
Exploring Fitness and Edit Distance of Mutated
Python Programs

Saemundur O. Haraldsson1, John R. Woodward1, Alexander E.I. Brownlee1,
and David Cairns1

University of Stirling, Stirling FK9 4LA, Scotland

Abstract. Genetic Improvement (GI) is the process of using compu-
tational search techniques to improve existing software e.g. in terms of
execution time, power consumption or correctness. As in most heuristic
search algorithms, the search is guided by fitness with GI searching the
space of program variants of the original software. The relationship be-
tween the program space and fitness is seldom simple and often quite
difficult to analyse. This paper makes a preliminary analysis of GI’s fit-
ness distance measure on program repair with three small Python pro-
grams. Each program undergoes incremental mutations while the change
in fitness as measured by proportion of tests passed is monitored.
We conclude that the fitnesses of these programs often does not change

with single mutations and we also confirm the inherent discreteness of
bug fixing fitness functions. Although our findings cannot be assumed to
be general for other software they provide us with interesting directions
for further investigation.

Keywords: Search Based Software Engineering, Genetic Improvement, Genetic
Programming, Automatic Programming, Software Repair.

1 Introduction

In recent years work has been emerging from the Search Based Software engi-
neering (SBSE) community called Genetic Improvement (GI) [18]. GI is where
computational search techniques have been applied to already functioning soft-
ware for the purpose of improvement. The improvement criteria can be various
properties of the existing software such as speed, accuracy or energy efficiency.
The most commonly used search method for GI is Genetic Programming (GP)
although various other techniques like Genetic Algorithms [3] and Grammatical
Evolution [33] have also been applied.

The examples of work that can be categorised as GI are widespread. Most of
them, with few exceptions, are similar in the sense that they tackle software that
can be considered large, with lines of code (LOC) numbering in the thousands.
Nearly one third of the GI literature is dominated by examples of automatic
bug fixing while approximately another third is concerned with improving non-
functional properties [12, 41]. Of those, execution time is perhaps the property

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55696-3_2

that is easiest to measure and therefore the most commonly researched non-
functional property. Bug fixing and execution time make very different fitness
functions. The bug fixing fitness function is a discrete integer function, counting
the number of test cases passed and many non-functional fitness functions, like
the execution time and memory consumption, are continuous measurements.
The main emphasis to date has been on results, rather than an understanding of
the GI search space. There is a need for empirical and theoretical analysis of the
GI process. Is it easy or difficult to traverse the search space of programs and
what can possibly be done to increase the chance that the programs improves?
We begin to answer these questions in the space of smaller programs. Using small
programs to begin with allows us to easily analyse the full impact of changes
introduced to the code. It also keeps uncertainties introduced by the rest of the
program to a minimum.

This paper explores the relationship between fitness and number of accu-
mulated incremental changes while using GI to break programs and gain an
understanding of the program repair process. We chose three small Python pro-
grams to make a preliminary study on empirical properties of GI’s fitness and
edit lists. The following questions were addressed:

– Is it feasible to apply GI to fix multiple bugs at a time? Will fixing one bug
introduce another?

– If a fix needs multiple edits, will GI be able to find it within reasonable
time/number of iterations?

– Can we identify any similarities or patterns in fitness distance relationship
that might be worth exploring in more detail on larger sets of programs? I.e.
is there some rule there that has not been discovered yet?

Although the experiments with only three programs are limiting for generaliza-
tion of the answers we find, they help us narrow down the most promising route
of research for larger and more resource consuming experimentation. Choosing
to operate on Python programs also serves two purposes:

– There are very few examples of GI being applied to Python programs [1] and
given that it is a very popular language, there is a large gap in the literature.

– Because of dynamic typing of Python programs, the search space is possibly
less restricted than for statically typed languages. Therefore changes to the
source code might have more possibilities than a static typed language.

The remainder of the paper is structured as follows. Section 2 gives an
overview of related work. Section 3 describes the implementation of GI that
was used for this paper while Section 4 gives more details on the configuration
and data collection. Section 5 summarizes the results with discussion followed
by the conclusions in Section 6.

2 Related work

A search through publications in software engineering and computer science
suggests that approximately one third of GI related material is on bug fixing.

GenProg [25, 26, 38] is one of the better known automatic bug fixing frame-
works and uses GP to evolve patches for a fraction of the price it would cost man-
ually [24]. GenProg itself is derived from earlier work by Weimar et al. [11,37,39].
Smith et al. is an example of a more recent use of this framework [34]. Although
GenProg is perhaps the most commonly known framework, there is also a large
body of GI literature dedicated to automatic bug fixing [1, 2, 4, 28, 31] that use
alternative approaches.

