Skip to main content

Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future

  • Chapter
  • First Online:
Book cover Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

Abstract

The ability of the processes in Nature to achieve remarkable examples of complexity, resilience, inventive solutions and beauty is phenomenal. This ability has promoted engineers and scientists to look to Nature for inspiration. Evolvable Hardware (EH) is one such form of inspiration. It is a field of evolutionary computation (EC) that focuses on the embodiment of evolution in a physical media. If EH could achieve even a small step in natural evolution’s achievements, it would be a significant step for hardware designers. Before the field of EH began, EC had already shown artificial evolution to be a highly competitive problem solver. EH thus started off as a new and exciting field with much promise. It seemed only a matter of time before researchers would find ways to convert such techniques into hardware problem solvers and further refine the techniques to achieve systems that were competitive (better) than human designs. However, almost 20 years on, it appears that problems solved by EH are only of the size and complexity of that achievable in EC 20 years ago and seldom compete with traditional designs. A critical review of the field is presented. Whilst highlighting some of the successes, it also considers why the field is far from reaching these goals. The chapter further redefines the field and speculates where the field should go in the next 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter is a revised and updated version of: Pauline C. Haddow, Andy M. Tyrrell (2011) Challenges of evolvable hardware: past, present and the path to a promising future. Genetic Programming and Evolvable Machines 12(3):183–215.

  2. 2.

    “creating” refers to the creation of a physical entity.

References

  1. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. IEEE Trans. Syst. Man Cybern. Part C 29(1), 87–97 (1999)

    Google Scholar 

  2. Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Furuya, T., Manderick, B.: Evolvable hardware and its applications to pattern recognition and fault tolerant systems. Towards Evol. Hardware Evol. Eng. App. LNCS 1052, 118–135 (1996)

    Article  Google Scholar 

  3. Scott, S.D., Samal, A., Seth, S.: HGA: a hardware based genetic algorithm. In: Proceedings of ACM/SIGDA 3rd International symposium on FPGA’s, pp. 53–59 (1995)

    Google Scholar 

  4. Salami, M., Cain, G.: Implementation of genetic algorithms on reprogrammable architectures. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence (AI’95), pp. 121–128, (1995)

    Google Scholar 

  5. Yao, X.: Evolutionary artificial neural networks. Int. J. Neural Syst. 4(3), 203–222 (1993)

    Article  MathSciNet  Google Scholar 

  6. Yao, X., Liu, Y.: Evolving artificial neural networks for medical applications. In: Proceedings of 1995 Australia-Korea Joint Workshop on Evolutionary Computation, pp. 1–16, (1995)

    Google Scholar 

  7. Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. In: Proceedings of International Symposium. on Artificial Life and Robotics (AROB), pp. 265–268, 18–20 Feb (1996)

    Google Scholar 

  8. Yao, X., Liu, Y.: Evolving artificial neural networks through evolutionary programming. In: The Fifth Annual Conference on Evolutionary Programming, pp. 257–266. MIT Press (1996)

    Google Scholar 

  9. Rosenman, M.A.: An evolutionary model for non-routine design.In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence (AI’95), pp. 363–370. World Scientific Publ. Co., Singapore (1995)

    Google Scholar 

  10. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, NY 10003 (1991)

    Google Scholar 

  11. Higuchi, T. et al.: Real-world applications of analog and digital evolvable hardware. IEEE Trans. Evol. Comput. 3(3), 220–235 (1999)

    Google Scholar 

  12. Thompson, A.: On the automatic design of robust electronics through artificial evolution. In: Proceedings of the International Conference on Evolvable Systems: From Biology to Hardware, pp. 13–24 (1998)

    Google Scholar 

  13. Walker, J.A., Hilder, J.A., Tyrrell, A.M.: Evolving variability-tolerant CMOS designs. In: International Conference on Evolvable Systems: From Biology to Hardware, pp. 308–319 (2008)

    Google Scholar 

  14. Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M.: Towards a conceptual framework for artificial immune systems. Artif. Immune Syst. LNCS 3239(2004), 53–64 (2004)

    Article  Google Scholar 

  15. ispPAC30 Data Sheet, Lattice Semiconductor Corporation. (2001). http://www.latticesemi.com/lit/docs/datasheets/pac/pacover.pdf

