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Abstract

Botnets represent a destructive cyber security threat that aim to hide their malicious activities within legitimate
Internet traffic. Part of what makes Botnets so affective is that they often upgrade themselves over time, hence
reacting to improved detection mechanisms. In addition Internet common communication protocols (i.e. HTTP)
are used for the purposes of constructing subversive communication channels. This work employs machine learn-
ing algorithms (genetic programming and decision trees) to detect distinct behaviours in various botnets. That is
to say, botnets mimic legitimate HTTP traffic while actually serving botnet purposes. Specifically, two different
feature sets are employed and analyzed to see how differences between three botnets – Zeus, Conficker and Torpig
– can be distinguished. Specific recommendations are then made regarding the utility of different feature sets and
machine learning algorithm for detecting each type of bonnet.

1 Introduction

Botnets represent a set of compromised hosts under the remote control of a botmaster i.e., a master–slave relation-
ship. They epitomize an approach to putting what would normally be considered legitimate users to malicious
ends. As researchers propose detection mechanisms to identify botnets behaviours, botmasters upgrade their bots
to defeat detection. Given the distributed nature of botnets, there are many avenues by which detection and
evasion can take place. Moreover, given the widespread use of legacy systems, which remain connected to the
Internet, even ‘old’ botnets remain effective. Hence, even after a takedown, botnets make impressive comebacks
[11]. In effect, the recovery of a botnet is potentially caused by the lack of suitable upgrades to legacy systems.
As reported by Fu et al. [17], Conficker (as a relatively older generation botnet compared to Zeus) was detected
on 104 devices at the James A. Haley Veteran’s Hospital in Tampa in 2013. Moreover, McAfee predicted that in
2014 attackers will target systems using the old Windows XP operating system;1 where legacy point of sale and
medical systems frequently use Windows XP.

Many existing approaches to botnet detection rely on network traffic behaviour analysis. Some of these employ
Machine Learning (ML) techniques (i.e. classification and clustering) to automatically generate botnet detection
models. In such systems, the first step is to represent the network traffic in a way that is meaningful for the ML
techniques employed. To this end, different systems assume their own set of features [13, 18, 29, 31]. Some only
use network packet headers (i.e. [13, 18]), while others take advantage of packet payloads (i.e. [29, 31]). Botnets,
on the other hand, employ encryption techniques to avoid detection systems that analyze the communication
information embedded in the packet payload.

In this work, we investigate a machine learning-based botnet detection mechanism that does not use packet
payload information; where this is opaque when encrypted. If successful, we will therefore be able to detect
botnets using encryption. To this end, two ML approaches will be employed (C4.5 decision tree induction [8] and a
form of team based genetic programming (GP) [15]), with the goal of qualifying to what degree assuming different
methods provides better detection coverage. Both algorithms have previously demonstrated to be effective for
distinguishing between encrypted and non-encrypted traffic [9].

The approach adopted in this work is to first construct network traffic and extract the required features (at-
tributes) using multiple tools. Specifically, TCP packets are converted into a flow representation summarizing
various properties for a group of packets associated with the same source / destination IP. However, there are

1Microsoft announced that as of 8 April 2014, Windows XP will no longer be supported. However, Windows XP is still the second most
widely deployed desktop operating system.
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many properties that can be derived to characterize such flows. Depending on the tool used to construct the flow,
the resulting features may be more / less effective at detecting botnet activity. Moreover, it is possible that botnets
are using TCP flags in ways that were not intended for legitimate use [22].

Traffic from three botnets will be used: Conficker, Torpig and Zeus. These botnets have recently been associated
with critical network infrastructure such as medical systems [17] or demonstrated a high infection rate. Our
objectives are three-fold: 1) establish how effective a basis flow based information is for detecting each botnet;
2) to identify the most effective attributes for detecting each botnet, and 3) to make recommendations regarding
signatures appropriate for detecting each botnet.

