mutable points in the program. Therefore, to explore

the landscape of ProbAbel’s mutants, we consider only micro edits, as adding the macro edits

would expand the search space considerably. The second part of the experiment is a random

walk starting with the original. This process is repeated 100 times. For every walk we modify

the original program in ten steps, with a single randomly generated edit in each step and

measure the execution time. Effectively taking ten random steps into the landscape from the

original. In addition, we evaluate a sample of first order mutants of the program by sampling

the neighbourhood with uniform random selection with replacement from all 18993 possible

first order mutants. We opt to have replacement to minimise memory usage that would have

been used to keep record of previously evaluated program variants. The sample size is limited

to what can be run in under ten hours which is approximately 2400 programs.

The setup for the second part of the experiment is similar to that in Chapter 6. However,

as the evaluation of ProbAbel’s execution time is computationally more expensive than any

fitness evaluation of a simple calculator or K-means initiation it is not feasible to do as thorough

an analysis here. We nevertheless explore the landscape in the same manner, only with a

few limitations. Apart from the fitness measurements the analyses differ in two ways. In our

previous work the maximum edit list size we considered was 50 edits and we exhaustively

searched the neighbourhood.

7.5 results of execution time improvements

When the GI finished, it had evaluated in total 2000 edit lists, 240 of which were duplicates

(two or more identical) and 1760 were unique. The overall runtime of the GI was eight hours

and fifteen minutes. The CPU time was consistently stable with maximum variation from

the mean less than 25% for all data sets and each program variant. The overall best mean
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Figure 7.2: Distribution of ProbAbel’s fitness and the number of compiled variants for each generation.

Left axis: The execution time and the boxes are the distributions of mean execution times for

each generation. Right axis: Number of program variants and the stars are the number of

compiled variants.

execution time was 2.957 (SD 0.012) seconds (Variant 1) on data set D3 and the next best

executed on average in 2.959 (SD 0.010) seconds (Variant 2). Variant 1 was only a single edit:

<<< MacroEdit: Delete,[reg1.cpp, 321],

chi2 = chi2 * (1. / sigma2_internal);

//chi2 = chi2 * (1. / sigma2_internal); >>>

and was found in generation 10, after approximately an hour and a half. It deletes line 321 in

reg1.cpp which has some effect on execution time but not on the output of the linear model of

ProbAbel. The line performs arithmetic operations on a variable (chi2) that contains a matrix.

The second best was found in generation 5, after 45 minutes, and was 4 edits long:

<<< MicroEdit: Copy,[reg1.cpp:153,40->153,33]

"col_new++;", "++col_new;">>>

<<< MacroEdit: Delete, [main.cpp,169],

coxph_reg nrd = coxph_reg(nrgd);

//coxph_reg nrd = coxph_reg(nrgd);>>>

<<< MacroEdit: Delete, [main\_functions\_dump.cpp,73],

std::cout.flush();

//std::cout.flush();>>>

<<< MicroEdit: Copy,[reg1.cpp:791,14->791,9]

"niter++;", "++niter;">>>

83

[ 18th October 2017 at 10:37 ]



Figure 7.3: Distribution comparison of the execution time of the original and the two best variants on

D5. Each box is constructed from 20 runs. The notches in the boxes are the 95% confidence

interval for the median of each.

Manual inspection revealed that both macro edits delete lines that have no effect on the

linear modelling functionality of ProbAbel and do not contribute to improved execution

time. These two lines are never executed when ProbAbel runs a linear regression and are

already excluded from compilation with C macro instructions. The two micro edits change a

post-increment to pre-increment by copying the ++ in front of the variable. There is a slight

performance improvement in using pre-increment in C because post-increment stores the old

value after the increment. For a single execution of the statement, the difference is minimal

but it accumulates when it is revisited for every column and row in a 10, 000× 1, 000 matrix.

However, as seen in Table 7.3 neither of these variants’ mean execution time is significantly

different from the original on D3. They were significantly better on D4 and D5 only and the

difference is quite small, less than 0.5%. As we further confirm in Figure 7.3 where we see that

the difference in means is small but the confidence intervals of the medians do not overlap.

Looking at Figure 7.2 we see that there is minuscule variation in the mean execution time over

the whole evolution and we can also note that the number of variants that compiled without

errors ranges from 23 (generation 46) to 34 (generations 21, 25 and 36).

On two occasions the GI found loopholes, e.g. changed an if statement such that the program

read in much less data than was given to it. This yields a significant reduction in execution

time, approximately 97%, but the resulting coefficients of the linear models differed from the

original’s results by approximately a factor of eight. The way in which the GI was instructed

to read from the test log files allowed for that loophole. The penalty scheme, which assumed

that there were 52 tests, only registered 4 failed test cases and ignored the other 48 that failed
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as well. These two “cheats” the GI found were not included in any figures or tables for two

reasons:

• They would have skewed the scales and obscured the improvements of the two “good”

variants

• They were a result of a poorly implemented test evaluation by the GI researcher

However, the fact that the GI found these “cheats” stresses the importance of proper imple-

mentation of constraints and being aware of any contingencies.

7.5.1 Random Walk Exploration of Execution Time

Figure 7.4 shows the 15 levels of execution time that the generated ProbAbel variants exhibited.

The graph demonstrates frequency of transitions from one execution time performance to

another when adding a single random edit to an edit list. The execution time of 5 seconds

denotes that a program variant was unable to compile and is an arbitrary number that is at

least higher than the worst execution time of a compiled variant. As seen in Figure 7.4, most

often a single edit caused a compilation error. Otherwise the execution times of the variants

are evenly spread over the range of possible times. Furthermore we omitted the most frequent

transition (marked with an X), which was essentially a non-transition; a neutral edit to an

already uncompilable program variant. The number of such transitions was 748 or about 83%

of the 900, not counting the first order mutants.

Figure 7.5 shows that the execution time does not get worse as we travel further away from

the original. However, the proportion of program variants that do compile without errors

decreases rapidly until it reaches zero after 9 steps.

7.5.2 Local Neighbourhood Exploration of Execution Time

An overnight run generating first order mutants produced 2400, of which 2265 were unique.

Of those, 1622 compiled without errors but 643 failed to compile. The distribution of the

execution time for those that compiled can be seen in Figure 7.6. It is interesting to see that,

although the execution time does not improve with first order mutants, it does not increase

considerably. The implications are that execution time reductions can probably not be achieved

with a single edit. This contrasts with the effects of single edits when fixing bugs.

7.6 conclusion

In this chapter we describe a successful application of a GI framework to improving C/C++

source code, following previous success with improving Python source code. The adaptation

85

[ 18th October 2017 at 10:37 ]



Figure 7.4: Execution time before and after a single edit is appended to the edit list and evaluated on D3.

Each square contains a count of how often the execution time changed from before to after.

Row and column marked with red is equal to the original execution time. Execution time of

5 seconds denotes an uncompilable program variant and X is the omitted count of 748.

to operate on C included only small changes to the class of operators in Table 7.5. Therefore

we can apply this same approach to many other programming languages.

Our intentions with this chapter were to answer the two questions in Section 7.1. The

answers we have arrived at are:

1. GI can find improvements to ProbAbel that decrease its execution time. However, we

have yet to confirm if the improvements were found within “reasonable” time.

2. The execution time landscape is much like the bug fixing landscape. It is noisy (Figure 7.2)

but largely flat with the occasional drops and peaks. Our findings are complementary

to the statement that “Software is Not Fragile” [111]. The majority of the first order

mutants (1622) compiled and executed without an error.

The GI framework introduced in Chapter 5 was able to improve the execution time of a

C program. We were only able to find marginally better variants of ProbAbel as seen in

Section 7.4. However, the 0.5% execution time decrease can translate into hours of saved time

in the long term. The application of GI is a one off, up front cost and considering that the

improved version did better on a larger data set than it was trained on means that this cost

does not need to be large.
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Figure 7.5: Left axis: The change in execution time as the program variants move away from the original.

Mean, maximum and minimum execution time for 100 traces. Right axis: Proportion of

program variants that compiled without errors.

Given the size of the search space, we also find it impressive that the GI found improvements

at all. The size of the search space limited to only changing numbers and operators from

Table 7.5 exceeds 102683. In our experiment we explored so little of the search space that the

percentage is close to zero, about 4× 10−2680.

This presents us with one of the threats to the validity of our experiments: How can we

be sure that what we explored is representative of the majority of the landscape? We cannot

be entirely sure. However, it can be argued that the explored landscape is representative of a

trajectory from the original towards an improved version. Therefore this is, at least, an area of

the landscape that is useful to explore.