Automatic program repair can be considered an improvement of a func-
tional property, like improving the quality of hash code functions in Hadoop [15]
or grafting new features to existing software [14, 27]. However, optimizing at-
tributes like execution time, memory consumption and power consumption is
generally considered an improvement of a non-functional property which spans
another big part of the GI literature. Of those attributes, execution time seems
to be very popular, with Langdon’s work on the 50k line DNA sequencing tool
Bowtie [18, 20] possibly the best known. Langdon has also reported 100 fold
speed-up of another DNA sequencing tool BarraCUDA [17, 19, 21–23] and the
GI improvements have now been included in the official release. Langdon’s GI
implementation has furthermore been used by others for specializing and opti-
mizing the execution time of MiniSAT [30], a boolean satisfiability solver and for
optimizing power consumption of that same solver [5, 6]. Many others have ap-
plied or suggested GI for improving non-functional properties such as execution
time [9,10,35,42], energy consumption [7,8,13,40,43] and memory usage [32,44].

The literature of GI counts around 100 papers and there is not much work
on empirical analysis of the search landscapes of GI like there is for GP [36], nor
is there much on Python programs which is the topic of this paper.

3 Our Implementation of Genetic Improvement

There are multiple ways to implement GI. We have implemented a variation of
the work of Langdon et al. [14,18]. Like their GI, ours operates on the source code
with no need to convert the program to a different representation like abstract
syntax trees (AST) [1]. Therefore our approach is directly transferable between
programming languages with minimal configuration. The source code is read as
a text file and stored in a data structure (x) of program lines. For each line we
recorded the raw text as it appears in the source file, along with information
on: indentation1; line type; whether the line can be altered; and any variables
or built-in operators that the line includes.

To manipulate the source code we evolve edit lists (Figure 1). Each edit
consists of: the operation of Replace; the source code snippet before and after
the edit; and the location of where to apply this edit (line and character number).

The code snippets can be whole lines from the source code, or one of the
various single operators or numerical constants listed in Table 1. For other pro-
gramming languages this table would vary slightly, like the incremental operator
++ which exist in C and Java but not in Python.
1 Code blocks are defined by indentation in Python and not by {} as in JAVA/C

Table 1: Sets of single operators available to the GI. One member of a given set
can be changed to another member of the same set.

Operations
S1 Numerical constants Can increment by ±1
S2 Arithmetic operators +,−, ∗, /, //,%, ∗∗
S3 Arithmetic assignments + =,− =, ∗ =, / =,
S4 Relational operators <,>,<=, >=,==, ! =,

is, is not, not
S5 Logical operators and, or
S6 Logical constants True, False

An individual genome consists of a list of edit operations sampled from the
set shown in Table 1 and is applied in sequence from the first edit to the last
item in the list.

3.1 Fitness function

In our experiments the fitness function counts the number of test cases for which
the program passes. It is inherently discrete and possibly provides no obvious
gradient for the search to follow, which poses a difficulty for many search meth-
ods, although evolutionary algorithms have been applied successfully [30]. We
want to analyse this discrete nature and in addition, explore ways to report
on GI problem difficulty. The relationship between the fitness landscape and
genotype/phenotype is far from trivial. However some work has been done on
introducing a partial evaluation of programs and hence some kind of guidance
to the search process in cases where the fitness landscape was largely flat [16].

3.2 Search algorithm

Generally, the GI’s search algorithm is guided by a fitness function, applying
selection pressure towards better programs. GI methods that evolve edit lists
also have to produce a new generation of edit lists from a previous generation.
Our implementation uses the base type of mutation illustrated in Figure 1 that
is applied to parents to produce offspring: Append randomly generated edits to
the parent (Grow).

For our experiments, analysing the relationship between edit list size and fit-
ness, we start from an assumed correct implementation of the program and apply
a single edit. Then incrementing by using Grow with single edit and without any
pressure to search, resetting the edit list to a single edit when all conditions are
met; maximum size of edit list and minimum fitness.

Fig. 1: An example of an edit list and how it can evolve with Grow.

4 Experimental setup

Each program source code is subjected to experiments to assess fitness distance
which is the change in fitness given a particular number of mutations. The pro-
portion of passed test cases is the chosen measurement for the fitness function.

Procedure 1 A single experimental run
1: F ← empty array {list of fitnesses}
2: x← [random edit] {edit list}
3: for i = 0 until i ≤ 50 do
4: append f(x) to F
5: if |x| ≥ 20 and f(x) = 0 then
6: break
7: end if
8: append [random edit] to x
9: end for

The experiment in procedure 1 is repeated 100 times by initiating an edit
list x with a single randomly chosen edit and then appending to the list in-
crementally. Apart from recording the fitness f(x) for each added edit in every
experiment, three variables are recorded for each run. These are the size of the
edit list (|x|) when the fitness (0 ≤ f(x) ≤ 1) satisfies the following:

∆ decreases for the first time:

when f(xi) < f(x0) and f(x0) = f(xj) ∀j ∈ (1, ..., i− 1) ⊂ Z

Ω reaches zero:

when f(xi) = 0 and f(xj) > 0 ∀j ∈ (0, ..., i− 1) ⊂ Z

Ψ starts to increase again:

when f(xi) > f(xi−1) and f(xj) ≤ f(xj−1) ∀j ∈ (1, ..., i− 1) ⊂ Z

This provides us with data to empirically evaluate the nature of the relation-
ship between fitness and the size of the edit list for the three programs described
in 4.1. Each program is accompanied by a test suite of different sizes so the
fitness is normalized to represent the fraction of test cases passed.

4.1 Description of the programs targeted by GI

The three programs2 summarised in Table 2 were selected for the experiment.
They are all comprised of 3 or fewer functions. They are not a complete Python
module but are either part of a module, like P2 or a standalone function like
P1 and P3. However they can be integrated into any Python module and have
well defined input, output types.

P1 is a simple text input calculator that reads text from left to right, parses
a single character at a time into operator, digits bins and calculates a result
using a reverse Polish notation. It is a beginners programming exercise and the
only program of the three that is not a part of publicly available software. It
branches out for each of the four basic arithmetic operations; addition, subtrac-
tion, multiplication and division as well as a special branch for parentheses.

P2 is an initialization function for the K-means clustering method and is a
part of the scikit-learn Python toolbox [29]. It determines the initial k centres
for the algorithm. P2 does this with a random factor that can be seeded for
consistency purposes.

P3 is a string manipulation function that reads through a text replacing
HTML tags with latex equivalent commands. It is a part of a larger software
system, Janus Manager that is in commercial use by a vocational rehabilitation
centre in Iceland.

Table 2 shows basic info about the programs, P1, P2 and P3. The numbers
in the second column are the number of lines of code and the number of lines
that can be changed, i.e. excluding definitions, comments that do not include
executable code and functions out of scope. The third and fourth columns are
the count of mutable points, the number of instances in the source that fit into
any of the sets defined in Table 1 and the count for each set. The fifth column
describes the input and output of each program and the last column is a short
description of its purpose.

P2 and P3 are accompanied by test modules which are used to evaluate
fitness. However P2’s test suite, comprising of approximately 60 test cases, was
expanded to 500 by sampling from an estimated distribution of inputs from the
original tests and using the P2 as an oracle. P3 comes with 124 test cases based
on HTML input from users and their verified output, so expanding that test
suite is not feasible. The test suite for P1 is 600 cases made by combining two
sets; A = {0, 1, 2, 3, 4} and B = {+,−, ∗, /} into:

a) All possible combinations of a single operator from B with two digits from
A, an example would be 2 + 2.

2 The programs and their test suites are available on https://github.com/saemundo/
Exploring-Fitness-and-Edit-Distance-of-Mutated-Python-Programs.git

https://github.com/saemundo/Exploring-Fitness-and-Edit-Distance-of-Mutated-Python-Programs.git
https://github.com/saemundo/Exploring-Fitness-and-Edit-Distance-of-Mutated-Python-Programs.git

Table 2: Information about the programs that were used in the experiments
Program LOC (mLOC∗) Mutable

points
Types of
mutable
points

Input
⇓

Output

Description

P1 99 (98) 147 S1: 19
S2: 37
S3: 50
S4-6:41

String
⇓

Float

Simple text
input calculator

P2 177 (75) 106 S1: 11
S2: 14
S3: 57
S4-6:24

Cluster data∗∗

⇓
Matrix

Initiation of
K-means cluster
centers

P3 103 (63) 59 S1: 26
S2: 3
S3: 29
S4-6:1

HTML
⇓

Latex

Html to Latex
conversion tool

∗Changeble lines of code.
∗∗Data points, number of clusters, initialization method and 3 optional arguments.

b) All combinations of (Xo1Y)o2Z where {X,Y, Z} ⊆ A , o1 ∈ {+,−} ⊆ B
and o2 ∈ {∗, /} ⊆ B. An example would be (4 + 2) ∗ 2.

P1’s test suite was verified with the Python built in eval function.

5 Results

We will look at the programs from three different angles; size of edit list versus a
specific change in fitness, average fitness as a function of edit list size and, unique
and discrete steps in fitness. When statistically comparing the mean of two vari-
ables we use Welch’s t-test for two independent samples with unequal variance.
For testing the likelihood of two variables coming from the same distribution,
we compute a two sample Kolmogorov-Smirnoff statistic.

5.1 Change in Fitness

Table 3 lists the basic descriptive statistics for the edit list size (|x|) for the
three different changes in fitness (see Section 4) and the total number of fitness
evaluations for each program. That number varies between programs due to
the termination conditions described in Section 4. Firstly we measure the edit
distance required for the fitness to decrease for the first time (i.e. f(x) < 1).

For P1 ∆ occurs on average when the edit list is 9 edits long, although there
is a lot of variations as shown by the standard deviation and the range. We find
this a quite surprising result. It should also be noted that in 1 run out of the
100 repeated experiments the fitness did not drop at all, reaching the maximum
size of 50 edits. There is a highly significant difference (p < 0.001) between P1

Table 3: Statistics for the variables defined in section 4, edit list size |x| when
changes in fitness f(x) are detected and total number of fitness evaluations
during the experiments.

Variable Mean (std) (Min, Max) Number of occurances Evaluations

P1
∆ 8.91 (9.83) (1, 50) 99 2213
Ω 12.68 (10.55) (1, 50) 97
Ψ 12.0 (7.53) (3, 25) 12

P2
∆ 2.56 (3.20) (1, 19) 100 2267
Ω 10.28 (8.33) (1, 42) 100
Ψ 7.64 (5.42) (2, 26) 34

P3
∆ 2.69 (3.30) (1, 19) 100 1980
Ω 3.92 (3.74) (1, 19) 100
Ψ 4.76 (3.44) (2, 16) 17

and P2 for the mean ∆. We can also reject the null hypothesis that the samples
come from the same distribution (p < 0.001) as is evident when comparing
Figures 2a and 2b. However statistically we cannot rule out the possibility that
the distribution (p = 0.99) and mean (p = 0.78) are the same for those measures
when comparing P2 and P3. Notice that the bar plots in Figures 2b and 2c are
very similar.

P1 and P2 are closer together when comparing the number of edits it takes
to reach zero fitness and until the fitness might increase again. Testing for the
same distribution gives p = 0.08 and p = 0.10 for Ω and Ψ respectively and
we also cannot reject the hypothesis that the means are the same (0.08 and
0.09). Figures 2d and 2e corroborate the observation about zero fitness. However
looking at Figures 2g and 2h we are less sure about the number of edits it takes
to increase the fitness again and might infer that we do not have enough data
to be confident the test results are accurate.

P3 has very different means and distributions than P1 on all measured
variables (p < 0.01) which is validated on looking at Figures 2g–2i. The lack of
data for Ψ is further verified by the outcome of tests comparing increased fitness
between P3 and P2: Rejecting that they have same mean (p = 0.025) but failing
to reject that they come from the same distribution (p = 0.09).

These results indicate that: P1 is unaffected by many edits and P2 and P3
are easily broken and fixed even though they are very different.

5.2 Average Fitness with Respect to Edit List Size

Repeating the experiments 100 times provided us with enough datapoints to
construct fitness distance graphs and approximate the distribution of fitness for
each increment in edit list size. Looking at the boxplots in Figures 3a–3c we
see that overall, the distributions are quite different. P1’s first three increments
(Figure 3a) have very narrow distributions close to f(x) = 100% and then the
distributions widen considerably until increment 15 where they start narrowing
towards the bottom. For P2 it is a smoother transition (Figure 3b) from top

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(a) P1.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(b) P2.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(c) P3.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(d) P1.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(e) P2.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(f) P3

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(g) P1.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(h) P2.

1 5 10 15 20 25

Edit distance [length of edit list]
0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

(i) P3.

Fig. 2: Distributions of the three different measurements in Table 3 during the
experiments for each program. Top three are∆, the middle are Ω and the bottom
three are Ψ

to bottom, maintaining a similar rate of descent for the mean, maximum and
minimum throughout. Then P3 stands out completely with seemingly only two
distributions; covering the entire range and nearly collapsed on either extreme
(Figure 3c).

Having a closer look at how the mean fitness changes in Figures 3d–3f we
see that these programs are as dissimilar as initially assumed. While both P2
(Figure 3e) and P3 (Figure 3f) both follow curves that are concave upwards, P3
seems to follow a curvature of higher magnitude. Now it is P1 that is the outlier
(Figure 3d) following a noisy line with a negative slope until the edit list reaches
size 22 when it jumps up to f(x) = 80% again. P2 shows signs of starting to
recover in increment 22 as well but on a much slower rate than P1 and P3 shows
no such signs at all.

The plots for medians in Figures 3g–3i paint a completely different story,
displaying no hint of smoothness to the transition from one increment to another.

1 5 10 15 20 25

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(a) P1.

1 5 10 15 20

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(b) P2.

1 5 10 15 20

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(c) P3.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(d) P1.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(e) P2.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(f) P3.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(g) P1.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(h) P2.

0 5 10 15 20 25 30

Distance [n edits]
0%

20%

40%

60%

80%

100%

Fi
tn

e
ss

(i) P3.

Fig. 3: Fitness with respect to edit list size for each increment. The top three are
boxplots, the three in the middle are the mean fitness with 95% error and at the
bottom are the median fitness with 95% error.

However there are obvious steps that highlight the discreteness of each program’s
fitness function. We see in Figure 3h that P2 has the most number of steps, while
P1 comes second (Figure 3g) and P3 last (Figure 3g).

5.3 Discrete steps in fitness

Following the observation of the different steps for each program’s median fit-
ness seen in Figures 3g–3i, we counted the unique number of fitness evaluations
throughout the entire experiment. As previously inferred, P2 has by far the
largest number of discrete steps, with 46 in total as seen in Figure 4. P2 had its
fitness evaluated 2067 times, as seen in Table 3, and Figure 4 shows how often
the fitness changed from one value to another by adding a single edit to the
list. The count matrix is very sparse as can be seen by the white squares that
denote zero counts, for example the fitness never went from 0.655 to zero with
one edit. The diagonal line of shaded boxes from (0, 0) to (1, 1) indicates that
the majority of single edits had little to no effect on the fitness, especially when

the fitness is already zero. However there is an abundance of blue squares at the
bottom which tells us that a single edit can often lead to complete failure of the
program.

0
.0

0
0

0
.0

8
8

0
.1

5
1

0
.1

5
5

0
.1

6
7

0
.1

7
2

0
.1

9
2

0
.2

1
3

0
.2

1
8

0
.2

5
9

0
.3

1
8

0
.3

3
9

0
.3

6
8

0
.5

0
8

0
.5

1
0

0
.5

7
1

0
.5

7
5

0
.5

7
7

0
.5

9
4

0
.6

3
8

0
.6

4
0

0
.6

5
3

0
.6

5
5

0
.6

5
7

0
.6

8
0

0
.6

8
2

0
.6

8
6

0
.8

2
4

0
.8

8
7

0
.8

8
9

0
.8

9
1

0
.9

0
8

0
.9

1
8

0
.9

2
1

0
.9

3
7

0
.9

5
2

0
.9

5
4

0
.9

6
4

0
.9

6
7

0
.9

6
9

0
.9

7
1

0
.9

8
1

0
.9

8
3

0
.9

9
2

0
.9

9
8

1
.0

0
0

Fitness before

0.000
0.088
0.151
0.155
0.167
0.172
0.192
0.213
0.218
0.259
0.318
0.339
0.368
0.508
0.510
0.571
0.575
0.577
0.594
0.638
0.640
0.653
0.655
0.657
0.680
0.682
0.686
0.824
0.887
0.889
0.891
0.908
0.918
0.921
0.937
0.952
0.954
0.964
0.967
0.969
0.971
0.981
0.983
0.992
0.998
1.000

Fi
tn

e
ss

 a
ft

e
r

904

1

1

2

1

1

8

1

1

5

12

152

1

1

1

7

1

63

2

1

1

2

4

1

4

1

2

15

1

1

3

7

1

50

1

1

1

1

1

1

9

1

2

2

1

16

1

1

2

1

5

1

1

1 1

1

7

1

1

2

18

1

1

2

2

6

1

4

1

1

1

6

1

1

2

1

30

1

1

1

15

2

6

2

4

2

1

2

133

1

1

1

8

1

1

4

1

2

1

2

3

1

2

1

1

6

1

1

1

1

1

1

1

2

1

2

5

1

1

1

1

5

1

1

1

1

1

2

1

1

1

6

1

15

3

1

1

1

41

1

8

1

1

2

1

1

1

2

1

1

1

5

1

1

1

16

27

6

1

3

1

21

1

2

1

1

4

2

14

1

5

219

100

200

300

400

500

600

700

800

900

Fig. 4: Frequency chart of fitness changes after a single edit is appended to the
edit list for P2. Each square is a count of how often the fitness changed from
fitness before to fitness after.

P1 has the second most number of discrete steps, 15 as seen in Figure 5, the
total number of counts is 2213 (Table 3). This chart looks like a scaled version of
P2’s Figure 4, displaying the same dominant diagonal line as well as the number
of single edits that make the program pass 0% of test cases. We also see here
that there are a lot of single edits that decrease the fitness from 1, shown by
the large number of non-white squares in the right most column. This is to be
expected since every experimental run starts with a correct program, so it visits
that state at least once each time while it is not guaranteed to visit other specific
steps.

0
.0

0
0

0
.1

3
0

0
.2

3
0

0
.2

9
0

0
.3

3
0

0
.3

6
0

0
.5

3
0

0
.5

6
0

0
.5

7
0

0
.6

0
0

0
.6

3
0

0
.7

5
0

0
.7

7
0

0
.8

0
0

1
.0

0
0

Fitness before

0.000

0.130

0.230

0.290

0.330

0.360

0.530

0.560

0.570

0.600

0.630

0.750

0.770

0.800

1.000

Fi
tn

e
ss

 a
ft

e
r

857

1

1

6

56

1

2

1

1

1

1

12

1

1

31

1 1

3

2

1

2

37

1

6

1

62

1

2

1

1

5

1

18

6

46

7

1

1

58

6

36

1

51

9

1

5

7

2

4

8

6

839

100

200

300

400

500

600

700

800

Fig. 5: Frequency chart of fitness changes after a single edit is appended to the
edit list for P1. Each square is a count of how often the fitness changed from
fitness before to fitness after.

Figure 6 is the least sparse of the three, only 5 fitness steps in total. What
is surprising however, is that even though there were 1980 fitness evaluations
there are still some zero counts. As with P1 and P2, there are more of them
above the diagonal line than below, meaning that adding an edit is more likely
to decrease fitness than to increase. The highest counts are also on the diagonal
line, so the same behaviour can be observed: most likely a single edit will leave
the fitness unchanged.

6 Conclusions

The aim of this preliminary exploration of three Python programs’ fitness dis-
tance is to provide a greater understanding of the search process encountered by
GI.

We can conclude that for these three programs and the assumption that the
landscape has no inaccessible areas to our GI implementation:

– It is feasible to apply GI to fix multiple bugs simultaneously. Starting from
any variation of these programs and applying search pressure can result in
a fix.

– If a fix needs multiple edits, GI will be able to find it within reasonable time.
If it takes on average 10 edits to completely break these programs (i.e. zero
test cases passed), the reverse is likely to be true.

– We have identified a similarity in fitness distance relationship that is worth
exploring in more detail on larger set of programs.

0
.0

0
0

0
.9

6
0

0
.9

6
8

0
.9

9
2

1
.0

0
0

Fitness before

0.000

0.960

0.968

0.992

1.000

Fi
tn

e
ss

 a
ft

e
r

1564

1

1

5

2

9

1

1

1

1

12

1

42

11

70

1

15

242

200

400

600

800

1000

1200

1400

Fig. 6: Frequency chart of fitness changes after a single edit is appended to the
edit list for P3. Each square is a count of how often the fitness changed from
fitness before to fitness after.

Although we cannot conclude general rules or patterns from these preliminary
experiments, a common denominator for our programs is that a single edit will
likely have no impact on fitness. However, if a change does occur then it can be
expected that the change will be large.

It would be interesting to explore the cause of the difference in sparsity of
the frequency charts in Figures 4–6. The programs and the test suites were quite
different in nature which might explain the stark contrast in discreteness of our
programs. While P1 and P3 had a single input argument, P2 had 6, and the
test suites reflected this difference. P2’s test suite could be divided into multiple
categories, testing various aspects and combinations of input arguments. P1’s
test suite could also be categorised but only in 4-6 groups and it would be a
stretch to try and group P3’s test suite.

Our next task is to apply the same analysis that we have done here to a larger
set of programs with the goal of helping us to form more general and applicable
rules for GI fitness distance. With larger sets we can also analyse the fitness
distance correlation of GI with variety of edit list mutation operators, such as
removing edits or changing individual edits.

7 Acknowledgements

The work presented in this paper is part of the DAASE project which is funded
by the EPSRC. The authors would like to thank Janus Rehabilitation Centre for
allowing the use of their software in the experiments and consequently making
the relevant part of the source code available for others to use in their experi-
ments.

References

1. T. Ackling, B. Alexander, and I. Grunert. Evolving Patches for Software Repair.
In GECCO’11, 13th annual conference on Genetic and evolutionary computation,
pages 1427–1434, Dublin, Ireland, jul 2011. ACM.

2. A. Arcuri. On the automation of fixing software bugs. In Companion of the 30th
International Conference on Software Engineering, ICSE Companion ’08, pages
1003–1006, New York, NY, USA, 2008. ACM.

3. A. Arcuri and X. Yao. A Novel Co-Evolutionary Approach to Automatic Software
Bug Fixing. In 2008 IEEE World Congress on Computational Intelligence, pages
162–168. IEEE Computational Intelligence Society, 2008.

4. J. S. Bradbury and K. Jalbert. Automatic Repair of Concurrency Bugs. Proceedings
of the 2nd International Symposium on Search Based Software Engineering, page 2,
2010.

5. B. R. Bruce. Energy Optimisation via Genetic Improvement A SBSE technique for
a new era in Software Development. In Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO
Companion ’15, pages 819–820, Madrid, Spain, jul 2015. ACM.

6. B. R. Bruce, J. Petke, and M. Harman. Reducing Energy Consumption Using
Genetic Improvement. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 1327–1334, Madrid, Spain, jul
2015. ACM.

7. N. Burles, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis, J. Swan, and N. Veerapen.
Object-Oriented Genetic Improvement for Improved Energy Consumption in Google
Guava, pages 255–261. Springer International Publishing, Cham, 2015.

8. N. Burles, J. Swan, A. E. I. Brownlee, Z. A. Kocsis, and N. Veerapen. Embedded
Dynamic Improvement. In Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO Compan-
ion -15, pages 831–832, Madrid, Spain, jul 2015. ACM.

9. B. Cody-Kenny and S. Barrett. The Emergence of Useful Bias in Self-focusing Ge-
netic Programming for Software Optimisation. In G. Ruhe and Y. Zhang, editors,
Symposium on Search-Based Software Engineering, volume 8084 of Lecture Notes
in Computer Science, pages 306–311, Leningrad, aug 2013. Springer.

10. B. Cody-kenny, E. Galván-lópez, and S. Barrett. locoGP : Improving Performance
by Genetic Programming Java Source Code. In Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, pages 811–818, Madrid, Spain, jul 2015. ACM.

11. S. Forrest, T. Nguyen, W. Weimer, and C. L. Goues. A genetic programming
approach to automated software repair. Genetic And Evolutionary Computation
Conference, pages 947–954, 2009.

12. S. O. Haraldsson and J. R. Woodward. Automated Design of Algorithms and
Genetic Improvement : Contrast and Commonalities. In Proceedings of the 2014
Conference Companion on Genetic and Evolutionary Computation Companion,
GECCO Comp ’14, pages 1373–1380, Vancouver, Canada, jul 2014. ACM.

13. S. O. Haraldsson and J. R. Woodward. Genetic Improvement of Energy Usage is
only as Reliable as the Measurements are Accurate. In W. B. Langdon, J. Petke,
and D. R. White, editors, Proceedings of the 2015 Conference Companion on Ge-
netic and Evolutionary Computation Companion, pages 831–832, Madrid, 2015.
ACM.

14. M. Harman, Y. Jia, and W. B. Langdon. Babel Pidgin : SBSE Can Grow and Graft
Entirely New Functionality into a Real World System. In C. Goues and S. Yoo,
editors, Search-Based Software Engineering, volume 8636 of Lecture Notes in Com-
puter Science, pages 247–252, Fortaleza, Brazil, aug 2014. Springer International
Publishing.

15. Z. A. Kocsis, G. Neumann, J. Swan, M. G. Epitropakis, A. E. I. Brownlee, S. O.
Haraldsson, and E. Bowles. Repairing and Optimizing Hadoop hashCode Imple-
mentations. In C. Le Goues and S. Yoo, editors, 6th International Symposium,
SSBSE 2014, volume 8636 of Lecture Notes in Computer Science, pages 259–264,
Fortaleza, Brazil, aug 2014. Springer Berlin Heidelberg.

16. K. Krawiec and J. Swan. Pattern-Guided Genetic Programming. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO
’13, pages 949–956, Amsterdam, The Netherlands, 2013. ACM.

17. W. Langdon and M. Harman. Genetically improved CUDA kernels for Stereo-
Camera. Technical report, UCL Department of Computer Science, London, UK,
2014.

18. W. B. Langdon. Genetic Improvement of Programs. 18th International Conference
on Soft Computing, MENDEL 2012, 2012.

19. W. B. Langdon. Improved CUDA 3D Medical Image Registration. In UK Many-
Core Developer Conference 2014 - UKMAC 2014, page 2014, dec 2014.

20. W. B. Langdon. Performance of genetic programming optimised Bowtie2 on
genome comparison and analytic testing (GCAT) benchmarks. BioData mining,
8(1):1, 2015.

21. W. B. Langdon and M. Harman. Genetically Improved CUDA C++ Software.
In M. Nicolau, K. Krawiec, and M. Heywood, editors, Proceedings of the 17th
European Conference on Genetic Programming, EuroGP 2014, Lecture Notes in
Computer Science, pages 1–12, Granada, Spain, 2014. Springer Berlin Heidelberg.

22. W. B. Langdon and M. Harman. Grow and Graft a better CUDA pknotsRG for
RNA pseudoknot free energy calculation. In Proceedings of the Companion Publi-
cation of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, pages 805–810, Madrid, Spain, jul 2015. ACM.

23. W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman. Improving CUDA
DNA Analysis Software with Genetic Programming. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, pages
1063–1070, Madrid, Spain, jul 2015. ACM.

24. C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In 2012 34th
International Conference on Software Engineering (ICSE), pages 3–13, Zurich,
Swiss, jun 2012. IEEE.

25. C. Le Goues, S. Forrest, and W. Weimer. Current challenges in automatic software
repair. Software Quality Journal, 21(3):421–443, 2013.

26. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic
method for automatic software repair. IEEE Transactions on Software Engineer-
ing, 38(1):54–72, 2012.

27. A. Marginean, E. T. Barr, M. Harman, and Y. Jia. Automated Transplantation of
Call Graph and Layout Features into Kate. In M. Barros and Y. Labiche, editors,
Search-Based Software Engineering, volume 9275 of Lecture Notes in Computer
Science, pages 262–268, Bergamo, Italy, aug 2015. Springer International Publish-
ing.

28. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program
repair via semantic analysis. Proceedings - International Conference on Software
Engineering, pages 772–781, 2013.

29. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in {P}ython. Journal of Machine Learning Research, 12:2825–2830, 2011.

30. J. Petke, M. Harman, W. B. Langdon, andW.Weimer. Using Genetic Improvement
and Code Transplants to Specialise a C++ Program to a Problem Class. 17th
European Conference on Genetic Programming, 8599:137–149, 2014.

31. Z. Qi, F. Long, S. Achour, and M. Rinard. An Analysis of Patch Plausibility
and Correctness for Generate-and-validate Patch Generation Systems. In T. Xie,
editor, Proceedings of the 2015 International Symposium on Software Testing and
Analysis, ISSTA 2015, pages 24–36, Baltimore, MD, USA, 2015. ACM.

32. J. L. Risco-Martín, J. M. Colmenar, J. I. Hidalgo, J. Lanchares, and J. Díaz.
A methodology to automatically optimize dynamic memory managers applying
grammatical evolution. Journal of Systems and Software, 91:109–123, 2014.

33. C. Ryan, J. J. Collins, and M. O’Neill. Grammatical Evolution: Evolving Programs
for an Arbitrary Language. In EuroGP, pages 83–96, 1998.

34. E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the Cure Worse Than the
Disease ? Overfitting in Automated Program Repair. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 532–543, Bergamo, Italy, 2015. ACM.

35. J. Swan, M. G. Epitropakis, and J. R. Woodward. Gen-O-Fix: An embeddable
framework for Dynamic Adaptive Genetic Improvement Programming. Technical
Report CSM-195, Department of Computing Science and Mathematics University
of Stirling, Stirling, UK, 2014.

36. M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A study of fitness dis-
tance correlation as a difficulty measure in genetic programming. Evolutionary
Computation, 13(2):213–239, 2005.

37. W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic program repair
with evolutionary computation. Communications of the ACM, 53(5):109, 2010.

38. W. Weimer, Z. P. Fry, and S. Forrest. Leveraging Program Equivalence for Adap-
tive Program Repair: Models and First Results. In E. Denney, T. Bultan, and
A. Zeller, editors, 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 356–366, Palo Alto, USA, nov 2013.

39. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference
on Software Engineering, pages 364–374, Vancouver, Canada, 2009. IEEE.

40. D. R. White. Genetic Programming for Low-Resource Systems. (December), 2009.
41. D. R. White. An Unsystematic Review of Genetic Improvement. In 45th CREST

Open Workshop on Genetic Improvement, London, 2016.
42. D. R. White, A. Arcuri, and J. A. Clark. Evolutionary Improvement of Programs.

IEEE Transactions on Evolutionary Computation, 15(4):515–538, aug 2011.
43. D. R. White, J. Clark, J. Jacob, and S. M. Poulding. Searching for resource-efficient

programs. Proceedings of the 10th annual conference on Genetic and evolutionary
computation - GECCO ’08, (1):1775, 2008.

44. F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke. Deep Parameter Optimisa-
tion. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 1375–1382, Madrid, Spain, jul 2015. ACM.

	Exploring Fitness and Edit Distance of Mutated Python Programs