  16. Stoica, A., Keymeulen, D., Thakoor, A., Daud, T., Klimech, G., Jin, Y., Tawel, R., Duong, V.: Evolution of analog circuits on field programmable transistor arrays. In: Proceedings of NASA/DoD Workshop on Evolvable Hardware (EH2000), pp. 99–108 (2000)

    Google Scholar 

  17. Langeheine, J., Becker, J., Folling, F., Meier, K., Schemmel, J.: Initial studies of a new VLSI field programmable transistor array. In: Proceedings 4th Int’l. Conference on Evolvable Systems: From Biology to Hardware, pp. 62–73 (2001)

    Google Scholar 

  18. Virtex Field Programmable Gate Arrays Data Book Version 2.5, Xilinx Inc. (2001)

    Google Scholar 

  19. User manual and Tutorials for the CELL MATRIX MOD 88

    Google Scholar 

  20. Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, A., Stauffer, A.: Phylogeny, ontogeny, and epigenesis: three sources of biological inspiration for softening hardware. Evol. Syst. Biol. Hardw. ICES 96, 35–54 (1996)

    Google Scholar 

  21. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M., Rosenberg, J., Villa, A.E.P.: POEtic tissue: an integrated architecture for bio-inspired hardware. In: Proceedings of 5th International Conference on Evolvable Systems, pp. 129–140. Trondheim (2003)

    Google Scholar 

  22. Tyrrell, A.M., Greensted, A.J.: Evolving dependability. ACM J. Em. Technol. Comput. 3(2), Article 7, 1–20 (2007)

    Google Scholar 

  23. Koza, J.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA (1994)

    MATH  Google Scholar 

  24. Koza, J., Keane, M., Streeter, M.: What’s AI done for me lately? genetic programming’s human-competitive results. IEEE Intell. Syst. 18(3), 25–31 (2003)

    Article  Google Scholar 

  25. Koza, J., Yu, J., Keane, M.A., Mydlowec, W.: Use of conditional developmental operators and free variables in automatically synthesizing generalized circuits using genetic programming. In: Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 5–15 (2000)

    Google Scholar 

  26. Keane, M., Koza, J., Streeter, M.: Automatic synthesis using genetic programming of an improved general-purpose controller for industrially representative plants. In: Stoica,A. (ed.) Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 113–122 (2002)

    Google Scholar 

  27. Streeter, M., Keane, M., Koza, J.: Routine duplication of post-2000 patented inventions by means of genetic programming. In: Foster, J. et al. (eds.) Genetic Programming: 5th European Conference, EuroGP 2002, pp. 26–36 (2002)

    Google Scholar 

  28. Koza, J., Jones, L.W., Keane, M.A., Streeter, M.J., Al-Sakran, S.H.: Toward automated design of industrial-strength analog circuits by means of genetic programming. In: Genetic Programming Theory and Practice II, Chap. 8, pp. 121–142 (2004)

    Google Scholar 

  29. Takahashi, E., Kasai, Y., Murakawa, M., Higuchi, T.: Post fabrication clock-timing adjustment using genetic algorithms. In: Evolvable Hardware, pp. 65–84. Springer (2006)

    Google Scholar 

  30. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware evolution at function level. Int. Conf. Parallel Problem Solv. Nature PPSN 1996, 62–71 (1996)

    Google Scholar 

  31. Kajitani, I., Hoshino, T., Kajihara, N., Iwata, M., Higuchi, T.: An evolvable hardware chip and its application as a multi-function prosthetic hand controller. In: Proceedings of 16th National Conference on Artificial Intelligence (AAAI-99), pp. 182–187 (1999)

    Google Scholar 

  32. Stoica, A., Arslan, T., Keymeulen, D., Duong, V., Gou, X., Zebulum, R., Ferguson, I., Daud, T.: Evolutionary recovery of electronic circuits from radiation induced faults. CEC 2004, 1786–1793 (2004)

    Google Scholar 

  33. Linden, D.: Optimizing signal strength in-situ using an evolvable antenna system. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 147–151 (2002)

    Google Scholar 

  34. Lohn, J.D., Hornby, G., Rodriguez-Arroyo, A., Linden, D., Kraus, W., Seufert, S.: Evolutionary design of an X-Band antenna for NASA’s space technology 5 mission. In: 3rd NASA/DoD Conference on Evolvable Hardware, pp. 1–9 (2003)

    Google Scholar 

  35. Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge, MA (1969)