A consideration for future work is to evaluate the penalty for failed test cases. Was the

proportional increase to the execution time evaluation too harsh? That might have been

restricting the search by not giving enough access to solutions that need to break the program

before they improve it. Both variants that were considered overall best contained only edits

that could be considered beneficial or neutral on their own and no edit that made ProbAbel

uncompilable.
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Figure 7.6: Distribution of the execution time within a single edit from the original program.
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8D E P L O Y M E N T O F G E N E T I C I M P R O V E M E N T I N A L I V E S Y S T E M

8.1 introduction

Chapter 7 expands upon Chapter’s 6 groundwork for fundamental analysis into GI and the

search space of bug fixing, by applying the same methods on a C source code to reduce

execution time. We saw that landscapes, on both occasions, are predominantly flat and

therefore might be difficult to search. Furthermore, the likelihood of finding an improvement

with evolutionary search methods increases considerably if given enough time. Harman et

al.’s suggestion for Dreaming Devices [79], allows room to provide GI process with adequate

time, exploiting idle time of software that is not in continuous use. Even if that were the case,

the usage load will usually be periodic and during lower load times the device should be able

to afford some capacity for improvements.

Opportunities for using GI to make dynamic adaptive software are copious, there are various

methods to implement and there is a vast number of available software applications. Despite

its growth [154] within academic research the practical usage of GI has not yet followed. Like

with many SBSE applications, the software industry needs an incubation period for new ideas

where they come to trust in outcomes and see those ideas as cost effective solutions. GI is in the

ideal position to shorten that period for the latter as it presents a considerable cost decrease for

the software life cycle’s often most expensive part: maintenance [121, 66]. There are examples

of software improved by GI being used and publicly available [113] which is impressive

considering how young GI is as a field. In time it can be anticipated that we will see tools

emerging that utilise current advances in GI for various improvements during different stages

of development; from early coding where programmers might want to statically monitor

the performance of their work to maintenance on bug fixing [5], automatically adding new

functionality [132], and adding new hardware compatibility [105].

Traditionally GI has been used offline. In the lab the target program is copied, improved,

and then the researchers have to convince developers to include the improvements in later

releases. This is often difficult because researchers are impatient to move on to the next project.

However GI’s ultimate goal must be self-adaptive systems [35, 42, 74] with minimal manual

effort by the developers to truly minimise software maintenance costs. Current research into

self-improving systems, consists of early concepts [188, 31], identifying applicable ideas [79],

and highly specified but truly dynamic approach [213]. The research and methods are slowly
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approaching dynamic adaptive systems but a big obstacle is getting the results to market.

To achieve that we need to take it in steps, first we provide developers with tools before we

provide autonomous software.

In this Chapter we describe a live system, JM, that takes that first step. JM is a bespoke pro-

gram for a vocational rehabilitation centre, developed and maintained by Janus Rehabilitation

Centre (JR) in Reykjavik, Iceland. A small part of JM was used for Chapter’s 6 experiments

and here we describe how GI was integrated into the system. JM utilises the GI framework

described in Chapter 5 in two ways:

bug fixing JM monitors itself during daytime use and collects data whenever user input

raises an exception. Overnight it uses data collected during the day to test itself and

searches for adaptions that do not raise exceptions when similar data is submitted later.

At the end of the nightly self-improvement process it presents the developers with a list

of suggested bug fixes to fix the perceived fault.

prediction model improvements JM makes prediction about rehabilitation length and

outcome to periodically provide the care givers with objective view of each client’s

current status. Whenever a client finishes treatment the system uses their anonymised

data and the GI framework to update and improve prediction models for future clients.

Using the GI to assist with bug fixing significantly decreases the cost of maintenance after

the initial release. It also allows developers to ultimately have the control and provide a sanity

check before patches are issued to the live software. The prediction model improvements

have provided the rehabilitation specialists with consistently accurate view of their clients’

circumstances and progress. JM marries the concept of the Dreaming Device with Arcuri’s

co-evolutionary bug fixing [5, 8] and further adds usage evolution. The Dreaming Device

has two separate phases: normal use when it keeps its resources available for the user, and

dreaming state when it dedicates its resources for introspection and self-improvements. The

co-evolutionary bug fixing evolves both program variants and test suites at the same time. It

essentially maintains two populations of two different entities that challenge each other to

improve. The addition of usage evolution, where the users’ behaviour and interaction with

the system changes over time, adds challenges made by a human in the loop effects.

The remainder of the Chapter is structured as follows. Section 8.2 details what the system

does during business hours and how it keeps records for later improvements. Section 8.3

explains how the daily data is used to improve the software system including generating test

cases and the GI stage. Section 8.4 describes the implementation of the prediction mechanism

and how the GI is used to improve it. Section 8.5 reviews the performance of both the bug

fixing and prediction enhancements since the launch of JM. Section 8.6 summarises the chapter.

Part of this chapter’s work has been published in Haraldsson et al. [69], Haraldsson et

al. [67] and Haraldsson et al. [65]
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8.2 janus manager’s daytime activity

JM is a software system that supports the vocational rehabilitation process and internal com-

munications. Its creation was initially motivated by JR’s need for specialised data management

and statistical analysis for a rehabilitation service. The functionality was simple to begin with

(Figure 8.1a) but the lack of specialised software for complete management of rehabilitation

services further drove the development (Figures 8.1b – 8.2a) to produce today’s version as

seen in Figure 8.2b.

Moreover, JM is a tool for the managers to be able to continually improve the rehabilitation

process with statistical analysis of client data and performance of methods and approaches. It

has to manage multiple connections between users, specialists and clients.

8.2.1 Usage of Janus Manager

The left side of Figure 8.3 displays the daytime normal usage of JM. The users are all employees

of JR, over 40 in total, including both specialists and administrators. They interact with JM by

either requesting or providing data which is then processed and saved. Example request are:

• Internal communications between the interdisciplinary team of specialists about clients.

• A journal record from a meeting, or an update to some information regarding the client.

• Logging of attendance to scheduled courses, interviews, or events related to the rehabil-

itation.

The system can also produce reports and bills in PDF format or rich text files (see Figure 8.2).

The clients have access to specialised and standardised questionnaires that measure various

aspects of the clients’ welfare and progress. The specialists then use the results from those

questionnaires to plan a treatment or therapy. Additionally it uses the complete database of

information to identify risk factors of unsatisfactory treatment results, and predict the possible

outcomes of treatment and its length [65].

8.2.2 Daytime Usage Monitoring

Every time an input data causes an unintentional exception to be thrown, JM logs the trace,

input data and the type of exception in a daily log file shown in the middle of Figure 8.3.

A typical log would look similar to that in Listing 8.1. Starting with the exact time the

exception occurred and the error message. Followed by the exception type and the trace,

which is a list of file names and paths, line numbers, function names, and the source code in
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(a) From March 2016

(b) From April 2016

Figure 8.1: JM’s feature map (part 1) as it developed during the software’s first 8 months in use. It shows

how rapidly features were added after employees of JR started using the software in March

2016. This rapid development caused buggy and less well-tested code to be released, hence

inspiring the integration of GI.
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(a) From July 2016

(b) From September 2016. Self-improving capabilities are released.

Figure 8.2: JM’s feature map (part 2) as it developed during the software’s first 8 months in use. It shows

how rapidly features were added after employees of JR started using the software in March

2016. This rapid development caused buggy and less well-tested code to be released, hence

inspiring the integration of GI.
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Figure 8.3: JM functionality divided into daytime processes and night time processes.

that line. The log also records where the call originated from (the referrer) and the arguments

passed with the request as a Python dictionary object.

Listing 8.1: Typical log for a single error that JM records

1 2016−10−15 1 0 : 1 5 : 1 9 . 6 4 2 9 7 2 :

i n v a l i d l i t e r a l f o r f l o a t ( ) : 450 kr

<type ’ except ions . ValueError ’>

Trace : [

( ’/var/www/JanusManager . l o c a l /public_html/JanusManager . py ’ , 109 , ’ decorated_funct ion ’

, ’ re turn f ( * args , * * kwargs ) ’ ) ,

6 ( ’/var/www/JanusManager . l o c a l /public_html/JanusManager . py ’ , 7030 , ’

par t i c ipant_ f ja rhagskonnun ’ , ’ f j a r h = Fjarhagskonnun . c r e a t e ( * * answers ) ’ ) ]

R e f e r r e r : ht tp ://XX .XXX. 1 6 8 . 1 0 / par t i c ipant_ f ja rhagskonnun/

Form data : { ’ p a r t i c i p a n t ’ : 1 2 4 2 , ’ date ’ : ’ 2017−03−21 ’ , ’ f i e l d _ 1 ’ : ’ 450 kr . ’ } �
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8.2.3 Structure of Janus Manager

JR provides a personal vocational rehabilitation plan [181, 182] and as such users of JM

regularly encounter unique use cases. JM is in active development while being in use as seen

in Figures 8.1 and 8.2. Features are continually added, based on user experience, feedback

and convenience as the usage evolves with changing group of clients and requirements.