2 Background

Many systems require supplementary information such as network alert information or several botnet binaries
for the purpose of detection [23, 27, 26]. However, it is possible to detect the botnets without any additional
information beyond that available in network traffic data. Yadav et al., proposed a methodology to detect botnets,
addressing the domain fluxing mechanism employed by the botnets such as Zeus, Conficker and Torpig [30]. To
this end, they analyzed the DNS queries and the entropy of the domain names belonging to such queries. The
proposed system was tested against Conficker botnet, which resulted in a promising detection and false positive
rates. Haddadi et al., on the other hand, designed and developed a Stateful-SBB (a co-evolutionary GP approach)
based technique to detect botnets such as Conficker, employing only the command and control (C&C) domain
names without any DNS group behaviour analysis [19]. However, since the systems proposed by both Yadav et
al. and Haddadi et al. require access to a domain name information (i.e., packet payload information), neither are
effective for botnets with encrypted packet payloads.

Botnet detection systems can be categorized based on the communication protocol they employ, the detection
methods they employ or the type of data they use. Thus, some researchers apply machine learning techniques
for botnet detection purposes using flow-based information (as attributes) [13, 18, 28, 16]. Given that botnets are
increasingly employing encryption techniques to hide their information, then detection techniques that analyze
the packet payload information can no longer be useful (e.g., [29, 31]). Researchers should therefore design
frameworks that can also detect encrypted botnet behaviour. Celik et al., proposed a flow-based botnet C&C
activity detection system using only headers of traffic packets [13]. Specifically, they investigated the effect of
calibration of time-based flow features using machine learning algorithms such as C4.5. Haddadi et al. designed
a botnet detection approach based on botnet traffic analysis [18]. Network traces representing normal and attack
traffic were generated with publicly available domain names of botnet C&C servers and legitimate web servers.
NetFlow based feature extraction (only from packet headers) was used and machine learning algorithms (C4.5
and Naive-Bayes) were then employed to detect the botnets.

3 Methodology

In this work, two ML paradigms are assumed: C4.5 decision tree [8] and the symbolic bid-based (SBB) frame-
work for evolving teams of programs to detect botnet behaviour [15]. Both of these learning algorithms generate
solutions (models) that are in human readable format and therefore enable the analysis of the learned models.

Traffic features (attributes) are expressed as flows using the Softflowd tool [5]. In this case, the features are
derived from packet header information alone. Therefore they can be employed for encrypted traffic classification,
too. Moreover, most of the works in the literature employ a specific set of features for various botnets. However,
in this work, we investigate which features can be useful to detect which type of botnet. To do so, two feature sets,
namely Softflowd set.1 and Softflowd set.2, exported by Softflowd are employed and analyzed. We believe that
this type of feature analysis may lead us to understand the botnet behaviors and their differences in more detail
and in return could enable us to design and develop better botnet detection systems.

We evaluate our system on three botnets, namely Conficker, Torpig and Zeus. The reasons behind this are the
following: most of the aggressive botnets employ encryption methods to hide their sensitive information (such as
Zeus), and most of the systems such as the medical devices that Conficker and Torpig recently target have legacy
operating systems. In doing so, we not only employ our proposed approach in legacy systems or medical devices
but also on any device that runs on a TCP/IP network whether it is encrypted or not. Thus, the coverage is much
greater than targeting a specific operating system or application.
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3.1 Learning Algorithms Employed

The candidate ML algorithms go about constructing classifiers using different credit assignment policies and
representations. However, both approaches share an ability to perform attribute selection is an implicit property
of constructing a classifier. This property will later be used to gain insight to how botnets are communicating
using HTTP.

3.1.1 C4.5 decision tree algorithm

C4.5 is a decision tree algorithm extending the earlier ID3 algorithm developed by Quinlan [8]. Decision trees
are constructed through a process of deterministically splitting the training partition based on the selection of the
attribute maximizing the normalized information gain. Following the addition of each split, an IF–THEN node is
added to the current decision tree. Each branch of the tree partitions the (training) data into subsets, where the
goal is to identify subsets that have the same label. Recursive application of this process incrementally constructs
the decision tree until leaf nodes appear with sufficiently high normalized information gain.