    Google Scholar 

  36. Grossberg, S.: Contour enhancement, short-term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52 213–257 (1973)

    Google Scholar 

  37. Bryson, E., Ho, Y.C.: Applied optimal control: optimization, estimation, and control. Blaisdell Publishing Company (1969)

    Google Scholar 

  38. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Lett. Nature Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  39. Hartmann, M., Lehre, P.K., Haddow, P.C.: Evolved digital circuits and genome complexity. NASA Int. Conf. Evol. Hardw. 2005, 79–86 (2005)

    Google Scholar 

  40. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT-23(3), 337–343 (1977)

    Google Scholar 

  41. Kobayashi, K., Moreno, J.M., Madrenas, J.: Implementation of a power-aware dynamic fault tolerant mechanism on the ubichip platform. In: International Conference on Evolvable Systems: From Biology to Hardware (ICES10), pp. 299–399 (2010)

    Google Scholar 

  42. International Technology RoadMap for Semiconductors (2009)

    Google Scholar 

  43. Thompson, A.: Evolutionary techniques for fault Tolerance. In: International Conference on Control, pp. 693–698 (1996)

    Google Scholar 

  44. Haddow, P.C., Hartmann, M., Djupdal, A.: Addressing the metric challenge: evolved versus traditional fault tolerant circuits. In: The 2nd NASA/ESA Conference on Adaptive Hardware and Systems, pp. 431–438 (2007)

    Google Scholar 

  45. Yu, T., Lee, S.: Evolving cellular automata to model fluid flow in porous media. In: 2002 NASA/DoD Conference on Evolvable hardware, pp. 210–217 (2002)

    Google Scholar 

  46. Zebulum, R.S., et al.: Experimental results in evolutionary fault recovery for field programmable analogue devices. In: Proceedings of the NASA/DOD International Conference on Evolvable Hardware, pp. 182–186 (2003)

    Google Scholar 

  47. Stoica, A., et al.: Temperature-adaptive circuits on reconfigurable analog arrays. IEEE Aerospace Conf. 2007, 1–6 (2007)

    Google Scholar 

  48. Kalganova, T.: An extrinsic function-level evolvable hardware approach. Genetic Program. Lect. Notes Comput. Sci. 1802, 60–75 (2004)

    Article  Google Scholar 

  49. Torresen, J.: A scalable approach to evolvable hardware. In: The International Conference on Evolvable Systems: From Biology to Hardware, (ICES98), pp. 57–65 (1998)

    Google Scholar 

  50. Torresen, J.: Scalable evolvable hardware applied to road image recognition. In: The second NASA International Conference on Evolvable Hardware, pp. 245–252 (2000)

    Google Scholar 

  51. Kalganova, T.: Bidirectional incremental evolution in extrinsic evolvable hardware. In: The second NASA/DoD Workshop on Evolvable Hardware, pp. 65–74 (2000)

    Google Scholar 

  52. Liu, W., Murakawa, M., Higuchi, T.: ATM cell scheduling by functional level evolvable hardware. In: Proceedings of the First International Conference on Evolvable Systems, pp. 180–192 (1996)

    Google Scholar 

  53. Vassilev, V.K.: Scalability problems of digital circuit evolution: evolvability and efficient design. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 55–64 (2000)

    Google Scholar 

  54. Gomaz, F., Miikulainen, R.: Incremental evolution of complex general behaviour. In: Special Issue on Environment Structure and Behaviour, Adaptive Behaviour, vol. 5, Issue 3, 4, pp. 317–342. MIT Press (1997)

    Google Scholar 

  55. Brooks, R.A., et al.: Alternative essences of intelligence. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), pp. 961–967. AAAI Press (1998)

    Google Scholar 

  56. Hong, J.H., Cho, S.B.: MEH: modular Evolvable Hardware for designing complex circuits. In: IEEE Congress on Evolutionary Computation, pp. 92–99 (2003)

    Google Scholar 

  57. Stomeo, E., Kalganova, T., Lambert, C.: Generalized decomposition for evolvable hardware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

    Article  Google Scholar 

  58. Stomeo, E., Kalganova, T.: Improving EHW performance introducing a new decomposition strategy. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 439–444 (2004)

    Google Scholar 

  59. Gordon, T., Bentley, P.J.: Towards development in evolvable hardware. In: Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 241–250 (2002)

    Google Scholar 

  60. Bentley, P.J.: Exploring component-based representations? The secret of creativity by evolution. In: Fourth International Conference on Adaptive Computing in Design and Manufacture, pp. 161–172 (2000)