The average growth of the system, in the first months following its initial release, was

approximately 20 lines of code (LOC) per week. Six months later, in the weeks preceding the

integration of the GI, the growth had decreased to 15 LOC per week and has been relatively

stable since.

Currently JM is over 25K lines of Python 2.7 (300 classes and 600 functions). Functions are

on average 26 LOC and classes 36, ranging from 2 to 251 and 918 respectively. Each function

and class has their own test suite, with a few exceptions1. The test suites are also of various

sizes, depending on the functionality of the entity under testing.

JM runs as a web service on an Apache server running on a 64 bit Ubuntu with 48GiB

RAM and two 6 core Intel processors. The GUI is an HTML web page that JM builds from

pre-defined templates.

JM’s structure made the integration of its nighttime activity as simple as wrapping the

whole system in a single try and except statement that catches all exceptions that are not

expected (see Procedure 2). The modularity gave the GI easy access to test and improve each

component in isolation.

Procedure 2 A pseudo code of the wrapper function that logs unexpected failures during

daytime use of JM.

1: while Application running do

2: if Exception then

3: logfile← trace+input

4: reset session

5: end if

6: end while

8.3 janus manager nightly activity

After the last user logs off in the evening the nightly routine initiates (Figure 8.3, right side).

The process runs until all reported bugs are fixed or until the next morning. During the

night JM analyses the logs, generates new test data and uses GI to fix bugs that have been

encountered during the day. The identified bugs are not necessarily faults in the program

1 Some base classes are never used directly so they do not have any tests
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itself, rather a result of the developer’s inability to account for all possible use cases of the

system. On all occasions when the nightly activity was invoked and had bugs to fix it was

because JR’s employees had used JM in a way that had not been foreseen.

8.3.1 Log analysis

Going through the daily logs involves filtering the exceptions to obtain a set of unique errors in

terms of exception type and location in the source code. The input is defined as the argument

list at every function call on the trace route from the users’ request to the location that caused

the exception. The type of the exception can be any subclass of Exception in Python, either

built in or locally defined.

The exceptions are sorted in decreasing order of importance, giving higher significance

to errors that occurred more often, arbitrarily choosing between draws. This measure of

importance assumes that these are use case scenarios that happen often and are experienced

by multiple users and not a single user who repeatedly submits the same request.

8.3.2 Generating test data

The test data is generated by a simple random search of the neighbourhood of the users’

input data retrieved from the log entry. The input is represented by a Python dictionary object,

where elements are (key, value) pairs and the values can be of any type or class. However,

most types are strings, dates, times, integers or floating point numbers. The objective of the

search is to find as many versions of the input data as possible that trigger the same exception.

Procedure 3 details the search for new test data.

Starting with the original input θ we make 100 instances of θmutated where a single value

has been randomly changed. For each instance the value to be mutated is randomly selected

while all other values are kept fixed. Every θmutated that causes the same exception as the

original is kept in Θ, others are discarded. Different exceptions are not considered since the

setup looks for the specific exception from the log rather than any general exception. This is

then repeated by randomly sampling from the latest batch of θmutated, Θlatest (see line 10)

until either no new instances are kept or the maximum of 1000 instances have been evaluated

(line 5).

The mutation mechanism in line 11 first chooses key, value pairs in θr at random, only

considering pairs where values are of type string, date, time, integer or float. Then depending

on the type, the possible mutations are the following:

string mutations randomly add strings from a predefined dictionary with white space and

special characters, keeping the original as a sub-string
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Procedure 3 Test data search

1: Θ← [θ] {Start with the original input}

2: n← 0

3: Θnew ← [θ]

4: Θlatest ← []

5: while (n < 1000) AND (|Θnew|! = 0) do

6: extend Θ with Θlatest

7: Θlatest ← Θnew

8: Θnew ← [ ]

9: for i = 1 until i == 100 do

10: θr ← random choice Θlatest

11: θmutated ← mutate θr

12: if θmutated → causes exception then

13: append θmutated to Θnew

14: end if

15: n+ = 1

16: end for

17: end while

date mutations can change the format (e.g. 2017-01-27 becomes 27-01-17), the separator, or

randomly pick a date within a year from the original

time mutations can change the format (e.g. 7:00 PM becomes 19:00), the separator or randomly

pick a time within 24 hours from the original

integer mutations add or subtract 1, 2 or 3 from the original. Maximum of ±3 variation was

arbitrarily chosen as a starting point for integer mutations because we assume integer

inputs will not deviate much more from what is being observed from the user.

float mutations change the original with a random sample from the standard normal distri-

bution N(0, 1)

All of the instances in Θ along with the original θ are then the inputs of the new unit tests.

The assertion for each instance will check that the response is of the specific exception type

and the tests will fail if the input triggers that exception. The new unit tests are then added to

the existing test suite, automatically expanding the library of test cases.

There are mainly two problems with this approach; a) it does not check whether new test

cases are complementary or not, i.e. if the two or more test cases are validating the same part

of the code, and b) it assumes that if the exception is not raised then the output, if any is

expected, is correct. The first problem is trivial when computing power is not an issue or if

testing is not impeding development. The second problem is more serious because we cannot
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Table 8.1: Sets of single operators available to the GI. One member of a given set can be changed to

another member of the same set.

Description Operations

Numerical constants Can increment by ±1

Arithmetic operators +,−, ∗, /, //, %, ∗∗

Arithmetic assignments + =,− =, ∗ =, / =,

Relational operators <,>,<=,>=,==, ! =,

is, is not,not

Logical operators and, or

Logical constants True, False

guarantee that the assumption holds and it might give false confidence to developers and

wrong fitness evaluation to the GI. However the implementation of the whole system should

at least catch any mistake the GI could introduce with these tests by passing the responsibility

for sanity checks to the developers.

8.3.3 Genetic Improvement

The GI part of the overnight process relies on the new test cases in conjunction with a

previously available test suite. The assumption is that, given the test suites, the program is

functioning correctly if it passes all test cases and so is awarded highest fitness. Otherwise

fitness is proportional to the number of test cases the program passes of the whole suite.

The target files and functions of JM is dynamically determined for each time by the locations

specified in the log files. Only functions on the execution path of each bug are subject to

modifications by the GI. Both micro and macro edits are used (see Chapter 5) with the operator

sets in Table 8.1 and the line types in Tables 8.2-8.3 respectively. A single mutation of an edit

list can be made with any of the three edit list mutations (Grow, Prune, and Single edit change)

detailed in Section 7.4.1.

The evolution is population based with 50 edit lists (solutions) in each generation. Each

generation is evaluated in parallel to minimise GI’s execution time and to utilise the full power

of the server. “Fitness Proportional Selection” is used to select parents for the next generation,

i.e. each lists’ weight determines how likely it is to be selected. The weight is determined by

the edit list’s proportional fitness with respect to the generation’s total fitness. Only half of the

population gets selected and they undergo mutation to start the next generation. Crossover is

not used in the current implementation as well as elitism. The other half of the subsequent

generation are randomly generated new edit lists. This selection method in this context should

98

[ 18th October 2017 at 10:37 ]



Table 8.2: List of defined line types that cannot be altered and therefore not accessible to the GI.

Line type name Indent following line/s Regex pattern

Empty False ^$

Import False ^(import|from).*$

Multiple line comment False ^\s*""".*$

class definition True ^class .*:.*$

Function definition True ^\s*def .*:.*$

try statement True ^\s*try\s*:.*$

finally statement True ^\s*finally.*:.*$

assert statement True ^\s*assert .*:.*$

with statement True ^\s*with .*:.*$

Table 8.3: List of defined line types that can be altered and targeted by the GI

Line type name Indent following line/s Regex pattern

Generic False ^.*$

Return False ^\s*return\s*.*$

Comment False ^\s*#$

If statement True ^\s*if .*:.*$

else statement True ^else\s*:.*$

elif statement True ^\s*elif .*:.*$

for loop True ^\s*for .*:.*$

while loop True ^\s*while .*:.*$

except statement True ^\s*except .*:.*$

deter homogeneity in the population and early convergence to a local optimum. There is also

the possibility that it might prevent the GI in finding solutions that require more than a few

edits where the path to the correct program leads through space of poorer fitness. In most

search problems this will probably promote homogeneity if the newly generated edit lists all

have lower fitness than those that were generated with mutation. However, the assumption

here is that a fix to a bug is only a few edits away from the original program.

The GI only stops if it has found a program variant that passes all tests or just before the

users are expected to arrive to work. It then produces an HTML report detailing the night’s

process for the developers. The report lists all exceptions encountered, new test cases and a list
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of possible fixes, recommending the fittest. If more than a single fix is found, then the report

recommends the shortest in terms of number of edits. However it is always the developer’s

choice to implement the changes as they are suggested, build on them or discard them.