In more detail, we note that the expected information or ‘entropy’ of a class given the exemplars, X from the
training data has the form:

I(X) = −∑
i=1

f (X, i)× log2( f (X, i)) (1)

where

f (X, i) =
|{j ∈ X|(j) := i|

|X| (2)

A candidate split partitioning the data into partitions X1, , Xn has the entropy:

IS(X) = −
n

∑
k=1

|Xk|
|X| × I(Xk) (3)

The resulting information gain is the difference in entropy before and after introducing the split or gain(X) =
I(X)− IS(X). The C4.5 algorithm makes use of additional normalizations to reduce biases towards unequal class
representation [8]. The implementation used in this work takes the form of the WEKA ‘J48’ release.

3.1.2 SBB

The Symbiotic Bid-Based (SBB) algorithm is a form of genetic programming that builds teams of programs co-
operatively while simultaneously identifying useful exemplars to learn from [15]. To do so, three distinct popula-
tions are utilized: a point population, a team population and a learner population. The learner population repre-
sents a set of symbionts (learners), which associate a GP-bidding behaviour with an action. The team population
identify subsets of learners to define team membership under a variable length representation; the implication of
the latter being that team size as well as composition evolves. Finally the point population denotes a subset of
training data exemplars.

Host evaluation takes the following form. Each symbiont (sj) consists of a program, sj.p, and an action (class),
sj.a ∈ {1, ..., C} where C denotes the maximum number of classes. All symbionts a member of the target host, h,
have their program evaluated on the same training exemplar, xk, (from the point population). The symbiont with
the maximum output is identified or sym∗ = argsymj∈h max(sj.p(xk)). It is this symbiont who has ‘won’ the right
to present its corresponding action, sym∗.a as the class label on exemplar xk. Any form of GP could be assumed
for symbiont programs. In this work a linear GP representation is employed [12].

Fitness evaluation is only conducted against the current content of the point population, thus decoupling fitness
evaluation from the cardinality of the entire training partition. The interaction between point and team population
takes the form of Pareto archiving e.g., [14]. Thus, if an individual is not dominated by any other individual, it is
set to be a part of Pareto-front. This relation is used by SBB training algorithm to determine the points and the
teams that survive to the next generation.

At each generation, Pgap new points are generated by sampling the training data while enforcing a heuristic
to ensure all classes see equal representation in the point population. Conversely, Hgap new teams are generated
through variation operators (add, delete, swap and mutate) as applied to the existing teams. New symbiont
programs potentially appear through mutation alone, resulting in a variable size symbiont population. That is to
say, there is no symbiont ‘fitness’ as such, however, should a symbiont not see any host index, it is deleted. After
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fitness evaluation the point and team population content is deterministically ranked with Pgap points and Hgap
teams deleted before a new generation commences.

The above ranking process utilizes Pareto archiving, thus the Pareto non-dominated teams with the highest
ranks are selected. Likewise, the non-dominated points are also preserved. Meanwhile, if a point / team ranking
is required in these non-dominated subsets, a form of competitive fitness sharing is employed in order to introduce
a bias in favour of the points / teams that exhibit non-overlapping behaviour.

Post evolution, all the generated teams in the learning procedure are evaluated on the training data set and
the one with the best performance selected as the ‘champion’ solution. The performance metric assumed for this
purpose takes the form of the class-wise average detection rate (Eqn. (5) Section 4.2.1). The solution team is
a combination of a set of learners with their corresponding GP instructions. In our evaluations, the maximum
program size is set to 48. Thus, each learner in the solution can have maximum 48 instructions including the
non-effective code, called introns. Given that introns were found to count for between 60% to 90% of instructions
in a linear GP [12], we employ intron removal to reduce the complexity of SBB [19]. A more detailed explanation
of the algorithm can be found in [15].

3.2 Data set Generation and Feature Extraction

The Hyper Text Transfer Protocol (HTTP) is one of the most common Internet protocols on account of the popular-
ity of web applications on the Internet. Naturally, botnets have started to use this protocol to hide their malicious
behaviours in the legitimate users’ activities [21]. Zeus, Conficker and Torpig represent three botnets that utilize
HTTP protocol for their communication purposes. These are well-known botnets where Conficker was recently
reported to be seen on medical devices and is also known to be used for collecting banking information. Tor-
pig, on the other hand, is known to be a good representative of how domain fluxing is used on the HTTP to
steal financial and medical information. Finally, Zeus is one of the most destructive botnets reported which came
with a new variant in 2013 after the takedown in 2012. This botnet has been collecting banking data by using
man-in-the-browser keystroke logging and form grabbing but can be configured for any type of identity theft
attack.

A typical advanced botnet forms in five stages: initial infection, secondary infection, connection, malicious C&C
and finally update and maintenance. During stage 1, exploitation techniques are used to find victim vulnerabilities
and infects the target host. Once infected the shell-code is executed on the victim machine to fetch the image of
the bot binary which then installs itself on the machine (stage 2). In the third stage, the bot binary establishes
the C&C channel. This channel is then used by the bot master to send the command in the malicious C&C stage.
Finally, the update and maintenance stage is entered when the botmaster needs to update the bots for one reason
or another.

Since, there is not a significant amount of botnet traffic publically available, we generated traffic. To this end,
we designed an approach to generate the botnet traffic representing the first phase of the botnet communication
which happens during the third stage of botnet lifecycle. In order to do this, we employed publicly available (from
legitimate resources) lists of C&C domain names for Conficker, Torpig and Zeus. We generated the representative
botnet traffic for the first phase of botnet communication by initiating HTTP based communication to the domain
names reported in these publicly available lists. These lists were obtained from ZeusTracker [6], DNS-BH [3],
Twitter API [10], Bonn University [2] websites. As for the representative legitimate traffic, we employed the
publicly available Alexa domain lists which are based on the most popular websites from Alexa Inc. [1]. This
way, both the attack and the normal traffic were generated using the publicly available domain name lists to
avoid any biases in the generated traffic. The aforementioned generated botnet data sets are evaluated against
the few publicly available botnet data sets in [20]. The results of this evaluation indicate that the generated
traffic representing the first phase of a botnet communication is comparable to the real-life botnet traffic data sets.
Moreover, since Zeus botnet leaked in 2011, there are Zeus botnet kits publically available. Therefore, we also run
the Zeus botnet in a controlled environment and captured the network traffic. Furthermore, there are Zeus botnet
traffic captures available at NETRESEC [4] and Snort [7] websites that we also employed in this work.

Once the traffic is collected, we convert the captured packet format traffic into Internet Protocol (IP) traffic
flows using an IP Flow exporter. Flow exporters aggregates the traffic based on 5-tuple information: Source IP
address, Destination IP address, Source port number, Destination port number and Protocol. Then the flow traffic
is summarized in terms of some statistics such as the number of packets per flow, bytes per flow etc.

Cisco Systems introduced NetFlow to collect and aggregate IP traffic information. Given that Cisco is the
leader of IP flow technology, NetFlow became an industry standard and therefore, many network equipments
in the market support it. Thus, in this work, we employ of one of the open source implementations of NetFlow
exporters, namely Softflowd [5].
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Table 1: Employed Softflowd Features

Softflowd set.1 & 2 Softflowd set.2 only
Duration Flag-A
Total number of packets (Pkts) Flag-P
Total number of bytes (Byts) Flag-R
Flows Flag-S
Type of Service (TOS) Flag-F
Bits per second (bps) Flag-U
Packets per second (pps)
Bytes per packet (Bpp)

Table 2: Number of flows in each data set employed

Data Set Training Testing
Legit Botnet Legit Botnet

Zeus-1 (NIMS) 6099 6099 2614 2614

Zeus-2 (NIMS) 611 611 262 262

Zeus
252 252 108 108(NETRESEC)

Zeus (Snort) 100 100 43 43

Conficker (NIMS) 28951 28921 12386 12416

Torpig (NIMS) 1864 1856 794 800

4 Evaluations and Results

As discussed earlier, our goal is first to detect various types of botnets using only flow-based features and second,
to find the features that best describe the behaviour of the botnets employed. To this end, two ML algorithms are
employed on two different feature sets and the solutions analyzed.

4.1 Data Sets

Softflowd is used to provide 14 flow attributes with the default parameters. All numeric attributes could be
employed directly. However, the “flag” attribute is a string based feature, hence requires conversion to a numeric
form prior to use by ML either SBB or C4.5. However, the numeric encoding assumed for this purpose can have
a significant impact on the resulting classifier [25]. Benchmarking will therefore be conducted without the “flag”
attribute (Softflowd set.1) and with (Softflowd set.2).

In the case of Softflowd set.2, six “flag”-based features are defined (Table 1). Each of the six flags are encoded
using two numeric values to indicate when they are set / not set (during a communication). Table 1 summarizes
the attributes that are utilized in this work. A detailed definition of the attributes can be found in Softflowd project
web site [5]. Since the traffic generated/collected for each of the data sets is different, after extracting the flows,
the data sets were then divided into two parts (Training and Testing) based on: (i) a ≈ 30(70)% breakdown for
the testing (training) respectively; and (ii) keeping enough samples of each class in both of the data sets. Table 2

indicates the number of flow samples in each data set. Hereafter, we will refer to the data sets generated in our lab
using the publicly available domain names as Zeus-1 (NIMS), Conficker (NIMS) and Torpig (NIMS) and the Zeus
data set that is created based on the publicly available Zeus botnet kit as Zeus-2 (NIMS). On the other hand, the
other botnet traffic is referred to using the download source. Hence, Zeus (Snort) is the Zeus traffic made public
on the Snort web site [7] and Zeus (NETRESEC) is the botnet traffic provided on the NETRESEC web site [4].

4.2 Performance Metrics

4.2.1 Performance

Typically, classifiers are evaluated using accuracy or classification rate as the fraction of all the correctly labeled
instances. However, given an unbalanced data set or a multi-class data set, these metrics can be misleading. In
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this regard, a classwise detection rate is defined as [24]:

DETc =
TPc

FNc + TPc
(4)

where DETc is the class c detection rate and TPc and FNc are the True-Positive and False-Negative counts for
class c. Finally, to summarize the classwise detection rates of a classifier over all classes the average DR criteria is
defined by [24]:

Score =
1
|C| ∑

c∈C
DETc (5)

4.2.2 Complexity

Classifier complexity can be measured by different criteria such as memory consumption, time or the learned
model by the learning algorithms. In this work, three complexity criteria are utilized: 1) training (computation)
time is employed where this is estimated on a common computing platform. 2) solution complexity, however,
a direct comparison between solutions from different representations is impractical since the underlying units of
measurement are different. Therefore, the tree size for C4.5 and the program size of the solution team for SBB are
considered as our units of measurement. 3) feature complexity reflects the number of unique attributes employed
per solution and potentially gives additional knowledge regarding botnet communication.

4.3 Results

Table 3 and 4 present the classification results of C4.5 and SBB employing two different feature sets, namely
Softflowd set.1 and Softflowd set.2. The first feature set (Softflowd set.1) consists of the default numerical flow
features exported by Softflowd whereas the second feature set (Softflowd set.2) augments the default numerical
flow features with the numerically encoded TCP-Flag attributes (Section 4.1). As shown in Table 3, some of the
FPRs are high when using Softflowd set.1 with C4.5 and SBB. Having said this, both of the classifiers performed
equally well on Zeus-2 (NIMS), Zeus (NETRESEC), Zeus (Snort) and Conficker (NIMS) while using Softflowd
set.1. On the other hand, the performance results on Torpig (NIMS) and Zeus-1 (NIMS) are much lower than
the others when Softflowd set.1 is employed as the feature set. This observation indicates that Torpig and Zeus-1
(NIMS) botnets characteristics cannot be well represented by the features of Softflowd set.1.

The Softflowd set.2 feature set is then employed to investigate if TCP-flags would be beneficial to improve
classification performance for Torpig (NIMS) and Zeus-1 (NIMS) specifically. Table 4 shows the results of these
additional experiments. The results show that the performance of almost all of the botnets (except for Zeus
(NETRESEC)) increased by at least 1% indicating that providing the TCP flags as the features to botnet classifiers
can be beneficial. Surprisingly, Torpig (NIMS) results were improved by more than 30% when traffic is represented
using the Softflowd set.2 feature set, implying that the six flag features of Softflowd set.2, were particularly effective
at characterizing the Torpig botnet. Morever, there appears to be no disadvantage in using the Softflowd set.2
attributes.

Comparing the results over complexity criteria, Table 4, there is not much difference between the solutions
based on feature complexity, i.e. the number of features used from the set given. However, there are significant
differences in terms of time and solution complexities. To this end, C4.5 training time is much less than SBB
training time. SBB, on the other hand, obtained smaller solutions (e.g. 88% smaller for Conficker data set) based
on the solution complexity. This enables SBB to implement the solutions more efficiently. Given that such solutions
need to operate at network flow speeds, simpler solutions are more advantageous, because the detection system
can perform faster with less number of rule/signatures. Although, in some cases, the low complexity is caused by
an under-performing solution, in others, it is a good indicator of a good solution with low complexity.

4.3.1 C4.5 solution analysis

Going beyond analyzing the classification results in terms of performance parameters such as Score, TP and FP
rates, we analyzed the solutions learned by the classifiers. This type of analysis might give of some insights on the
Zeus, Conficker and Torpig botnet behaviours.

To this end, the C4.5 solution (after training using the Softflowd set.2) for the Conficker botnet is a very
complex tree (365 rules). On the other hand, C4.5 solution (after training using Softflowd set.2) for the Torpig
botnet resulted in a very small tree with very high performance. As 65% of the nodes in the decision tree of the
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Table 3: Classification Results Using Softflowd set.1 Feature Set

Data Set Score Legitimate Botnet Complexity
TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-1 (NIMS) 84% 86% 17% 83% 14% 0.26 485 8

Zeus-2 (NIMS) 97% 96% 1% 99% 4% 0.01 29 5

Zeus (NETRESEC) 97% 97% 3% 97% 3% 0.04 43 8

Zeus (Snort) 93% 98% 12% 88% 2% 0 13 4

Conficker (NIMS) 92% 91% 7% 93% 9% 2.71 411 6

Torpig (NIMS) 68% 91% 55% 45% 9% 0.07 49 6

SBB

Zeus-1 (NIMS) 77% 80% 27% 73% 20% 185.56 27 5

Zeus-2 (NIMS) 97% 96% 1% 99% 4% 176.98 42 6

Zeus (NETRESEC) 90% 93% 13% 87% 7% 29.57 6 3

Zeus (Snort) 98% 98% 2% 98% 2% 6.39 53 5

Conficker (NIMS) 90% 89% 9% 91% 11% 178.10 81 7

Torpig (NIMS) 65% 92% 63% 37% 8% 186.12 20 4

Table 4: Classification Results Using Softflowd set.2 Feature Set

Data Set Score Legitimate Botnet Complexity
TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-1 (NIMS) 87% 90% 16% 84% 10% 0.24 457 9

Zeus-2 (NIMS) 97% 97% 3% 97% 3% 0.01 35 9

Zeus (NETRESEC) 96% 97% 6% 94% 3% 0.01 29 8

Zeus (Snort) 98% 97% 1% 99% 3% 0 11 5

Conficker (NIMS) 94% 93% 5% 95% 7% 3.41 365 10

Torpig (NIMS) 99% 99% 1% 99% 1% 0.04 17 5

SBB

Zeus-1 (NIMS) 78% 73% 18% 82% 27% 188.252 51 8

Zeus-2 (NIMS) 97% 94% 0% 100% 6% 161.87 14 6

Zeus (NETRESEC) 90% 87% 7% 93% 13% 36.80 48 8

Zeus (Snort) 100% 100% 0% 100% 0 8.22 41 8

Conficker (NIMS) 91% 90% 9% 91% 10% 192.44 41 9

Torpig (NIMS) 100% 100% 0% 100% 0% 109.23 60 11

torpig botnet utilized the flag-based features (which were not included in the Softflowd set.1), we believe that
Torpig probably employs these flags to tag its packets in a not-routine way. We will investigate this direction in
our future work in more detail.

Additionally, we analyzed C4.5 solutions for the various Zeus botnet data sets employed in this work. Due to
the high complexity of Zeus-1 (NIMS), no distinct rule could be observed rather than the very limited usage of
flag-based features versus the highly used features related to the number of bytes and packets such as “Pkts” and
“bps”. On the other hand, the analysis of the other three Zeus botnet data sets shows that “Pkts” (i.e. the total
number of packets in a flow), “Byts” (i.e. the total number of bytes in a flow), “Flag-S” (indicating the status of TCP
SYN flag in the communication) and “Flag-F” (indicating the status of the TCP FIN flag in the communication)
are widely utilized. To this end, in Zeus (NETRESEC), 15% of the botnet training samples were labeled using
the “Flag-R” (when TCP reset flag is set in the communication) or in Zeus (Snort), 80% of the training data set
is labeled based on “Pkts” and “Byts”, Figure 1. Although the flag-based features are used by C4.5 to build the
classification models for Zeus botnets, comparing the C4.5 results of Softflowd set.1 and set.2 shows that there are
some fluctuations in the performance of the classifier from one Zeus data set to another when flag features are
employed. It seems that these features do help in the identification of Zeus botnet traffic downloaded from the
Snort web site as well as the Zeus-1 traffic. On the other hand, it seems like it does not help the identification
of Zeus botnet traffic downloaded from the NETRESEC site nor the Zeus-2 traffic. However, in both these cases,
the decrease in DR is compensated by the improvement in the FPR. This observation indicate that not all versions
of the Zeus botnet (considering different data sets that may belong to different versions of this botnet) utilize the
TCP flags in their communication.
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Figure 1: Part of the Zeus (Snort) C4.5 decision tree

Figure 2: SBB- a sample learner instruction set with botnet label on Torpig– Softflowd set.2 set

4.3.2 SBB solution Analysis

In SBB, the champion team on the training dataset is selected as the final solution, which is then applied to the
test dataset for performance evaluation. Under SBB the champion classifier takes the form of a team of programs.
Each program is only associated with a single class label. This provides a level of task decomposition that is not
possible under C4.5.

Figure 2 shows an example of a Torpig class-1 learner’s instruction set which is part of the SBB’s solution for
the Torpig botnet i.e., a subset of the SBB solution shown in Table 4. The program’s instruction count is reduced
to 2 from 17 by pruning (cf., intron removal). The pruned instruction set indicates that the learner multiplies the
“Bpp” (i.e. Bytes per packet) value by 0.54 if the “Flag-U” (indicating the urgent TCP flag) is set and returns “Bpp”
value otherwise. Knowing that if this learner wins the bid over a data sample, it labels the sample as botnet, this
learner’s solution implies that samples with the set “Flag-U” look more suspicious and labeled as a botnet.

Using flag bits in malware communication has already been suspected by other researches [22]. Our observa-
tion supports this hypothesis for Torpig botnet on the data sets we analyzed. Overall SBB used the “Pkts” and
“bps” (stands for bits per seconds) features the most for all of the botnets while for the Torpig botnet, it also
utilized the “Flag-S” and “Flag-U” frequently. When SBB solutions using Softflowd set.1 and Softflowd set.2 are
compared against each other, we observe similar trends to the behaviour of the C4.5 classifier. There are some
fluctuations in the performance of the SBB classifier from one Zeus data set to another when flag features are
employed. SBB’s solutions again indicate that the versions of Zeus botnet seem to be different from one Zeus traf-
fic file to another. For SBB flag features improve the solution performance, especially for Zeus Snort and Torpig
botnets. In most cases it also introduces an improvement in the false alarm rates for SBB.

4.4 Discussion

In summary, Softflowd set.2 feature set performed better in terms of higher Score and lower FPR. Analysis of both
the SBB and the C4.5 decision tree could help us to recognize the most important features of the attribute set and
also the direct/indirect relationships between these features. Table 5 shows all of the features employed by each
of the classifiers on each of the botnet data sets. As the table indicates, SBB and C4.5 are using different feature
sets from one botnet to another. This implies that the classifiers are learning different behaviours. There are some
obvious similarities/differences between the features employed by the classifiers such as: (i) almost all of the
classifiers used “Pkts” and “bps”. This shows the importance of these features in botnet detection, (ii) C4.5 did not
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Table 5: Feature Matrix

Zeus-1 Zeus-2 Zeus Zeus Conficker Torpig
(NIMS) (NIMS) (NETRESEC) (Snort) (NETRESEC) (NIMS)

Feature C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB
Duration - - - - -
Packets - -
Bytes - - - -
Flows - - - - - - - -
ToS - - - - - - -
bps -
pps - - - -
Bpp - - - -
Flag-A - - - -
Flag-P - - - - - - - -
Flag-R - - - - - - -
Flag-S - - - -
Flag-F - - - - -
Flag-U - - - - - - - - -

use the “ToS” and “Flows” features at all while SBB used at least one of them in all types of botnet classifications,
(iii) the features employed by C4.5 and SBB for Zeus (Snort) classification are almost complementary while SBB’s
selected feature set could obtain a 100% detection rate with a zero FPR, and (iv) in the Zeus-1 (NIMS) data set
where the performance is lower than expected, the selected features by the two classifiers do not overlap much.
This raises the question of whether the performance would increase by finding a solution that combines these two
different solutions with complimentary feature sets.

Overall, our results and analysis presented in this work indicate that SBB and C4.5 learning algorithms focus on
different properties of the traffic. This in return enables them to recognize different botnet behaviours. However,
we think that SBB’s low solution complexity makes it a better classifier when implementing a real-time botnet
detection system. Finally, the two employed classifiers could detect most of the botnets with high performance
while having higher than desired FPR for the Conficker and Zeus-1 botnets. Having said this, in our evaluations
using a different feature set with TCP flags did help to decrease the FPR from Softflowd set.1 to Softflowd set.2 for
these two botnet data sets. This indicates that a more detailed feature set analysis is necessary for these botnets.
Moreover, given that different classifiers seems to work better for different botnets, i.e. different behaviours, an
ensemble learning algorithm might be beneficial for future research.

5 Conclusions

A botnet is a set of compromised hosts that are under the remote control of a botmaster. Due to high infection
rate and vast range of malicious activities, botnets are considered as one of the main threats against the cyber
security. Since botmasters can update any phase of the botnet lifecycle at any time to defeat the detection systems,
detection systems also require automatic and intelligent mechanisms to cope with the updates. In this work, we
employ two machine learning algorithms, namely C4.5 and SBB, to generate botnet detection models for Zeus
(different versions), Conficker and Torpig botnets automatically. Moreover, we represented the traffic using a flow
exporter, nnamely Softflowd, to convert packets to traffic flows and extract their features. To this end, two feature
sets (Softflowd set.1 and Softflowd set.2) both exported by Softflowd, are employed which enable us in revealing
some of the characteristics of the aforementioned botnets behaviour.

Our first objective in this work was to investigate the possibility of detecting the aforementioned botnets using
flow based features. As the results indicate, both of the classifiers performed very well using the Softflowd set.2
feature set and obtained the Score (classwise detection rate) of up to 100% for some of the botnets. This confirms
the accomplishment of our first objective. To fulfill our second and third objectives which were finding the feature
sets that best describe the botnets and return a solution that is suitable for a signature-based botnet detection
system, the generated solutions and the features used are analyzed. The analysis determined some of the botnet
characteristics. For example, given that Torpig detection models by both of the classifiers did not perform well
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using the Softflowd set.1 but did perform out-standing (30% increase in detection rate) using the Softflowd set.2
feature set, we believe that Torpig botnet employs the TCP flags in an abnormal way. However, we did not notice
such behaviour in the Zeus or Conficker botnet solutions, which implies that these botnets do not employ such
flags. Having said this, almost in all of our experiments SBB performed better than C4.5 in terms of the solution
complexity.

Future work will explore what other flow features can be employed in botnet behavior analysis and their effects
in terms of lowering the false alarm rates.
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