    Google Scholar 

  61. Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm. PhD Thesis, France (1994)

    Google Scholar 

  62. Kitano, H.: Designing neural networks using genetic algorithm with graph generation system. Complex Syst. 4, 461–476 (1990)

    Google Scholar 

  63. Bentley, P.J., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Genetic and Evolutionary Computation Conference (GECCO 99), pp. 35–43 (1999)

    Google Scholar 

  64. Kitano, H.: Building complex systems using development process: an engineering approach. In: Evolvable Systems: From Biology to Hardware, ICES. Lecture Notes in Computer Science, pp. 218–229. Springer (1998)

    Google Scholar 

  65. Siddiqi, A.A., Lucas, S.M.: A comparison of matrix rewriting versus direct encoding for evolving neural networks. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 392–397 (1998)

    Google Scholar 

  66. Eggenberger, P.: Creation of neural networks based on development and evolutionary principles. In: Proceedings of the International Conference on ANNs, pp. 337–342 (1997)

    Google Scholar 

  67. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware behaviours. Towards Evol. Hardw. LNCS 1062–1996, 250–265 (1996)

    Article  Google Scholar 

  68. Ortega, C., Tyrrell, A.M.: A hardware implementation of an embyonic architecture using virtex FPGAs. In: Evolvable Systems: From Biology to Hardware, ICES. Lecture Notes in Computer Science, pp. 155–164 (2000)

    Google Scholar 

  69. Haddow, P.C., Tufte, G., ven Remortel, P.: Shrinking the genotype: L-systems for EHW? In: International Conference on Evolvable Systems: From Biology to Hardware, pp. 128–139 (2001)

    Google Scholar 

  70. Koza, J., Keane, M.A., Streeter, M.J.: The importance of reuse and development in evolvable hardware. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware, pp. 33–42 (2003)

    Google Scholar 

  71. Miller, J.F., Thomson, P.: A developmental method for growing graphs and circuits. In: Proceedings of the 5th International Conference on Evolvable Systems (ICES03), pp. 93–104 (2003)

    Google Scholar 

  72. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular computing machine. J. Natural Comput. 4(4), 387–416 (2005)

    Google Scholar 

  73. Liu, H., Miller, J.F., Tyrrell, A.M.: Intrinsic evolvable hardware implementation of a robust biological development model for digital systems. In: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, pp. 87–92 (2005)

    Google Scholar 

  74. van Remortel, P., Ceuppens, J., Defaweux, A., Lenaerts, T., Manderick, B.: Developmental effects on tunable fitness landscapes. In: Proceedings of the 5th International Conference on Evolvable Systems, ICES2003, pp. 117–128 (2003)

    Google Scholar 

  75. Roggen, D., Federici, D.: Multi-cellular development: is there scalability and robustness to gain? In: Proceedings of Parallel Problem Solving from Nature 8, PPSN2004, pp. 391–400 (2004)

    Google Scholar 

  76. Lehre, P.K., Haddow, P.C.: Developmental mappings and phenotypic complexity. In: Proceedings of the Congress on Evolutionary Computation (CEC2003), pp. 62–68 (2003)

    Google Scholar 

  77. Tufte, G.: Phenotypic developmental and computation resources: scaling in artificial development. Genetic Evol. Comput. Conf. 2008, 859–866 (2008)

    Google Scholar 

  78. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and re-use of modules in Cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 1–21 (2008)

    Article  Google Scholar 

  79. Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in Cartesian genetic programming. In: Proceedings of 7th European Conference on Genetic Programming (EuroGP 2004). Lecture Notes in Computer Science, vol. 3003, pp. 187–197 (2004)

    Google Scholar 

  80. Miller, J.F., Thomson, P.: Aspects of digital evolution: geometry and learning. In: Proceedings of the International Conference on Evolvable Systems: From Biology to Hardware, pp. 25– 35 (1998)

    Google Scholar 

  81. Vazilicek, Z., et al.: On Evolutionary synthesis of linear transforms in FPGA. In: International Conference on Evolvable Systems: From Biology to Hardware 2008. LNCS, vol. 5216, pp. 141–152 (2008)

    Google Scholar 

  82. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: 1st International Conference on Evolvable Systems 1996, Springer, pp. 390–405 (1996)