8.4 predictions for dynamic treatment planning

JR has a large database of earlier patients that has gradually been building up. In less than a

year nearly 400 new instances from 73 patients have been added to the database which already

contained over 4300 instances at the start. Each event in a patient’s prediction history counts as

one instance. Each instance currently has 180 features of 4 data types as listed in Table 8.4. The

data processing is generic enough to allow JR to add features whenever they decide to collect

new information about patients. The new features are then added to subsequent models.

Since June 2016 JR has used the predictor and successfully confirmed it as a viable tool. It

differs from the traditionally off-line predictors by updating its rules on-line whenever new

data is recorded. JR has developed a predictive model which the rehabilitation specialists

use to inform decisions at every stage of the rehabilitation process. The predictor identifies

possible risk factors, making treatment more efficient because the specialist can intervene

quickly and knows where to act.
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Figure 8.4: A flow chart showing the prediction and update process while a single patient receives treatment. The patient attends their treatment schedule and provides data.

The specialist records the information, reviews predictions, and plans the treatment jointly with the patient. The predictor processes the data, makes predictions

and visualises them. Lastly, the Genetic Improvement updates the predictor when the patient finishes.
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Figure 8.4 shows a flow chart of a consultation between a specialist and patient while the

predictor operates and is updated in the background. When the patient enters the treatment,

the specialist records the information to the database which initiates the predictor. Three

predictions are made and stored, based on the entered data:

• Likelihood of successful rehabilitation

• Drop out probability

• Treatment length, in months

The first two are binary classification problems where the outcome can be interpreted as

true or false, while the last is a prediction of a continuous variable and therefore made with

regression. The specialist can then review the patient’s status with this new perspective and

plan the next steps. Additionally, the predictor lists the ten most influential features for each

prediction to help identify risk factors that affect the outcome and length.

This cycle is repeated, every time new information is recorded and as long as the treatment

lasts. When patients finish treatment, all the collected data regarding them is anonymized and

added to the database. The current version of the predictor is then evaluated by comparing all

its previously stored predictions about them with the actual outcome.

The bottom layer of Figure 8.4 is the GI procedure which updates the predictor with the

new data. The targeted part of JM is a Python script that pre-processes the data, and selects

a prediction algorithm from scikit learn [149] and tunes its parameters. The objective of

the improvement process is to minimise the mean squared error of regression models and

maximise accuracy of classification models. The GI uses Monte Carlo cross-validation [47],

with 20 repetitions, to evaluate fitness. The dataset is randomly divided into training and

testing sets of equal sizes. The fitness of each edit list is then the average performance over 20

splits. Other configuration parameters are identical to the bug fixing setup for JM.

When the GI has finished, the best performing variation, out of 2000 tested, replaces the

current predictor instance which fits three models, one for each of the three predicted variables.

They are then used for all predictions until the next person leaves treatment and the updating

process starts again.

8.4.1 Evaluation of The Predictor

The predictor was added to JM in June 2016. For JR, the most important evaluation of the

predictor is how its specialists experience it in practice.

However, we also verify the predictor objectively by evaluating its performance on those

patients that have completed their treatment after it was implemented. The procedure involves

iterating over 73 versions of the predictor from June 2016 until March 2017 and compare
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Table 8.4: Data types of features in the set, number and examples.

Data type Number Examples

Float 120 Age, Length of unemployment,

Quality of Life measurement

Current treatment duration

Integer 18 Number of children,

Number of medical diagnoses

Boolean 37 Bullied, Dyslexic,

Been JR patient before

Categorical 5 Education, Income,

Gender, Housing,

Relationship status

each version’s predictions with actual outcome. For the classification problems, we measure

accuracy ( cn ) and precision (pn ), where n is the number of predictions, c is the number of

correctly labelled predictions, and p is the number of correctly labelled predictions of the

positive class. Accuracy is the proportion of correct labels while precision is the proportion of

correct positive labels. For the regression problems, predictions (denoted with Ŷ), and true

labels (Y), we measure mean squared error (MSE) (8.1)

MSE =
1

n

n∑
i=1

(Ŷi − Yi)
2 (8.1)

and median absolute deviation (MAD) (8.2)

MAD = med(|Yi −med(Y)|) ∀i ∈ [1, 2, ...,n] (8.2)

The MAD is a robust variation measurement while the MSE is a well know measure of spread.

Additionally, to evaluate how the GI is affecting performance of the predictor we compare

these values before and after each improvement process.

8.5 performance review

8.5.1 Bug fixing

Development on JM started as a small in-house data management project by JR in March 2016.

However, as JR’s employees started using the software they identified multiple ways to enhance

JM to improve productivity and efficiency in the rehabilitation process. JM’s development has
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since been user-driven and quite rapid, with a new feature being added weekly in spring and

summer 2016. As JR is not a software developer, its core development team is minimal. This,

combined with JM’s rate of expansion caused poorly tested code to be repeatedly released and

subsequently occupying the development team with bug fixing instead of further enhancing

JM in a meaningful way. Therefore JM has been running its self-healing processes every night

with exceptional results since September 2016.

In the four months succeeding the launch of GI within JM, 22 bugs have been identified and

fixed. Table 8.5 lists the bugs that have been encountered, categorised by the exception type

and order in descending order of how often each bug was invoked by users (Column 3). The

table also lists how many new test cases, without duplicates, were added to the test suite

(Column 4). In total 29 unique test cases have been added to JM’s test suites but initial number

of automatically generated test cases was 408. The developers could easily and swiftly discard

duplicate test cases by hand.
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Table 8.5: A list of the bugs that were automatically detected in JM and fixed by the GI. They are categorised by the type of exception that they caused and given an

identification number in the second column.

Exception type Id Invocations New test cases Input type

that caused exception

Suggested fix size

(Accepted fix size)

Mean edit

list size

Number of edit

lists considered

IndexError

E1 6 1 Date tuple 2 (2) 2.53 412

E2 3 1 Integer 3 (3) 2.48 356

E3 3 2 Integer 2 (2) 2.38 367

E4 1 1 Integer 4 (4) 2.62 437

TypeError

E5 36 1 Integer 3 (3) 2.23 426

E6 6 3 String 4 (3) 2.41 465

E7 1 1 Integer 2 (2) 2.67 457

E8 2 1 (String, Integer) 1 (1) 2.50 442

E9 2 1 String 5 (3) 2.50 413

E10 1 1 String 2 (2) 2.47 412

UnicodeDecode

Error

E11 4 1 String 2 (2) 2.48 424

E12 3 2 String 3 (3) 2.48 404

E13 2 2 String 2 (2) 2.48 465

ValueError

E14 4 2 Date and time 1 (1) 2.54 435

E15 4 1 Date and time 1 (1) 2.57 388

E16 3 1 String 3 (3) 2.44 428

E17 3 1 Integer 5 (4) 2.49 353

E18 2 1 Date and time 3 (3) 2.49 467

E19 2 2 Date and time 3 (3) 2.40 405

E20 1 1 Time 4 (3) 2.39 477

E21 1 1 String 2 (2) 2.47 371

E22 1 1 String 1 (1) 2.56 478
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The fifth column of Table 8.5 describes the input types that caused the exceptions. In most

cases the types listed there are a single variable from an array of inputs but only the variables

that were directly involved in throwing the exception are mentioned. Column six lists how

many edits each suggested and accepted fix contained. In majority of cases the suggested

fix was accepted as it was but on three occasions a single neutral edit was removed before

accepting the fix (E6, E17, E20) and two edits from E9. All removed neutral edits were either

duplicating a line or a variable, without it having effect on output. In four instances, either a

single edit was slightly altered or a small manual edit to the source code was applied post-hoc

(E1, E15, E16, E22). The last two columns contain the average size of all edit lists that were

evaluated for each bug and how many were evaluated, respectively.

If we look at the seventh column, we see that the average edit list size is nearly the same

for all fixes ([2.23, 2.67]), which is to be expected since the same search parameters were

used in every case. On closer inspection, one way ANOVA reveals that the mean size of all

evolutionary runs is most likely equal (p > 0.9). Furthermore, we see that the evolution never

exceeds 10 generations (500 evaluated edit lists) and consequently the maximum limit of edit

list size was 10 edits. Given that the average size of each function being fixed is 26 LOC the

search space is relatively small so if a fix exists we expect to find it rather quickly.

A typical fix replaced a single line with a similar line from elsewhere in JM, like E15

replaced:2

dum.occurance = \

datetime.datetime.combine(dum.expected_occurance,\

datetime.datetime.strptime(form[’occurance’],\

’%H:%M’).time())

with:

dum.occurance = \

datetime.datetime.combine(dum.expected_occurance,

datetime.datetime.strptime(form[’occurance’],\

’%H:%M:%S’).time())

The only difference is that the latter expects seconds to be included in the time format. The

human programmer recognises it as a single edit of adding :%S but the GI replaced the whole

line.

Another example is E20, in a function that checks for reoccurringly available meeting spaces

on given weekdays. The bug was that the user sometimes omitted the time of day to be

checked. The accepted fix wrapped the line obtaining the time argument in a try clause so

this:

2 The character \ denotes line continuation and is only used here for aesthetic purposes
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Figure 8.5: The distribution of treatment length for the 73 patients that finished treatment during the ten

month period.

the_time = datetime.datetime.strptime(\

request.args.get(’the_time’,’08:00’),\

’%H:%M’).time()

became this:

try:

the_time = datetime.datetime.strptime(\

request.args.get(’the_time’,’08:00’),\

’%H:%M’).time()

except ValueError:

the_time = datetime.time(8,0)

Three edits of “copy line x above line y” were needed to accomplish this fix, the edit that was

removed, duplicated the last line.

8.5.2 Prediction Improvements

8.5.2.1 The Practical use of the predictor

JR’s specialists have expressed that being able to identify important factors of the patient’s

current status is particularly helpful, along with the graph of previous predictions. It has

been used as a visual aid by demonstrating an increased likelihood of a positive outcome,

and also to encourage the patient when they cannot perceive progression themselves. Some

specialists have also used it to expedite appointments with their patient when the predictor
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Figure 8.6: Precision and accuracy of predictions for dropping out and successful treatment over the

trial period.

shows increased drop out probability. However, to be able to verify if the use of the predictor

has decreased the number of drop outs we need to collect data over a longer period. There are

a number of seasonal variables that might have confounding effects, such as seasonal affective

disorder.

8.5.2.2 Results for classification problems

The predictor did well on two classification tasks; if treatment will be successful, and if a

patient will drop out. The models were being used in real-time while patients were being

treated and up-to ten months before the actual outcome was know. Figure 8.6 shows the

precision and accuracy of predictions that were made for patients while they were in treatment

and then evaluated after they finished and the outcome was known.. The predictions for

dropping out had over 99% accuracy from the start, and after August 2016, the accuracy

was 100%. Its precision started at 85% but increased to 100% within 2 weeks (see). Similarly,

predicting a successful treatment was also at 100% accuracy and precision in week two after

the release of the first version of the predictor.

8.5.2.3 Results for regression problems

The regression models were able to predict treatment length within three months from the

actual duration. A three month difference is an acceptable estimation because in practice this

is a lead-in time. Two predictor versions out of total 73 had an error of up to five months.

Those versions were updated within a week of being activated. Figures 8.7 and 8.8 show the

performance, as measured post hoc, of number of different models for every two weeks over

the period, June 2016–March 2017. The boxes in the figures are the first and third quartiles,
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Figure 8.7: Distribution of post hoc evaluation of MAD for every two weeks of updated models for

treatment length. Both mean (diamond) and median (triangle) are marked with each box.

the blue line are the best performing models, and the green line is the performance of the

models that were in use each time. Note that the performance of the model in use was always

better than the mean and median performing model. This indicates that the fitness evaluation

on the training data was sufficient to guide the selection of a better than average performing

model. Furthermore, the variation in the performance of the models gets increasingly larger

when adding more data to the training set. The GI is producing a more diverse populations

of regression models. The most likely explanation for this phenomenon is that the data is

undergoing some changes and there are at least two possible reasons

• The specialists are gathering data differently, i.e. asking questions in a different manner

or even collecting data more frequently.

• The variation of the patient base is changing. New people with different challenges enter

rehabilitation every week.

• The patient behaviour is changing. The evaluation covered a 10 month period and it is

quite possible that seasonal variables are affecting behaviour.

It is also possibly linked to the variation of treatment length as seen in Figure 8.5.

8.5.2.4 Effects of Genetic Improvement

The GI was used to improve the selection and tuning of both classification and regression

models. The GI could not improve beyond maximum regarding the classification accuracy as

seen in Figure 8.6 and the variation of the accuracy between different versions of the predictor

was less than 1× 10−5.

However, the regression models were quite different as mentioned in Section 8.5.2.3. In

Figure 8.7 and 8.8 we can see performance spread of the top performing version of each
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Figure 8.8: Distribution of post hoc evaluation of MSE for every two weeks of updated models for

treatment length. Here, converted to Root Mean Squared Error for scaling on y-axis. Both

mean (diamond) and median (triangle) are marked with each box.

generation from the GI. The green lines indicate the performance of the best version on the

test set after correct results were known. The GI managed to keep predictions mostly within

three months from the actual length, causing the overall performance of the predictor to be

more than adequate.

8.6 summary

In this chapter we have described two applications of GI within the same live system, JM. The

GI serves two purposes:

• Bug fixing assistance

• Prediction improvements

The same GI framework is used for both tasks, only difference is the targeted files and

objectives. The former task seeks to maximise the number of test cases passed, while the latter

tries to minimise prediction error. Both implementations show that GI can, with a tiny effort,

be used in various ways to make software dynamically adaptive.

JM, as introduced in this chapter is fully implemented and live, although it has been so for

a few months, it still needs to be tested further. Over a 4 month period, from September 2016

to January 2017, the bug fixing implementation found and fixed 22 bugs. It is still in active

use and has contributed to a decrease in JR’s maintenance cost of JM.

The performance of the predictor was outstanding, with almost 100% accuracy and precision

in classification predictions over a 10 month period. Additionally, it has consistently predicted

treatment length within satisfactory margin for a vocational rehabilitation.
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The predictor was developed to meet the demand for an objective view of each patient’s

status while receiving treatment. To the authors’ best knowledge, JR is the first facility to use a

predictor, designed for that purpose in practice. JR’s specialists have integrated the use of the

predictor into their daily routine to get a clear view of the progress of each patient, at every

stage of their treatment. With the increasing number of patients in treatment, the predictor

helps by identifying possible risk factors. It assists the specialist to know where and when to

intervene, possibly shortening the treatment time. They have used the predictor in various

ways, discussing progress or the lack there of with the patient, to encourage or recognise what

might be interfering with the treatment. Some specialist have used the predictor at the start of

the rehabilitation to focus efforts on specific areas in the patient’s circumstances.

The predictor’s first 10 months in use have been evaluated by comparing the initial predic-

tions for patients that were receiving treatment with actual outcomes and treatment lengths

after they finished. The results for classifying a patient’s treatment as drop out, unsuccessful

or successful were more than satisfactory according to experts in rehabilitation, with near

100% accuracy.

The graph in Figure 8.5 shows us that the treatment time can vary from 2 months to 47

and that is a possible culprit for the large variation in treatment time predictions for JR’s

patients. However, the GI was consistently able to find versions of the predictor that had

decent performance. Overall the predictions for treatment length where within 2 to 3 months

from what actually occurred. The combination of GI and prediction models has proven to be

beneficial for the vocational rehabilitation treatment.

The predictor is still in use and continually evolving with the expanding dataset, providing

dynamic predictions for the specialists. With current progress in software and hardware

development it is well worth exploring automatic adjustments of predictive models. Automatic

algorithm design [209] and GI are two of many methodologies to make portable CI tools

for healthcare, rather than depending on predefined models that might work well for the

general population but not in specific treatments or facilities. In other words, GI can adapt

the predictor to the specific data and patients at a given facility. Therefore the predictor was

able to perform so well for JR, it was specialised to their database, which contains a narrow

population. The predictor is a valuable asset for specialists, patients, and the facility as a

whole. The predictor needs to be adapt to each treatment facility and database, and this can

be achieved with GI. This predictor can reduce cost and identify possible risk factors, helping

specialists to intervene earlier.
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9C O N C L U S I O N S

In this thesis we set out to investigate if GI can be used as a dynamic component in a software

system. This, I did by exploring three complementing research questions detailed in Chapter 2.

Part iii of the thesis presented three strands of research, each addressing a single research

question. The conclusions for Chapters 6–8 with the framework from Chapter 5 serve as

supporting evidence to the following claims:

• GI can fix bugs in small programs. Although the fitness landscape for GI when measured

with number of test cases passed is generally flat, the framework can find a fix. The

soft restart mechanism seems to be escaping plateaus and sub-optimal valleys in our

experiments.

• GI is portable between source languages and objectives to optimise. The framework

modifies source code as a string and is only aware of syntax that the practitioner

specifically defines to constrain the search. The syntax constrictions are simple lists of

interchangeable tokens (e.g. <, ==) and categorisations of different types of lines (e.g. if

declarations if X<=1:).

• GI is well suited to adapt software systems to be dynamically adaptive. As long as the

system is non-critical, not like e.g. air traffic control so the users can wait overnight for a

fix. That is assuming the bug only affects parts of the software’s usage.

In this chapter I summarise the thesis’ contributions in Sections 9.1–9.3, by connecting each

claim above with the work in the corresponding chapter. Which will, when collected into

Section 9.4, form a convincing case for the thesis hypothesis and conclude this research.

9.1 q1 : small programs’ landscapes

Research Question 1 Can GI fix bugs in small programs, written in a dynamically typed language

and how does the GI interact with the search space?

In Chapter 6 I investigated how three small (∼ 100 LOC) Python programs’ landscapes look

from the GI’s perspective. Although the landscapes were mostly flat, combining large plateaus

of correct programs and flat valleys of programs that fail every test case, the transition between

the two can be achieved with as little as a single edit. The dynamically typed nature of Python
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did not contribute either way to support or disprove the answer to the research question.

However, the smaller programs allow the GI to search a large portion of the feasible landscape

with relative ease and if an improved version exists in the space, then the GI will likely find it

given long enough time.

9.2 q2 : execution time improvements

Research Question 2 Is it possible to implement GI in such way to be portable between different

source languages and different objectives and how does changing these impact on the search?

Chapter 7 detailed an experiment on improving the execution time of a bioinformatics program

(ProbAbel). It is written in C/C++ and considerably larger (∼ 5K LOC) than the ∼ 100 LOC

programs written Python (Section 6). Therefore we can definitively answer the first part of

the question with a yes. The execution time experiments were conducted with the same GI

implementation as was used for bug fixing explorations. It targeted the majority of ProbAbel’s

source code and was able to find a version that executed faster. However, the improvement

was not substantial (0.5% decrease) but demonstrated that the implementation was portable.

Regarding the second part of the question, the impact on the search is minimal. The fitness

landscape proved to be largely flat and single edit changes to the program seemed to have

little to no effect on execution time.

9.3 q3 : dynamic adaptive software

Research Question 3 Can GI be integrated into an already live system to identify bugs and suggest

fixes, thus assisting developers with maintenance?

JM was introduced in Chapter 8, the bespoke software system for vocational rehabilitation

management. The system has been live and in full use since March 2016 by a rehabilitation

centre in Reykjavik, Iceland1. Due to a combination of rapid, user-driven development and a

workload that exceeded the capacity of the small team of programmers to both implement

and fully test, the early versions of the system were buggy and not well tested. This provided

the opportunity to test if the GI framework used in the work for previous Chapters was

suitable to be integrated in a dynamic setting. It was called on to fix bugs that were detected

after the software had been released. As demonstrated the integration was successful and JM

has, since September 2016, had an autonomous GI run every night. The favourable results

have already saved on maintenance cost for JR by identifying and suggesting fixes for 22

bugs from September 2016 to January 2017. The developers have accepted 20 fixes without

amendments and 2 with minor adjustments. This shows that the integrated GI framework

1 https://janus.is/
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can be a useful tool for developers. Even when the suggested fixes are not accepted verbatim,

they guide the programmers towards an implementation (changes and location) that will

fix the bug. An additional experiment was conducted within the same system but with

the objective of improving predictions for the outcome of rehabilitation processes. The GI

framework was able to help the prediction models to repeatedly make predictions with 100%

accuracy and precision within 3 weeks of being deployed. The successful result is evidence of

the GI framework’s versatility.

9.4 central hypothesis

Thesis Hypothesis GI can be used autonomously in software systems to decrease maintenance cost

and assist developers to improve various properties of the software.

The research questions are all yes or no questions and as demonstrated this thesis has

presented evidence to support a positive answer for each. Combined, these results encourage

confidence in the hypothesis. I argue that Chapter 8 shows that GI can be used autonomously

within running software services to decrease maintenance cost. Chapter 7 gives evidence for

the ability to improve other properties and for the portability of the GI. Additionally Chapter 6

provided insight that was useful for the final integration of GI into JM.

9.5 future work

JM, as introduced in this thesis is fully implemented and live, although it has been so for a few

months, it can still be tested further. Finding and fixing 22 bugs is impressive but we would

like to do more. Our current task list includes but is not limited to:

• Integrate the GI in another software system. The GI is a standalone piece of software that

is easily integrated in most software systems so a natural next step would be to identify

services and systems where it could be of use.

• Improve the developer’s interface with the GI. Current implementation reports only fixes

that pass all tests but we might want to consider lesser variations and get a Pareto front

of possible improvements.

• Improve the search ability. Truncated selection might inhibit larger edit lists to be evolved

and possible multi-edit solutions are therefore lost. Parameter tuning is our initial step

forward in this task.

• As the current implementation of JM’s bug fixing mechanism only reports suggestions

that pass all test cases there might be some performance gain in lesser variations that
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could be considered. An idea is to use lexicase selection to promote diversity amongst

test cases and build a Pareto front of possible improvements.

• Improve the test data generation mechanism. Ideally we want predict expected inputs to

the system and possibly generate test data that imitates unseen future inputs. Also, we

would like to improve the search process for new test data by implementing something

other than random search. That includes changing the fitness function (currently binary),

adding more objectives and improving the sampling methods.

• Investigate the fitness landscape of larger modifications to the source code. In this

work we have explored the fitness landscape of a few micro edits at a time. It would

be interesting to see what effects macro edits have on the search capabilities of the GI

framework.

• Explore a larger portion of each variant’s local neighbourhood. This research has

exhaustively inspected the local neighbourhood of small Python programs (correctly

functioning) and examined a large portion of the same neighbourhood for a larger

C++ program. Additionally we looked at a number of variable sized sequences of edits,

single edit at a time. Exploring the local neighbourhood of each of these single edits in

the sequences could be an engaging idea for further understanding the search abilities

of the GI framework.

• Regarding JM’s bug fixing it would be interesting to analyse the edit distance between

partially accepted fix suggestions and what was eventually implemented. This could

provide an insight into how much the suggestions are helping even if they are not

accepted fully.

However a continuous task will be to monitor the JM system while it is being developed

further and gather data on the bugs that are caught and fixed.

9.6 summary of chapter 9

This chapter has summarised the results of each chapter in Part iii which led to the conclusion

that the thesis hypothesis holds. Moreover, it has been demonstrated that the hypothesis

remains valid in a practical setting where the GI continues to be used every night. The GI

framework is effectively doing a night shift while rehabilitation staff are working the day

shift. This situation is a realisation of one of the DAASE project’s [74]2 objectives: a Dynamic

Adaptive SBSE. The work in this thesis was funded by the EPSRC grant EP/J017515/1.

2 http://daase.cs.ucl.ac.uk/
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AA P P E N D I X A

a.1 python source code

a.1.1 Calculator.py

Listing A.1: The calculator program used for experiments in Chapter 6

#!/usr/bin/env python

2 # coding: utf -8

import sys

import re

def e v a l u a t e S t r i n g ( ter , ops ) :

y = s t r ( t e r . pop ( ) )

7 op = ops . pop ( )

x = s t r ( f l o a t ( t e r . pop ( ) ) )

re turn eval ( x+op+y )

def c a l c u l a t e ( i n _ s t r ) :

12 operators = [ ]

numbers = [ ]

p r i o r i t y = Fa l se

l a s t _ i = None

f o r i in i n _ s t r . s t r i p ( ) :

17 t r y :

dum = round ( f l o a t ( i ) , 2 )

i f l a s t _ i == ’num ’ :

numbers[−1] += i

e l s e :

22 numbers . append ( i )

l a s t _ i = ’num ’

except ValueError :

i f i ==" ( " :

i f len ( numbers ) >1 and len ( operators ) >0 :

27 y = round ( f l o a t ( numbers . pop ( ) ) , 2 )

x = round ( f l o a t ( numbers . pop ( ) ) , 2 )

op = operators . pop ( )

i f op == ’+ ’ :

z = x + y

32 e l i f op == ’− ’ :

2
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z = x − y

e l i f op == ’ * ’ :

z = x * y

e l i f op == ’/ ’ :

37 t r y :

z = x / y

except ZeroDivis ionError :

z = 0 . 0

e l s e :

42 z = x

numbers . append ( z )

p r i o r i t y = Fa l se

e l i f not ( i ==" ( " or i ==" ) " ) :

i f p r i o r i t y and len ( numbers ) >=1 and len ( operators ) ==0 :

47 y = round ( f l o a t ( numbers . pop ( ) ) , 2 )

x = round ( f l o a t ( numbers . pop ( ) ) , 2 )

op = operators . pop ( )

i f op == ’+ ’ :

z = x + y

52 e l i f op == ’− ’ :

z = x − y

e l i f op == ’ * ’ :

z = x * y

e l i f op == ’/ ’ :

57 t r y :

z = x / y

except ZeroDivis ionError :

z = 0 . 0

e l s e :

62 z = x

numbers . append ( z )

i f ( i ==" * " ) or ( i =="/" ) :

p r i o r i t y = True

e l i f len ( numbers ) >1 and len ( operators ) >0 :

67 y = round ( f l o a t ( numbers . pop ( ) ) , 2 )

x = round ( f l o a t ( numbers . pop ( ) ) , 2 )

op = operators . pop ( )

i f op == ’+ ’ :

z = x + y

72 e l i f op == ’− ’ :

z = x − y

e l i f op == ’ * ’ :

z = x * y

e l i f op == ’/ ’ :

77 t r y :

z = x / y

except ZeroDivis ionError :

z = 0 . 0

3
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e l s e :

82 z = x

numbers . append ( z )

operators . append ( i )

e l i f i ==" ) " :

y = round ( f l o a t ( numbers . pop ( ) ) , 2 )

87 x = round ( f l o a t ( numbers . pop ( ) ) , 2 )

op = operators . pop ( )

i f op == ’+ ’ :

z = x + y

e l i f op == ’− ’ :

92 z = x − y

e l i f op == ’ * ’ :

z = x * y

e l i f op == ’/ ’ :

t r y :

97 z = x / y

except ZeroDivis ionError :

z = 0 . 0

e l s e :

z = x

102 numbers . append ( z )

l a s t _ i = ’op ’

while len ( numbers ) >1 :

y = round ( f l o a t ( numbers . pop ( ) ) , 2 )

x = round ( f l o a t ( numbers . pop ( ) ) , 2 )

107 op = operators . pop ( )

i f op == ’+ ’ :

z = x − y

e l i f op == ’− ’ :

z = x − y

112 e l i f op == ’ * ’ :

z = x * y

e l i f op == ’/ ’ :

t r y :

z = x / y

117 except ZeroDivis ionError :

z = 0

e l s e :

z = x

numbers . append ( z )

122 re turn numbers [ 0 ]

def main ( ) :

p r i n t """

Calculator

127 type your calculation and press enter

the calculator does not process parenthesis

4

[ 18th October 2017 at 10:37 ]



to exit type "X" and press enter

"""

on = True

132 while on :

i n _ s t r = raw_input ( " : : " )

i f re . search ( ’ [ xX ] ’ , i n _ s t r ) :

break

i f re . search ( ’ [ a−z ,A−Z] ’ , i n _ s t r ) :

137 p r i n t "No a l p h a b e t i c a l l e t t e r s , p lease t r y again "

e l s e :

s o l u t i o n = c a l c u l a t e ( i n _ s t r )

p r i n t "= { } " . format ( s o l u t i o n )

142 i f __name__ == ’ __main__ ’ :

main ( ) �
a.1.2 _kmeans_.py

Listing A.2: The K-means initialisation program used for experiments in Chapter 6. Only lines that the

GI targeted are included here.

#Imports and first 43 lines omited.

2 #Whole source is on https://github.com/scikit -learn/sklearn/cluster/k_means_.py

def _ k _ i n i t (X , n _ c l u s t e r s , x_squared_norms , random_state , n _ l o c a l _ t r i a l s =None ) :

"""Init n_clusters seeds according to k-means++

7 Parameters

-----------

X: array or sparse matrix , shape (n_samples , n_features)

The data to pick seeds for. To avoid memory copy , the input data

should be double precision (dtype=np.float64).

12

n_clusters: integer

The number of seeds to choose

x_squared_norms: array , shape (n_samples ,)

17 Squared Euclidean norm of each data point.

random_state: numpy.RandomState

The generator used to initialize the centers.

22 n_local_trials: integer , optional

The number of seeding trials for each center (except the first),

of which the one reducing inertia the most is greedily chosen.

5
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Set to None to make the number of trials depend logarithmically

on the number of seeds (2+log(k)); this is the default.

27

Notes

-----

Selects initial cluster centers for k-mean clustering in a smart way

to speed up convergence. see: Arthur , D. and Vassilvitskii , S.

32 "k-means++: the advantages of careful seeding". ACM-SIAM symposium

on Discrete algorithms. 2007

Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,

which is the implementation used in the aforementioned paper.

37 """

n_samples , n _ f ea t ure s = X . shape

c e n t e r s = np . empty ( ( n _ c l u s t e r s , n_ f ea tur es ) , dtype=X . dtype )

42 a s s e r t x_squared_norms i s not None , ’ x_squared_norms None in _ k _ i n i t ’

# Set the number of local seeding trials if none is given

i f n _ l o c a l _ t r i a l s i s None :

# This is what Arthur/Vassilvitskii tried , but did not report

47 # specific results for other than mentioning in the conclusion

# that it helped.

n _ l o c a l _ t r i a l s = 2 + i n t ( np . log ( n _ c l u s t e r s ) )

# Pick first center randomly

52 c e n t e r _ i d = random_state . randint ( n_samples )

i f sp . i s s p a r s e (X) :

c e n t e r s [ 0 ] = X[ c e n t e r _ i d ] . toarray ( )

e l s e :

c e n t e r s [ 0 ] = X[ c e n t e r _ i d ]

57

# Initialize list of closest distances and calculate current potential

c l o s e s t _ d i s t _ s q = e u c l i d e a n _ d i s t a n c e s (

c e n t e r s [ 0 , np . newaxis ] , X , Y_norm_squared=x_squared_norms ,

squared=True )

62 current_pot = c l o s e s t _ d i s t _ s q . sum ( )

# Pick the remaining n_clusters -1 points

f o r c in range ( 1 , n _ c l u s t e r s ) :

# Choose center candidates by sampling with probability proportional

67 # to the squared distance to the closest existing center

rand_vals = random_state . random_sample ( n _ l o c a l _ t r i a l s ) * current_pot

candidate_ ids = np . searchsor ted ( stable_cumsum ( c l o s e s t _ d i s t _ s q ) ,

rand_vals )

72 # Compute distances to center candidates

6
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d i s t a n c e _ t o _ c a n d i d a t e s = e u c l i d e a n _ d i s t a n c e s (

X[ candidate_ ids ] , X , Y_norm_squared=x_squared_norms , squared=True )

# Decide which candidate is the best

77 best_candidate = None

best_pot = None

b e s t _ d i s t _ s q = None

f o r t r i a l in range ( n _ l o c a l _ t r i a l s ) :

# Compute potential when including center candidate

82 new_dist_sq = np . minimum( c l o s e s t _ d i s t _ s q ,

d i s t a n c e _ t o _ c a n d i d a t e s [ t r i a l ] )

new_pot = new_dist_sq . sum ( )

# Store result if it is the best local trial so far

87 i f ( bes t_candidate i s None ) or ( new_pot < best_pot ) :

bes t_candidate = candidate_ ids [ t r i a l ]

bes t_pot = new_pot

b e s t _ d i s t _ s q = new_dist_sq

92 # Permanently add best center candidate found in local tries

i f sp . i s s p a r s e (X) :

c e n t e r s [ c ] = X[ bes t_candidate ] . toarray ( )

e l s e :

c e n t e r s [ c ] = X[ bes t_candidate ]

97 current_pot = best_pot

c l o s e s t _ d i s t _ s q = b e s t _ d i s t _ s q

return c e n t e r s

102 def _ i n i t _ c e n t r o i d s (X , k , i n i t , random_state=None , x_squared_norms=None ,

i n i t _ s i z e =None ) :

"""Compute the initial centroids

Parameters

107 ----------

X: array , shape (n_samples , n_features)

k: int

112 number of centroids

init: {’k-means++’, ’random’ or ndarray not callable} optional

Method for initialization

117 random_state: integer or numpy.RandomState , optional

The generator used to initialize the centers. If an integer is

given , it fixes the seed. Defaults to the global numpy random

number generator.

7
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122 x_squared_norms: array , shape (n_samples ,), optional

Squared euclidean norm of each data point. Pass it if you have it at

hands already to avoid it being recomputed here. Default: None

init_size : int, optional

127 Number of samples to randomly sample for speeding up the

initialization (sometimes at the expense of accuracy): the

only algorithm <initialized by running a batch KMeans on a

random subset of the data. This needs to be larger than k.

132 Returns

**------

centers: array , shape(k, n_features)

"""

random_state = check_random_state ( random_state )

137 n_samples = X . shape [ 0 ]

i f x_squared_norms i s None :

x_squared_norms = row_norms (X , squared=True )

142 i f i n i t _ s i z e i s not None and i n i t _ s i z e < n_samples :

i f i n i t _ s i z e < k :

warnings . warn (

" i n i t _ s i z e=%d should be l a r g e r than k=%d . "

" S e t t i n g i t to 3* k " % ( i n i t _ s i z e , k ) ,

147 RuntimeWarning , s t a c k l e v e l =2)

i n i t _ s i z e = 3 * k

i n i t _ i n d i c e s = random_state . randint ( 0 , n_samples , i n i t _ s i z e )

X = X[ i n i t _ i n d i c e s ]

x_squared_norms = x_squared_norms [ i n i t _ i n d i c e s ]

152 n_samples = X . shape [ 0 ]

e l i f n_samples < k :

r a i s e ValueError (

" n_samples=%d should be l a r g e r than k=%d" % ( n_samples , k ) )

157 i f i s i n s t a n c e ( i n i t , s t r i n g _ t y p e s ) and i n i t == ’k−means++ ’ :

c e n t e r s = _ k _ i n i t (X , k , random_state=random_state ,

x_squared_norms=x_squared_norms )

e l i f i s i n s t a n c e ( i n i t , s t r i n g _ t y p e s ) and i n i t == ’random ’ :

seeds = random_state . permutation ( n_samples ) [ : k ]

162 c e n t e r s = X[ seeds ]

e l i f h a s a t t r ( i n i t , ’ __array__ ’ ) :

# ensure that the centers have the same dtype as X

# this is a requirement of fused types of cython

c e n t e r s = np . array ( i n i t , dtype=X . dtype )

167 e l i f c a l l a b l e ( i n i t ) :

c e n t e r s = i n i t (X , k , random_state=random_state )

8
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c e n t e r s = np . asarray ( centers , dtype=X . dtype )

e l s e :

r a i s e ValueError ( " the i n i t parameter f o r the k−means should "

172 " be ’k−means++’ or ’ random ’ or an ndarray , "

" ’%s ’ ( type ’%s ’ ) was passed . " % ( i n i t , type ( i n i t ) ) )

i f sp . i s s p a r s e ( c e n t e r s ) :

c e n t e r s = c e n t e r s . toarray ( )

177

_va l ida te_center_shape (X , k , c e n t e r s )

re turn c e n t e r s

#Remainder of _kmeans_.py omited: find it on https://www.scipy.org/ �
a.1.3 latex.py

Listing A.3: The HTML to Latex program used for experiments in Chapter 6. Only lines that the GI

targeted are included here.

def html_2_latex ( html_text , debug=Fa lse ) :

l a t e x = html_text

f o r i in html_delete :

l a t e x = re . sub ( i , ’ ’ , l a t e x , re .UNICODE)

5 f o r i in h t m l _ s p e c i a l _ c a s e s :

l a t e x = re . sub ( i [ 0 ] , i [ 1 ] , l a t e x , re .UNICODE)

html = Beauti fulSoup ( l a t e x , ’ html . parser ’ )

l a t e x _ o u t = html . p r e t t i f y ( )

f o r key , val in html_2_latex_s imple . i tems ( ) :

10 l a t e x _ o u t = l a t e x _ o u t . r e p l a c e ( key , val )

b a c k _ o f _ t h e _ c l a s s = [ ]

r e _ s t r u c t = [ ]

reading_tab le = Fa l se

f o r l i n e in re . s p l i t ( r ’ (\n ) ’ , l a t e x _ o u t ) :

15 i f ’< ’ in l i n e :

i f re . search ( r ’</ ’ , l i n e ) :

t r y :

in_again = re . sub ( r ’ </[a−zA−Z]+.* > ’ , b a c k _ o f _ t h e _ c l a s s . pop ( ) , l i n e ,

re .UNICODE)

except IndexError as e :

20 p r i n t l i n e

p r i n t e

r a i s e

r e _ s t r u c t . append ( in_again )

e l s e :

25 i n t o _ t h e _ f r o n t = [ ]

to_the_back = [ ]

9
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t h e _ c o l o r = re . search ( html_color [ 0 ] [ 0 ] , l i n e )

the_back_color = re . search ( html_color [ 1 ] [ 0 ] , l i n e )

i f t h e _ c o l o r :

30 t h e _ c o l o r = t h e _ c o l o r . group ( 1 ) . upper ( )

s t _ c o l o r = html_color [ 0 ] [ 1 ] . format ( t h e _ c o l o r )

i n t o _ t h e _ f r o n t . i n s e r t ( 0 , s t _ c o l o r )

l i n e = re . sub ( html_color [ 0 ] [ 0 ] , r ’ ’ , l i n e , re .UNICODE)

to_the_back . i n s e r t ( 0 , html_color [ 0 ] [ −1 ] )

35 i f the_back_color :

the_back_color = the_back_color . group ( 1 ) . upper ( )

s t _ c o l o r = html_color [ 1 ] [ 1 ] . format ( the_back_color )

i n t o _ t h e _ f r o n t . i n s e r t ( 0 , s t _ c o l o r )

l i n e = re . sub ( html_color [ 1 ] [ 0 ] , r ’ ’ , l i n e , re .UNICODE)

40 to_the_back . append ( html_color [ 1 ] [ −1 ] )

f o r out , in_ f ront , in_back in html_shuf f l es :

i f re . search ( out , l i n e ) :

to_the_back . i n s e r t ( 0 , in_back )

i n t o _ t h e _ f r o n t . i n s e r t ( 0 , i n _ f r o n t )

45 l i n e = re . sub ( out , r ’ ’ , l i n e , re .UNICODE)

i n t o _ t h e _ f r o n t . append ( l i n e )

r e _ s t r u c t . append ( r ’ ’ . j o i n ( i n t o _ t h e _ f r o n t ) )

b a c k _ o f _ t h e _ c l a s s . append ( r ’ ’ . j o i n ( to_the_back ) )

e l s e :

50 r e _ s t r u c t . append ( l i n e )

i f debug :

re turn r e _ s t r u c t

l a t e x _ p r i n t = u ’ ’ . j o i n ( r e _ s t r u c t ) . r e p l a c e ( u ’\xa0 ’ ,u ’ ’ )

f o r i in re . f i n d i t e r ( r ’\n\s *\\end { c e n t e r }\ s *\n\s *\\ begin { c e n t e r }\ s *\n ’ ,

l a t e x _ p r i n t ) :

55 l a t e x _ p r i n t = l a t e x _ p r i n t . r e p l a c e ( i . group ( ) ,u ’ ’ )

r = r ’ (\n(?=\ s *\n ) ( ? : \ s *\n ) +) ’

f o r i in re . f i n d i t e r ( r , l a t e x _ p r i n t ) :

t r y :

n = round ( f l o a t ( len ( i . group ( ) ) ) /10 ,2 )

60 except ZeroDivis ionError :

continue

t = u ’\n\n\\vspace { { { } em} } \ n ’ . format ( n )

l a t e x _ p r i n t = re . sub ( i . group ( ) , t , l a t e x _ p r i n t , re .UNICODE)

l a t e x _ p r i n t = l a t e x _ p r i n t . r e p l a c e ( u ’\x0b ’ ,u ’\\v ’ ) . r e p l a c e ( u ’\x08 ’ ,u ’\\b ’ )

65 l a t e x _ p r i n t = re . sub ( r ’<p><!−− pagebreak −−></p> ’ , r ’\\newpage ’ , l a t e x _ p r i n t )

re turn l a t e x _ p r i n t �
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BA P P E N D I X B

b.1 glossary

This is a list of words and concepts mentioned in the thesis that might need a bit more

explanation to the average reader. It is assumed in the text that most advanced readers would

understand these concepts within the context they are presented.

atomicity violations are caused by database operations that do not preserve consistency

within a shared memory applications.

buffer refers to data buffers in this thesis. A physical memory that is used for temporary

storage of data.

concurrency bugs are mostly related to parallel computing and are usually caused by pro-

cesses that are not in sync but should be. Atomicity violations are a type of concurrency

bugs.

delta debugging is a process of incrementally evaluating a program by leaving out one

statement at a time. It is used to decrease the size of edit list modifications by iterating

through the lists and deleting those edits that have no contribution to the fitness of the

edit list.

formal verification is a methodology to prove or disprove the correct behaviour of

computer programs. The methods usually involve some mathematical proof or model

checking.

higher-order functions are functions that either take other functions as arguments

and/or return functions as the output.

imputation is a process of replacing missing data with statistical inference or estimations.

kernel in an operating system is the central unit of control. It controls access to the central

processing unit.

microcontrollers are small computers on integrated circuits.

neutral changes are changes to a program code that do not change behaviour or proper-

ties of the software.

11

[ 18th October 2017 at 10:37 ]



predicate in logic and software engineering refers to an assertive assumption. A logic that

cannot be divided in smaller sets of logical operators.

reflection capabilities is the ability of a computer program to introspect, examine or

modify itself during execution.

semantic-preserving is a property of changes to program code that do not change

functional behaviour. There is no guarantee that it will preserve

12
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