    Google Scholar 

  83. Lohn, J., Hornby, G.: Evolvable hardware using evolutionary computation to design and optimize hardware systems. IEEE Comput. Intel. Mag. 19–27 (2006)

    Google Scholar 

  84. Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of materials for computation. Int. J. Unconv. Comput. 4(2), 155–194 (2008)

    Google Scholar 

  85. Harding, S.L., Miller, J.F.: Evolution in materio: a tone discriminator in liquid crystal. Congress Evol. Comput. 2004, 1800–1807 (2004)

    Google Scholar 

  86. Harding, S.L., Miller, J.F.: Evolution in Materio: investigating the stability of robot controllers evolved in liquid crystal. In: The International Conference on Evolvable Systems: From Biology to Hardware, pp. 155–164 (2005)

    Google Scholar 

  87. Mahdavi, S.H., Bentley, P.: Evolving motion of robots with muscles. In: Applications of Evolutionary Computing. LNCS 2003, vol. 2611, pp. 149–155 (2003)

    Google Scholar 

  88. Oteam, M.: Switchable glass: a possible medium for evolvable hardware. In: First NASA/ESA Conference on Adaptive Hardware and Systems, pp. 81–87 (2006)

    Google Scholar 

  89. Thompson, A.: Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Distinguished Dissertation Series. Springer (1998)

    Google Scholar 

  90. Garvie, M., Thompson, A.: Evolution of combinational and sequential on-line self diagnosing hardware. In: Proceedings of the 5th NASA/DoD Workshop on Evolvable Hardware, pp. 177–183 (2003)

    Google Scholar 

  91. Lohn, J.D., Larchev,G.V., Demara, R.F.: A genetic representation for evolutionary fault recovery in Virtex FPGAs. In: Proceedings of the 5th International Conference on Evolvable Systems: From Biology to Hardware (ICES), pp. 47–56 (2003)

    Google Scholar 

  92. Zhang, K., Demara, R.F., Sharma, C.A.: Consensus-based evaluation for fault isolation and on-line evolutionary regeneration. In: Proceedings of the 6th International Conference on Evolvable Systems: From Biology to Hardware (ICES05), pp. 12–24 (2005)

    Google Scholar 

  93. Corno, F., Cumani, G., Reorda, M.S., Squillero, G.: Efficient machine-code test-program induction. In: Proceedings of the Congress on Evolutionary Computation (CEC), IEEE, pp. 1486–1491 (2002)

    Google Scholar 

  94. Pecenka, T., Kotasek, Z., Sekanina, L., Strnadel, J.: Automatic discovery of RTL benchmark circuits with predefined testability properties. In: Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 51–58 (2005)

    Google Scholar 

  95. Pecanka, T., Sekanina, L., Kotasek, Z.: Evolution on synthetic RTL benchmark circuits with predefined testability. ACM Trans. Design Auto. Electron. Syst. 13(3), 1–21 (2008)

    Article  Google Scholar 

  96. Kobayashi, K., Moreno, J.M., Madreas, J.: Implementation of a power-aware dynamic fault tolerant mechanism on the Ubichip platform. In: International Conference on Evolvable Systems: From Biology to Hardware, pp. 299–309 (2010)

    Google Scholar 

  97. Djupdal, A., Haddow, P.C.: Evolving efficient redundancy by exploiting the analogue nature of CMOS transistors. In: Fourth International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS), pp. 81–86 (2007)

    Google Scholar 

  98. Keymeulen, D., Zebulum, R.S., Jin, Y., Stoica, A.: Fault-tolerant evolvable hardware using field-programmable transistor arrays. IEEE Trans. Reliab. 49(3), 305–316 (2000)

    Article  Google Scholar 

  99. Greenwood, G., Tyrrell, A.M.: Metamorphic systems: a new model for adaptive systems design. In: Proceedings of the Congress on Evolutionary Computation, pp. 3261–3268 (2010)

    Google Scholar 

  100. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: NASA/DoD Conference on Evolvable Hardware (EH’02), pp. 167–178 (2002)

    Google Scholar 

  101. Sekanina, L.: Evolvable hardware: from applications to implications for the theory of computation. Unconv. Comput. LNCS 5715, 24–36 (2009)

    MathSciNet  Google Scholar 

  102. Stepney, S.: The neglected pillar of material computation. Physica D 237(9), 1157–1164 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline C. Haddow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Haddow, P.C., Tyrrell, A.M. (2018). Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics