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Procedurally generated images and textures have beenwidely explored in evolutionary art. One active research direction in the field
is the discovery of suitable heuristics for measuring perceived characteristics of evolved images. This is important in order to help
influence the nature of evolved images and thereby evolve more meaningful and pleasing art. In this regard, particular challenges
exist for quantifying aspects of style and shape. In an attempt to bridge the divide between computer vision and cognitive perception,
we propose the use of measures related to image spatial frequencies. Based on existing research that uses power spectral density of
spatial frequencies as an effective metric for image classification and retrieval, we posit that Fourier decomposition can be effective
for guiding image evolution. We refine fitness measures based on Fourier analysis and spatial frequency and apply them within
a genetic programming environment for image synthesis. We implement fitness strategies using 2D Fourier power spectra and
phase, with the goal of evolving images that share spectral properties of supplied target images. Adaptations and extensions of the
fitness strategies are considered for their utility in art systems. Experiments were conducted using a variety of greyscale and colour
target images, spatial fitness criteria, and procedural texture languages. Results were promising, in that some target images were
trivially evolved, while others were more challenging to characterize.We also observed that some evolved images which we found
discordant and “uncomfortable” show a previously identified spectral phenomenon. Future research should further investigate this
result, as it could extend the use of 2D power spectra in fitness evaluations to promote new aesthetic properties.

1. Introduction

1.1. Overview of Problem. Digital art brings to mind many
wide and varying concepts and examples, with many digitally
produced, original pieces finding their own acclaim [1, 2]. It
is trivial for software to precisely replicate a digital image.
On the other hand, we find it difficult to autonomously pro-
duce new images which share similar visual characteristics
with images provided. Forming correct abstractions between
digital data and their visual interpretations is an ongoing
challenge covering many fields of study [3–6].

We focus on procedural textures, which are images
generatedwithmathematical formulae and/or algorithms [7].
The terms “images” and “textures” are used interchangeably.
Texture synthesis shows its use in applications ranging from
interactive art systems [8], adaptive image filters [9], camou-
flage generation [10], and game asset generation [11] amongst
others.

The ability to form minor alterations in these procedures
allows us to easily make changes in a structured manner.
However, it may not always be clear a priori how these
changes will come to manifest. By combining together parts
between the better performing generated images, we may
gradually refine them and allow them to exceed the quality
of any single prior image. With this process of evolutionary
refinement, we are able to exploremany similar images which
can feature novel and creative variation. A technique to
capture and replicate spatial properties would be of great
benefit for improving these existing systems or expanding to
new applications.

Evolutionary algorithms (EA)—and notably genetic pro-
gramming (GP)—are able to nonexhaustively explore the
space of possible images with little explicit understanding of
how to affect high-level image changes [12–15]. Perhaps the
most critical component in all EAs is the fitness measure,
defining themetaheuristicwhich guides the search to optimal
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solutions. With image synthesis, a bridge is needed to cross
the divide from computer vision, information theory, and
computational intelligence attributes we can evaluate from
our rendering, to the psychological and cognitive under-
standings of perception.

With evo-art, we are often attempting to recreate charac-
teristics of a target image, and not to precisely duplicate it.The
idea of evolving near-matches, or “variations on a theme”, has
been a goal in many previous applications [16–18]. Using an
evolutionary approach, exact matches are possible for simple
images, but become rather difficult for more complex targets.

In investigating the existing measures that can be com-
puted from a rendered image, measures related to power
spectral density appear to be promising. Estimates of power
spectral density are based on the discrete Fourier transform
of a signal, a measure of power across each component
frequency. For 2D applications, a radial average of the 2D
DFT coefficients with common polar distance (same spatial
frequency) can be obtained for a more robust, abstract mea-
sure. A number of papers on image analysis/retrieval [4, 5, 19,
20] have been foundwhich use this tomore effectively classify
images based on computationally tricky but perceptively
obvious attributes (i.e., Eastern versus Western art; Portrait
versus Sketch versus Landscape). Despite this, little can be
found relating to the use of power spectra for evolutionary
art.

Power spectral density also plays a key role in spatial fre-
quency theory. The theory purports that a human or animal
visual cortex operates through coded signals in relation to
observed spatial frequencies (in contrast to edge and line
detection which can be prominently found in wavelets) [21–
25]. An interesting adaptation of this research enables the
identification of uncomfortable images through contrast and
frequency analysis [3]. Power spectra of an image’s luminance
were investigated, and certain frequency octaves were found
to provide higher ratings of perceptual discomfort. We find
numerous motivations toward the exploration of power
spectral density as an art fitness measure, and promise in
modelling perceptual spatial characteristics.

1.2. Goals. With spatial frequency being one of the more
human-intuitive measures for shape and composition, and
with the amount of existing research linking the measure to
human perception, this paper shows its potential as a tool
for guiding evolutionary textures. Our goal is to explore the
use of these measures in evolutionary texture synthesis and
evaluate their utility in production of digital evolutionary art.
We consider our models of shape from a target image for
use as a guide when evolving new images. It is hoped that by
capturing and reproducing key spatial attributes of the image,
we can see novel images with similar properties emerge in a
creative exploration.

Our research presents a pair of milestones. Using genetic
programming, we produce grayscale textures and explore
the ability of Fourier-based fitness measures to replicate
spatial properties of target images. The focus on grayscale
images simplifies the texture formulae evolved, and permits
experiments to concentrate on shape information. We then

explore the use of these measures for colour image synthesis.
Most evo-art systems use colour, and so it is important to
examine the applicability of our Fourier analyses to the colour
domain. Doing so helps establish the utility of Fourier shape
analysis as a tool for serious applications in evolutionary art.

1.3. Organization of Paper. The paper is organized as follows.
Section 2 reviews the Fourier transform and its application
toward 2D images. Section 3 discusses some of the important
research literature of relevance to this paper, with a focus
on evolutionary textures, and application of power spectral
density measures. We outline the details of our experimental
system in Section 4, and summarize the key findings of our
initial experiments in Section 5. Later work with adaptations
toward evolutionary art is discussed in Section 6. Conclusions
are given in Section 7.

The paper presumes familiarity with genetic program-
ming [14]. Further details of this research are in [26].

2. Background

2.1. Fourier Transform. The following briefly outlines some
of the main technical details of Fourier analyses. A complete
introduction is beyond the scope of this paper. We refer the
reader to detailed discussions in [27–29].

Fourier analysis is a well-known tool which sees substan-
tial use in signal processing applications [28]. The Fourier
transform converts a signal with samples based on amplitude
at points in time, to a representation which shows the
power and phase of the signal’s constituent frequencies. The
Fourier transform translates a signal into a sum of sinusoids,
where the frequency of each periodic term relates to a
component frequency found in the signal.The result of such a
decomposition is typically encoded as a complex number for
each frequency (see (1) to (3)).

𝑓 (𝑡) = ∞∑
�푛=−∞

𝐶�푛𝑒�푖�푛�휔�푡 (1)

𝐶�푛 = 1𝑇 ∫
�푇

0
𝑓 (𝑡) 𝑒−�푖�푛�휔�푡𝑑𝑡 (2)

= 12 (𝑎�푛 − 𝑖𝑏�푛) (3)

The real part of the coefficient (𝑎�푛) scales each term and
may maintain its definition as the amplitude of the particular
frequency.The additional imaginary component of the coeffi-
cient (𝑏�푛) can be used in conjunction with the real component
to recover the phase of the frequency, as declared through the
complex phase angle.

Adapting the Fourier transform to a 2D image can be
done by applying the discrete Fourier transform (DFT) on
each index of the first dimension, and then again along each
row of the results. This gives us the amplitude and phase
of how each frequency contributes to the total 2D signal.
In applications with images, we often see most of the high-
energy coefficients appear around the central positions and
main axes of the shifted DFT [29], as seen in Figure 1.



Complexity 3

(a) Source image (Brodatz #4) (b) 2D PSD, normalized (c) 2D PSD, shifted + normalized
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Figure 1: Power spectra pipeline.The source image in subfigure (a), undergoing 2D Fourier analysis, and its power spectral estimation shown
in subfigure (b). As it provides for more interpretable charting and easier radial estimation, we “center” the coefficients by shifting them to
diagonally opposite quadrants as seen in subfigure (c). We can then reduce dimensionality and produce useful aggregates by using radial
averaging measures (d) and subsequent regressions (e).

Where the amplitude of an audio signal may have an intuitive
correspondence with sound wave pressure, amplitudes for
a 2D image will be a measured in relation to their pixel
intensity, or as is typically the case in colour images, the
intensity across a particular colour channel.

While the Fourier transform can scale to higher dimen-
sional signals, the use of DFT for colour textures is still
potentially problematic [30]. In consideration of applying
the DFT to colour channels in isolation, we should note
that spatial properties are not necessarily clear from average
intensity nor from inspection of individual colour channels.
The related quaternion Fourier transform [31] might assist in
this matter.

2.1.1. Power Spectral Density. The power spectral density
(PSD), or power spectrum, is a measure of the power across
the frequency domain of a signal. We can acquire an estimate
of the PSD 𝑃�푗 at frequency 𝑗, by multiplying the Fourier

terms 𝐶�푗 by their complex conjugate 𝐶�푗 and scaling by the
number of samples 𝑛 to produce a periodogram [32]. Due to
the simple, real-valued coefficients of our image signal, we
can simplify this to normalizing and squaring the real part
of the DFT, as in (4).

𝑃�푗 = (𝐶�푗𝐶�푗𝑛2 ) (4)

= (
󵄨󵄨󵄨󵄨󵄨𝐶�푗󵄨󵄨󵄨󵄨󵄨𝑛 )

2

(5)

For a 2D signal, we will be interested in the radial average
of this measure, requiring us to shift the quadrants of our
estimate, and then interpreting the average in a polar coor-
dinate system. An overview of the steps in our measurement
pipeline is shown in Figure 1. Between the DFT and the radial
averaging methods, the power spectral estimate measure has
the benefit of being approximately equal across rotation, and
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Figure 2: Power spectra interpretation and reconstruction. Rows from top to bottom: source image, shifted, and normalized constituent FFT
power coefficients, radially averaged power spectra, and radially averaged power spectra plotted in a log-log scale (log2) with linear regression.

preserving shape across resolution. This measure relates to
the contrast of luminance intensity, and we may also see
a relation with image complexity. A further abstraction is
to take a linear regression of the averaged power spectral
density. While a display of the 2D power coefficients may
more accurately represent the true power spectral density of
a 2D signal, we find in some of the literature (i.e., [4, 20]) that
“power spectral density” and related terms often refer to the
radial average or similar abstractions.

Figure 2 illustrates various representations of an image
with a single component frequency. Shifting from the first to
second column of the figure, we can see that lower frequency
(those which have larger periods/cycles over greater areas
of the image) is contained at the center of the shifted FFT
power coefficient display. The first column shows a wave
whose period is half of the canvas (input signal), and so the
charted radially averaged power spectrum shows high power
at a frequency of 2. As we move to the outer edge of the
power coefficient display, we find the powers of increasing

frequency ranges being displayed. The fifth column faintly
shows a suitable example of minor aliasing artefacts having
both lower power and higher frequency as we move from the
key frequencies toward the image edges. We can also observe
that the orientation of the wave-like pattern in the top image
corresponds to the angle (from center) of the coefficient
responsible for the effect, while still maintaining a distance
(from center) corresponding to the actual frequency. Observ-
ing the subsequently charted radially averaged power spectra
plots, we can see that all have a high power at frequency 4.
Finally, we can see the multiplicative combination of the two
component frequencies in the last column, as a grid begins
to form with both horizontal and vertical frequency, again
reflected in the power coefficient display.The final row of the
figure displays the radially averaged power spectrum in a log-
log scale, to assist in showing the much larger 0�푡ℎ coefficient,
and the more subtle changes in the lower-powered high
frequencies. However, in simple images, there may not always
be power at every frequency. A problematic consequence of
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this is that these frequencies cannot be charted in a log-log
scale, and may affect the results of any regression, as is visible
in the figure.

3. Literature Review

Although evolutionary algorithms have been applied tomany
forms of art over the years, we focus on literature involving
the targeted evolution of procedural textures.

3.1. Spatial Measures. The need for measures permitting
comparison of spatial properties tends to get resolved
through one of two main concepts. Common approaches
either extracted key features (and their positions) from a
source or target image, or performed some type of frequency
analysis. Many early attempts to capture spatial aspects for
image database systems relied on basic algebraic and statisti-
cal measurements across intensity. The QBIC Project (which
explored image querying through use of colour, texture,
and shape measures) proposed spatial measures derived
from capturing intensity areas, circularity, eccentricity, axis
orientation, and algebraic central moment information [6].

A notable paper pertaining to image retrieval was pub-
lished by Jacobs et al. [33], in which the proposed algorithm
was capable of efficiently extracting the key coefficients
from wavelet analysis. Extracted coefficients are limited to
the 𝐾 greatest absolute values, before being quantized and
compared for mismatch. While the algorithm may have been
intended for a retrieval system, the comparative abilities of
themeasure proved effective in guiding evolutionary systems.
In [33], the set of coefficients were “truncated” by zeroing all
but the top 𝐾 greatest absolute value coefficients. Following
this was a “quantization”, setting all nonzero components
into their sign of {−1, +1}. The total error between images
could then be found by summing of differences between each
truncated, quantized coefficient position. This quantization
scheme was found to be quite beneficial; despite the resulting
loss of precision, as “the mere presence or absence of such
features appears to have more discriminatory power for
image querying than the features’ precise magnitudes” [33].

3.2. Evolutionary Textures. The use of evolutionary algo-
rithms for texture synthesis was pioneered by Sims [13],
and used interactive user guidance, which enabled a user to
gradually manipulate sets of graphical shaders to produce
images fitting a desired aesthetic.

An early attempt in the transition to unsupervised
approaches came from Baluja et al. [15]. Simple topologies
of artificial neural networks were used in an attempt to learn
a user’s aesthetic preferences by training against user ratings
and groups of raw pixel values. This approach saw some
shortcomings, but highlighted the need for abstracted image
measures to be used as guides. The idea of learning aesthetic
preferences through neural networks has since been revisited
with the inclusion ofmultiple abstracted imagemeasureswith
some reported success [34].

A critical successor to Sims’ work was the Genshade
system by Ibrahim [16]. Genshade introduced unsupervised,

automatic fitness evaluation of images as generated by
evolved Renderman shaders. Various image analyses were
compared between the evolved images and a provided target
image.Thesemeasureswere used in lieu of user input to guide
the evolution of textures toward those showing similar visual
characteristics of the targeted image.

The Gentropy system by Wiens and Ross [17] expanded
upon the unsupervised approach of Genshade by providing
additional image analysis measures, and use of a simple pro-
cedural texture language, in contrast to Genshade’s evolution
of high-level Renderman shaders. A suite of image analyses
were performed during fitness evaluation, which benefited
with the use of island-model parallelism for maintaining
diversity and accelerating the quality of evolved results.
Gentropy was later enhanced in [35] by replacing island-
model evolution with multiobjective evaluation, by treating
the different image analysis tests as separate objectives for
Pareto ranking.

Genshade [16] and Gentropy [17] employ the tech-
niques from [33], where spatial features were compared
via these extracted coefficients from wavelet measures.
The technique appears to have been successfully adapted
for use with texture synthesis. Results of wavelet analyses
in both systems were positive, although a comprehensive
investigation regarding the extent of their abilities was not
undertaken.

More recently, there have been developments in using
aesthetic modelling to guide image evolution [36–39]. Aes-
thetic modelling is a pioneering frontier for art and image
analyses, and proposed models are not yet mature enough to
be comprehensive theories of artistic beauty and aesthetics.
Nevertheless, these efforts attempt to use higher-level image
analyses as guides for evolution, which contrasts to the lower-
level image processing used by systems like Genshade and
Gentropy.

Recent work by Tanjil [40] uses ideas from deep learning
to guide evolutionary image synthesis. A heuristic is pro-
posed that enables activation nodes of a deep convolution
neural network (trained for classification) to be identified
for use by fitness evaluation. Using a set of images sharing
desired visual features, the heuristic determines the activation
nodes of the network most likely to be activated by the
visual characteristics of interest. These nodes are then used as
guides by fitness. A number of experiments showed that the
genetic programming systemwas able to evolve imageswhich
shared desired properties of target images, such as shape
and colour. Tanjil concludes that, as deep learning networks
become better understood, they may be even more effectively
exploited by evo-art systems.

While these and other systems attempt to capture spatial
attributes, that was only a part of their purpose as a more
generic art system.There was no extensive evaluation of their
spatial guidance capabilities, and the use of Fourier analysis in
texture synthesis or aesthetic modelling has been left largely
unexplored.

Further examples and surveys of evolutionary art can be
found in [1, 2], and contemporary research is published at the
annual EvoMusArt conference (http://www.evostar.org/).

http://www.evostar.org/
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3.3. Limitations. Although the use of wavelet-based analysis
showed effectiveness, alternative approaches are possible.
One considered problem with a frequency analysis approach
was in the inability to effectively handle images with multiple
colour channels [30]. One potential solution to this was pro-
posed through the use of the quaternion Fourier transform
[31], which does not have a direct equivalence with wavelet
analysis.

A criticism common to all types of frequency analysis
remains in the fact that a perfect solution would exactly
replicate the target image [41]. In evolutionary art, we never
desire to make a reproduction of a given image. Rather, we
only want to capture key characteristics of an image, and
explore the landscape of possible solutions which are in some
way similar. While fitness evaluations could be adjusted to
prefer some amount of error, we found that there is often
still sufficient challenge presented to our system outside of toy
problems, permitting for novel solutions to emerge while we
pursue higher numerical accuracy.

4. System Design

There are two key components which form the core of our
experimental system. The first component is a library which
could process an image to provide the power spectral density
(PSD), regression, and other FFT related measures. The
second, and largest, component is the evolutionary system
which used genetic programming to evolve and synthesize
procedural textures.

4.1. Power Spectral Density Measures. A number of PSD-
related calculationswere required for this research. For exam-
ple, the 2D power coefficient matrices, the radially averaged
power spectral density, and its linear regressions. MATLAB
[42] (release 2016a) was used to assist with computation of
power spectral density measures. MATLAB allowed us to
generate native C code, which was integrated into the Java-
based evolutionary system (Section 4.2) through use of the
Java Native Interface (or commonly, JNI) framework.

For the experiments using regression measures of the
radially averaged power spectral density, the regression was
obtained first by converting the power measures to a log-
log scaling, to better match the conventional practices seen
in the literature. Charting of PSD throughout this paper
uses log10 scaling to remain consistent with other charted
scales, though evaluations used for the various applicable
experiments have used a log�푒 scaling. For a linear regression,
the slope measures should remain identical across log bases,
though the offset will vary. Regressions were found by using
MATLAB’s polyfit function, which itself performs a least-
squares error fit. While uncommon for natural images, some
abstract images produced by our system were found to have
no power at certain frequencies. To lessen the biased effects of
these values from the regression, any infinite or invalid power
measures were removed from the set of points considered
during the regression.

We decided to forgo any image windowing functions
prior to sending the image data through the DFT and PSD

measure pipelines.The use of a windowing function has been
advised for nonregular signals, such as typical nonrepeating
images, to reduce heavy artefacts in the decomposition.
Specific window functions and parameters would be depen-
dent on the expected signal. However, initial trials using
windowing did not significantly impact our results, and so
windowing was henceforth ignored.

In summary, tests found that our library produced results
closely matching existing literature, and specifically those
from Graham et al. [20].

4.2. Genetic Programming Engine. The evolutionary art sys-
tem we used to generate textures is a custom extension of
the ECJ system (version 23), a Java-based system for genetic
programming and other techniques [43].

We used a genetic programming tree representation to
evolve symbolic expressions for procedural textures. Much
of our early experimentation focused on spatial attributes of
an image. We found that grayscale textures were not only
adequate, but were indeed preferable over the artistic colour
texture renderings. To suitably represent this, GP individuals
needed only a single tree to evaluate luminosity or intensity.
Later experimentation expanded to colour textures, and we
consequently expanded our individuals to hold 3 trees; one
tree was used for each colour channel in the RGB colour-
space.

The wall-clock run times for the system configured for
basic grayscale textures were found to be approximately 45
minutes per run, when executed using a single thread of
an AMD FX-8350 processor. In this configuration, multiple
runs were evaluated concurrently. With the parallel nature
of the system, we could see substantial reductions in single-
run execution time if reconfigured to use multiple threads.
The introduction of noise operators and RGB colour chan-
nels each increased runtime by factors of approximately 6
and 3, respectively. Coloured textures using noise language
operators required an approximate average of 12 hours for
completion of a run.

4.2.1. GP Parameters. Table 1 lists the GP parameters nor-
mally used in our experiments. Although most are standard
in the literature [14], a few require explanation. Three vari-
ants of ephemeral random constants (ERCs) were included
corresponding to orders of magnitude, and each of the ERC
nodes are instantiated to random values within their respec-
tive ranges. The introduction of ephemeral value mutation
allowed for the randomized constants to be slightly altered
by 1%, which permitted for finer adjustments to the rendered
image. The ERC mutation operator had been included at a
probability of 10% and was responsible for a proportional
decrease in likelihood to execute the crossover operator. So as
to remove the possibility of losing the best found individual in
a generation, we allowed elitism for the single best individual
of a generation to be retained unaltered in the subsequent
generation.

The termination criteria for a run were the completion
of 100 generations. While “perfect” individuals had been
produced for some simple compositional targets, this was
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Table 1: Genetic programming engine parameters overview.

Parameter Value
Runs 30
Generations 100
Population Size 1000
Elitism 1

Sum-of-Ranks Fitness
Diversity Penalty, Initial 10
Diversity Penalty, Increment 10

Generation 0
Builder Ramped Half & Half (see [14])
New Node Depth 2 . . . 6
Grow Probability 50%

Reproductive Operators
Crossover 70%
Mutation 20%
ERC Mutation 10%
Crossover Max Depth 17
Mutation Max Depth 17
Mutation New Node Depth 5
Selection Method Tournament
Tournament Size 3

otherwise a difficult problem, where finding such a “perfect”
solution was not typically expected.

4.2.2. Texture Languages. The GP language is in Table 2.
Standard mathematical operators were used, as well as spe-
cialized texture generating primitives. Optimized Perlin and
simplex noise generators have been borrowed from [44, 45]
respectively. The fractalsum, turbulence, and marble noises
have been based on the Perlin noise implementation as
originally conceived. For these noise variants, coordinate
scaling had been used to ensure noise is applied across the[−1, 1] rendering window. Initial experiments in Section 5
excluded the spatial and noise operators.

4.3. Multiobjective Evaluation. Some problems permit us to
evaluate solutions with a single measurement, for example,
the overall error in a regression problem. However, there
are problems where multiple criteria are necessary. These
metrics can be independent, or can interact in complex,
nonlinear ways. Reconciling such factors into a single metric
score, for example, by a weighted sum, can be challenging
to do effectively, and detrimental to search. The field of
multiobjective optimization is concerned with problems such
as these, in whichmultiple objectives are involved in defining
the search criteria for a problem [46].

A popular scheme for scoring multiobjective problem
spaces is Pareto ranking [47]. With Pareto, individuals are
scored in relation to the others in the population. Unfortu-
nately, Pareto ranking is not suitable for problems involving
more than 3 objectives.

Our system uses the sum of ranks (or average rank)
strategy, which was devised for multiobjective problems

involving a high number of objectives (termed “many-
objective” problems) [48, 49]. Sum of ranks encourages
solutions to performwell across all considered objectives. It is
also effective for problemshaving a large number of objectives
(unlike Pareto ranking). The sum of ranks approach has been
found effective in evolutionary art applications [35, 39].

Table 3 illustrates the calculations for sum of ranks. After
obtaining the raw measures (𝑂�푖) for each fitness objective,
each measurement is separately ranked (𝑅�푖) relative to other
individuals in the population.The rank scores are normalized
(𝑁�푖) by dividing each 𝑅�푖 by the maximum rank value for
that objective. The normalized ranks are summed for each
individual, resulting in a fitness measure. The sum of ranks
score denotes an individual’s relative performance of its
objectives relative to the population at large.The final column
Rank shows the relative fitness quality of each individual in
the population. For example, individual #1 has the best score
in each objective relative to the rest of the population, and
thus has the best (lowest) sum of ranks. Individual #3 has
an extremely poor score of 99 for objective 2. However, this
raw score is converted to a rank of 5, and therefore does not
unduly penalize the final ranking.

By using sum of ranks in our system, we are able to
maintain a consistent diversity penalty scheme across all
experiments. For individuals whose ranks in all objectives
are identical, the second individual would have a penalty
of 10 added to each of their ranks. Additional individuals
found with the same scores as the first would incrementally
receive an additional penalty of 10 rank points (the fourth
common individual would receive a total of +30, and so on).
These penalties are used to maintain genetic diversity in the
population by penalizing identical results.

5. 2D Fourier Fitness Strategies

5.1. Simple Regression and Error. Wefirst considered the error
between FFT decomposition from evolved individuals and
its target at a high level of abstraction. Beginning with the
technique common in the literature (e.g., [4]), we considered
a fitness scheme which measured the difference between
slopes found through linear regression.

Measures of linearly regressed, radially averaged power
spectra displayed some effectiveness previously with classifi-
cation and retrieval. Consequently, evaluating fitness through
this measure seemed like a promising start. Previous liter-
ature showed an improved ability to distinguish genre by
incorporating this measure, and it was hoped that some
spatial property capable of distinguishing these genres might
emerge in our evolutionary synthesis.

In selection of a target set (Figure 3), we focused our
efforts on aspects of spatial composition similarity. Though
visually simple, the target images included basic composi-
tions which might be used for evolutionary art.

Some concerns arose early into the process of construct-
ing the linear regression module for our GP system. While
much of the earlier explored work focused on evaluating
natural images or complex art pieces, little investigation had
been done into simple synthesized textures. In the process of
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Table 2: Genetic programming engine base language overview.

Category Arity Display Description
Variables 0 X, Y Texel rendering coordinates (−1 ≤ 𝑋, 𝑌 ≤ 1)

Rho Polar coordinate; distance from {0, 0}
Phi Polar coordinate; angle about {0, 0} to𝑋 axis

Ephemerals 0 E[1] Ephemeral in range [0, 1]
E[10] Ephemeral in range [0, 10]
E[100] Ephemeral in range [0, 100]

Math 1 - Negation / sign change
abs Absolute value / magnitude

floor Floor; lesser or equal whole integer
ceil Ceiling; greater or equal whole integer

sin, cos, tan Periodic, trigonometric functions
sqrt Square root
exp 𝑒 (Euler’s number) raised to the operand

pow2, pow3 The operand raised to a fixed power of 2 or 3
log E, log 10 Natural log, and log of base 10

2 +, -, * Addition, subtraction, multiplication
/ Safe division; a zero divisor returns zero

max, min, avg The greater, lesser, or mean of two operands
pow arg[0] raised to arg[1]

3 lerp Linear interpolation between arg[0] and arg[1]
based on normalized (clamped to [0, 1]) arg[2]

Conditionals 4 IfGT If arg[0] > arg[1] then arg[2], else arg[3]
Spatial 1 Circle Gives 1.0 where 𝑅ℎ𝑜 <= arg[0], otherwise 0.0

3 Shift arg[0] evaluated in rendering position shifted by arg[1] horizontally, and arg[2] vertically
Tile arg[0] evaluated in rendering position scaled and offset for a arg[1] × arg[2] window tiling

Noise 0 Simplex † Simplex noise generator
Marble † Marble noise (see [7])

1 FractalSum † FractalSum/Smooth noise
Turbulence † Turbulence noise

†All noise functions include a variant symmetric about the X and Y axis. These variants would have a Sym prefix and function otherwise identical to the base
function.

Table 3: Example of sum of ranks for a 3-objective problem. Lower objective scores and ranks are preferred. The maximum rank for each
objective 𝑅�푖 used for normalization is in boldface.

Objectives Rank Normalized Rank Final
# 𝑂1 𝑂2 𝑂3 𝑅1 𝑅2 𝑅3 𝑁1 𝑁2 𝑁3 Σ𝑁�푖 Rank
1 1 1 3 1 1 1 0.25 0.2 0.33 0.78 1
2 2 2 4 2 2 2 0.5 0.4 0.67 1.57 2
3 2 99 3 2 5 1 0.5 1.0 0.33 1.83 3
4 4 4 4 3 3 2 0.75 0.6 0.67 2.02 4
5 6 7 5 4 4 3 1.0 0.8 1.0 2.8 5

charting the linearly averaged power spectra, and producing
its regression, a transform into the log-log scale was required.
Often, simple geometric images would result in frequencies
with zero power. These anomalous frequencies needed to
be removed, which could have an impact to the quality of
regression.

Some example solutions for the slope results are shown
in Figure 4. One positive aspect is that GP easily evolved
images with a high degree of fitness to the targeted slopes.

The slope measure alone was insufficient in capturing any
sufficient amount of spatial details. We found our GP system
invariably converged to visually simple textures. The fitness
criteria was too easily satisfied, and language biases were
prevalent through our choice of simple mathematical oper-
ators. Unlike the use of regressed slope in image classification
where it was applied to highly defined image sets (artwork,
natural photographs, etc.), GP was capable of finding trivial
solutions with the given slope criteria. Other experiments
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Figure 3: Compositional target set.

(a) Slope: -1.0 (b) Slope: -5.0

(c) Slope: -2.0 (d) Slope: -6.0

(e) Slope: -3.0 (f) Slope: -7.0

(g) Slope: -4.0 (h) Slope: -8.0

Figure 4: Regressed slope example evolved images. Target slopes were specified at regular integer intervals from −1.0 to−8.0. Best candidates
per run hadmean 𝜀 < 1.0𝐸−5, except for the last target, where it was found that errors greatly increasedwhen target slope exceeded -7.0.These
initial runs relied on Cartesian coordinate variables (omitting the polar coordinate variables).

using power spectra regressions and similar basic measures
were performed with only modest improvements to results
(see [26]).

5.2. Filtering Relevant Coefficients. A promising strategy for
coefficient isolation in frequency analysiswas found by Jacobs
et al. [33] using wavelets (See Section 3.1). There were a

few considerations to note before attempting similar schemes
using Fourier transforms. A quantization to {−1, 0, +1} was
not as meaningful in the context of a Fourier transform,
where power coefficients were strictly positive. Amplitude
coefficients may have held negative values, but these could
change sign when set with appropriate phase. We could
truncate coefficients as per the paper, but the solution we
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Target

Candidate

Figure 5: Truncation and quantization example. Target and candidate coefficient sets were reduced to the top 𝐾 = 50 most powerful
positions and then quantized to 0, 1, before checking for matches. The rightmost image shows the top 𝐾 positions matching between target
and candidate, with those absent from the target being displayed in red.

attempted instead quantized all remaining values in Boolean
to 1. This effectively turned the score into a count of how
many positions shared a top𝐾 coefficient between target and
candidate. For a target and candidate of equal size, we ranked
the target’s coefficient positions by their power, and truncated
all but the top𝐾. Each candidate could thenundergo the same
coefficient ranking process, and check its top𝐾 for a nonzero
value in the corresponding location of the target’s truncated
coefficients (see Figure 5).

While a wavelet decomposition would require further
choices for wavelet type, decomposition type, and basis nor-
malization schemes, Fourier compositions are constrained
but simplified. A choice of 𝐾 value was still required to
determine the size of our coefficient truncation. Jacobs et al.
found values of 40 to 60 performed well with their image
retrieval data sets [33]. In our selection of a suitable 𝐾 value,
we considered possible reconstructions of the target images
where power was removed from all but the top 𝐾 positions.
Prominent recreations began to form in the range of 𝐾 =[50, 150], where certain targets performed well with as low
as𝐾 = 10.
5.3. Phase Refinement. A critical difference between the
wavelet strategy of Jacobs et al. [33] using wavelets, and
our adaptation with Fourier transforms, was the inherent
removal of any spatial localization in our frequency analysis.
When measuring coefficients, the index and position (the

radial angle of the coefficient from center) encouraged
evolution of component frequencies with similar placement.
However, this tended to overlook how these component
frequencies should be offset and overlap. The other key
aspect of a Fourier transform, the phase component, must
therefore be considered. By reincorporating phase into our
fitness scheme, we provided further constraints on the
location of where the component frequencies crest. See
Figure 6 for examples showing the effect of phase in Fourier
reconstruction.

We adapted the Jacobs et al. approach—or, top 𝐾
mismatch— and considered the difference of phase angle
for those top 𝐾 positions. Being mindful that phase error
should wrap about 2𝜋, the maximum difference in phase
angle should be 𝜋. We normalized the phase error to [0, 1]
and squared it for each of the top positions. This error was
then used to slightly penalize the top matching positions if
they are out of phase.

We separated the phase error component to its own sum
of ranks fitness objective, and applied a scaling factor on the
phase to prioritize the more visually prominent (powerful)
components. This is more formally defined in (6) and (7) and
was also used for the next experiment.

Errorpower = �퐾∑
�푖=1

{{{
0.0, 𝑇�푖 ∈ 𝐶
1.0, 𝑇�푖 ∉ 𝐶 (6)
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K = 50

K = 50

Copied Phase Zeroed Phase Random Phase

Figure 6: Reconstructing target images with varied phase. A pair of targets were chosen for reconstruction with a truncated set of Fourier
amplitudes paired to different phase angle values. By zeroing power in all positions except the top 𝐾 = 50 most powerful positions, we can
see the most salient positions alongside the target in the second column. The third column is the inversed FFT reconstruction with power
limited to these truncated positions. We also show reconstruction variants using the same truncated amplitude set, but with zeroed phase
angles, or phase angles which have been produced randomly. This may adjust expectations for the types of images evolved when phase is not
considered.

Errorphase

= �퐾∑
�푖=1

{[𝜋−1Δ (𝜃 (𝑇, 𝑇�푖) , 𝜃 (𝐶, 𝑇�푖))]2 , 𝑇�푖 ∈ 𝐶1.0, 𝑇�푖 ∉ 𝐶}
⋅ (𝐾 − 𝑖 + 1𝐾 )

(7)

The equation assumes an 𝑛 × 𝑛 power coefficient set, where𝑇 and 𝐶 are the truncated set of coefficient positions for the
target and candidate as ordered by power. We have Φ(𝑉, 𝑝)
and 𝜃(𝑉, 𝑝) return the power and phase angle respectively
of the coefficients (complex/vectors) in set 𝑉 corresponding
to coordinate 𝑝. With a slight abuse in notation, we denote
the coordinates of the 𝑖�푡ℎ ranked position (by power) of a
coefficient set as 𝑆�푖.

We show our key results in Figure 7. Using our measure,
we were able to evolve images which show variations of
their targets’ key features. Similar regions of intensity can
be seen for Composition 01, consistent horizontal stripes
are produced for Composition 06, and vertical regions and
gradients can be found in Composition 09 (some of which
capture the finer details near its center). To have the regions of
intensity seen in compositions 01 and 09 reproduced, proper
capturing and recreation of phase information would be
required. The low phase error seen for these targets (Table 4)
is reflected in their visual similarity. The curves produced for
the spiral target of Composition 10 are also quite interesting;
the target was expected to be more difficult to satisfy, be we
find variations of the key radial aspects are reliably recreated
despite slightly elevated fitness error. Some notable examples
produced have been highlighted in Figure 8.

Composition 06 (horizontal stripes) evolved candidates
which scored well with our measure, and certainly captured
the idea of horizontal stripes, but were not as uniform as seen
elsewhere (see [26]). Despite closely matching the top 𝐾 =10 coefficients with its target, many evolved candidates also
held large amounts of power in other coefficients. We found
this was mitigated by adjusting 𝐾 (at the cost of increasing
outlier results), or trivialized by reducing the GP language.
Particular difficulty was seen with Composition 07 (circle
grid), but for different reasons. With this target, the produced
solutions had high levels of error throughour fitnessmeasure.
Our GP system allowed for the easy formation of unit circles
and lines along the dimension axes, which makes for an
underwhelming capture of the grid and circular aspects
desired.

Extended runs terminating at 200 generations were
attempted with little change to image quality. We can find
further improvements on the targets with circular compo-
sition aspects by adjusting our GP language (Section 6.1.1).
While certain targets may have performed better individually
with various adjustments to the fitness measure (see [26]),
the results from the above measure (shown in Figure 7)
performed generally well across the majority of our target
images.

6. More Advanced Artistic Explorations

Whereas Section 5 considered greyscale image synthesis, this
section expands the scope of image evolution by considering
more complex colour images. We first consider enhance-
ments and extensions to our GP language which may better
reflect some of the more full-featured languages used for
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Figure 7: Compositional summary charts and examples. Each row of the figure captures the summary for a target over 30 runs. Leading with
the target image, the next two columns show performance plots of the fitness measure (average over 30 runs). The leftmost plot displays the
performance through the population average, where the rightmost plot shows the performance of the best individual of the generation. Aside
the plots are the best candidate images produced at termination for each run.

Figure 8: Compositional experiment highlights. Images were produced using targets (from left to right): Composition 01, Composition 09,
and Composition 10. Choice of𝐾 is outlined in Table 4. These examples show fair replication of compositional aspects, including placement
of positions of intensity, contrasts and gradients, and shape characteristics.
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Table 4: Compositional fitness summary table. Summaries for the remainder of the section were produced over 30 runs. For each target,
a row is included for the mean and standard deviation for each fitness objective aggregate. Our experiment held two objectives, aiming to
minimize error in power and phase coefficient matching. The row for “mean” shows the mean of terminal populations’ average fitness and
the mean of terminal populations’ best found candidates across 30 runs. Maximum and expected error values are constrained by choice of𝐾.

Target 𝐾 Agg. Power Phase
Mean Best Mean Best

Composition 01 25 Mean 2.34 0.40 0.79 0.08
StdDev 0.68 0.81 0.18 0.05

Composition 06 10 Mean 1.23 0.23 0.53 0.05
StdDev 0.38 0.43 0.17 0.05

Composition 07 50 Mean 34.36 30.47 14.31 12.09
StdDev 3.26 4.44 1.16 1.46

Composition 09 25 Mean 2.79 0.13 1.17 0.08
StdDev 0.78 0.51 0.36 0.13

Composition 10 50 Mean 15.79 9.50 8.51 5.51
StdDev 4.82 4.66 2.89 3.04

evolutionary art applications. We then evaluate some possible
multiobjective adaptations of our measures, and expand our
capabilities from grayscale to coloured textures across mul-
tiple colour schemes. Finally, we present a brief discussion
which corroborates a relatedmeasure in previously published
research relating to computational aesthetics.

6.1. Language and Representation

6.1.1. Polar Coordinates, Geometric Operators. The first
adjustment to our GP language was motivated by the poor
performance observed when using targets which displayed
strong radial attributes. We found that the inclusion of polar
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Figure 9: Circle, grid, and offset language summary examples.

coordinate variables improved results for certain composi-
tional targets (e.g., spirals) and some artistic genre targets.
Some difficulty was still found with other targets using radial
variations and repetitions. We therefore added a set of GP
language operators well-suited for these target images.

With inspiration from the Gentropy system by Weins
[50], we included the circle geometric operator (which returns
1.0 if the current texel is within the provided radius from
the origin), along with the coordinate operators of tile and
shift. The circle operator provided a simplified way for the
candidate programs to show hard transitions about a radius,
and the tile operator provided an easy way to create arbitrary𝑛 × 𝑚 tilings.

Figure 9 shows amuch-improved set of evolved candidate
textures over our previous experiments. We see the error for
these two targets decreases by ∼40% in both objectives, and
a 2-sample t-test provides at most 𝑝 < 0.0001 across objec-
tives and targets, suggesting fair statistical significance when
considered with the reduced run count. The performance
gains seenwith these additional language operators is another
promising sign for our fitness measure, and reinforces the
importance for GP texture language adequacy.

6.1.2. Noise Generation. Tohelp generate images havingmore
visual complexity and interest, we included numerous noise
generation operators (Section 4.2.2). With regard to error
values, the introduction of the noise operators appears to
be an improvement for most targets. We find minor but
consistent reductions in both phase and power errors.

Figure 10 highlights some of the finer details in a pair of
larger renderings using a target photograph of a flower.

6.1.3. Coordinate Variable Reduction. One final language
experiment was performed by removing the 𝑋 coordinate
variable from the language set. It was expected that removing
a fundamental coordinate variable would result in substantial
difficulty for our system to produce results, and consequently,
high error scores.

It is surprising to see that, despite the previous problems
encountered while lacking the polar coordinate variables,
there were few noted changes to performance. For the
compositional target set, most targets performed only slightly
better numericallywith the inclusion of the𝑋 coordinate, and
no statistical significance was found to favour either language
set.

When we inspect the evolved textures a little more
closely, there appears to be two main ways that our system
and its textures adapted to the missing coordinate variable.
Some candidates were able to glean sufficient positional
information from the remaining coordinate variables: 𝑌, 𝜌,
and 𝜙.

An alternative approach appears to largely forgo any
direct positional information and instead builds upon layer-
ing multiple noise operators. We see this with the highlighted
flower images in Figure 11, and a particularly interesting
example of the Van Gogh target in Figure 12.

6.2. Colour. Here we considered the approach of evolving
colour textures through separate evaluation of each colour
channel, along with evaluation across average luminance.
Further experimentation with HSL colour models, and other
colour analyses can be found in [26].
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Figure 10: Produced image highlights; noisy language; flower. The leftmost image shows the target, followed by a pair of notable evolved
candidates.

Figure 11: Produced image highlights; noisy language, no𝑋; flower.The leftmost image shows the target, followed by a pair of notable evolved
candidates.

We maintained the selection of 𝐾 = 50 as it produced
suitable compositional results. To produce colour images, we
evolved three GP trees per individual, corresponding to the
RGB colour channels. With the increased tree count, and
proportional increase in rendering complexity, we performed
9 runs per target. The system was then given 8 fitness
objectives to optimize: the original grayscale power (Y) and
phase (Y), colour power (R, G, B), colour phase (R, G, B).

6.2.1. Y+RGB Colour Channels. As we found success with
our existing measure on grayscale textures, we expanded
upon this as a base. The placement and proportion of
specific colours is guided using the same measurement
technique across each individual RGB colour channel.Where
a grayscale texture had two objectives (power and phase), our
4-channel (Y+RGB) colour image used 2 × 4 = 8 objectives.
Each channel was evaluated similarly to a separate grayscale
texture.

Wemaintained the use of a luminance channel evaluation
as it was expected to further constrain the overall compo-
sition of the image. It was also hoped that the luminance

channel could capture some spatial information lost by
assessing colour channels in isolation. We hypothesized that
including this combination of luminance and colour channel
objectives should reduce attempts to sacrifice any individual
colour channel objective by incurring further penalties from
mean luminance degradation. TheNTSC (CCIR 601)method
was used for conversion from colour (RGB) to grayscale:

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (8)

This provided a close approximation of colorimetric lumi-
nance from the nonlinear, gamma corrected RGB values.

The results in Figure 13 show that the control of colour
through relative proportion and overlay of RGB channels,
while basic and limited, is successful with certain targets.
From the charting, we see similar sacrifices being made to
the blue channel power error on target Composition 15. For
Composition 14-15, the green channel, while still worse than
when evolved in monochrome, sees some slight improve-
ments. Composition 13 sees an overall improvement to
shape, where Composition 01 remains consistent.
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Figure 12: Produced image highlights; noisy language, no 𝑋; Van Gogh. On the left, we can see a snapshot of the candidate at every 20
generations. An evolutionary strategy has emerged which gradually applies layers and refines noise operators. The candidate is viewed atop
the target image with partial transparency in the bottom left.

While we had hoped that the inclusion of a luminance
channelwould reduce the occurrence of sacrificing individual
colour objectives, we occasionally see the opposite. There is
now further pressure to sacrifice an objective if its channel
is not contributing positively to the compositional shape as
viewed through the lens of averaged luminance.

While overall colour distribution could be improved, we
see increased performance when targets hold colour channels
which can be replicated as grayscale targets individually.
While considering the limitations, we are still able to replicate
variations of shape and colour for a number of targets. Some
highlights have been shown in Figures 14, 15, and 16.

6.3. Spatial Frequencies and Comfort. In the course of
evolving the many candidate images with each target and

experiment set, we identified a number of evolved images
which we found unpleasant or uncomfortable to view (see
Figure 17). Previous research fromFernandez andWilkins [3]
found correlations between intensity level contrasts at certain
spatial frequencies with increased levels of discomfort. We
direct readers to their paper for an excellent example of the
“uncomfortable property”.

The concept of spatial frequency denotes a cyclical nature
across a measured space, such as the reoccurrence of Gabor
and grating peaks along the width of an image. Our study is
predicated over power coefficient positions directly relating
to these spatial frequencies. While we found great utility
in comparing spatial frequencies relative to image width,
human perception requires consideration of an observers
field of view. To better capture this, we can use calculations
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Figure 13: Colour experiment summary charts and examples. Power and phase errors for each of the red, green, and blue colour channels
are plotted with their respective colour. Errors considered across the average luminance have been plotted in black. Power error is denoted
with solid lines, where phase error uses a dashed line.

Figure 14: Colour experiment highlights; Composition 13; noise language.The leftmost image shows the target, followed by a pair of notable
evolved candidates.

of visual angle – when paired with known viewing distance
and image size – to compute a relative measure of angular
spatial frequency. With spatial frequencies known in relation
to image width, we can interpolate their corresponding visual
angle when observed with known size and view distance.

Fernandez and Wilkins observed that images with
increased amplitudes at a few octaves around 3 cycles per
visual degree corresponded with higher reports of image
discomfort. We explored numerous schemes in the previous
sections to constrain and obtain specific spatial frequencies
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Figure 15: Colour experiment highlights; flower; noise language.The leftmost image shows the target, followed by a notable evolved candidate.

Figure 16: Colour experiment highlights; flower; noise language, no 𝑋. The leftmost image shows the target, followed by a pair of notable
evolved candidates.

Figure 17: Evolved images with uncomfortable spatial properties. Selection of images with uncomfortable aspectswas performed with images
sized to 12” side lengths at a viewing distance of 24” (identical angular spatial frequencies can be obtainedwhen this page is viewed at a distance
of 4.1”, though we suspect that the eye strain induced from close proximity viewing will cause further undue discomfort).
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Figure 18: Angular spatial frequency analysis, distance variations. At the top left we have the analysed image, beneath which there are power
spectra coefficients display and radially averaged power spectra.The top right graph plots power of the absolute spatial frequencies relative to
image width, below which there are the spatial frequencies calculated relative to visual angle at a specific viewing distance. As recommended
by Fernandez andWilkins [3], octaves about 3 cycles/degree have been marked.

of a target image in our newly evolved candidates. With a
direct relation between relative visual degree and absolute
image spatial frequencies, we posit that these findings may
be combined to the effect of a new aesthetic model.

Spatial frequency theory proposes that the human visual
cortex operates through analysis of light receptor spatial fre-
quencies [21, 22]. With supporting works finding sensitivity
in animals to certain spatial frequency ranges [25, 51], it
is not surprising to think that humans may also be more
sensitive to contrasts at certain spatial frequencies. As seen
in Figure 17, we can corroborate that intensity contrasts at
certain visual frequencies are uncomfortable, discordant, and
at times even painful. Figure 18 shows a frequency analysis
of one of these evolved images. As can be seen, there is a
peak in amplitude at the 3 cycles/degree frequency identified
by Fernandez and Wilkins [3]. However, this measurement
is dependent upon the viewing distance to the image, and
this peak at 3 cycles/degree changes with different viewing
distances.

With these findings, we identify a couple of limitations
in using frequency for the analysis of uncomfortable images.
The first, and least negotiable concern, holds that viewing
size and distance must be considered before evolution. With
interactive or hybrid fitness depending on user-evaluated
thumbnails, large incongruitiesmay appear between the rated
thumbnails and full-size renderings.

There is another critical concern, though one we are
now most capable of identifying and accommodating: näıve
reduction to power within a range of frequencies can alter

an image to something unrecognisable. We have seen that
core compositional information can be stored in 50 or so
positions, as witnessed with our experiments in choice for
truncation size, 𝐾. We can easily expect some of these
critical frequencies to lay within the “3.0± two octaves”
range identified, and so a blanket frequency reduction should
expect poor results with spatial similarity. If no other spatial
attributes are sought in the evolved images, this penalty
for power in the 3.0 angular spatial frequency range could
provide a novel aesthetic measure for exploration. Some
refinements will be needed otherwise. If provided target
power spectra, wemight propose an aesthetic objective which
penalizes a surplus of power in these frequency ranges. From
our observations above, we might also suggest a distribution
of weights to provide harsher penalties when closer to the 3.0
cycles/degree mark.

Despite a number of concerns having been identified, our
exploration with power spectra fitness measures has given
us a tool to resolve some of them. We also suspect that
beyond the correlation with discomfort and the given angular
spatial frequency ranges, there may be a need to consider
interactions with the phase of these frequencies and their
harmonics. With further exploration in the future, novel
aesthetic models can be developed from these findings.

7. Conclusion

2D power spectra can be an effective tool for guiding the
evolutionary synthesis of images. By applying a 2D Fourier



20 Complexity

analysis of a target image, key spatial characteristics can be
extracted from it and used as a guide for the evolution of
images that share these characteristics. Precise duplication
of a target image is not desirable. Rather, by focussing on
the major frequencies and their spatial orientations, the
evolutionary art system is given enough freedom to “fill
in the gaps” and generate interesting variations of images
that have visual relationships to a target. Thus the approach
acknowledges one of the strengths of evolutionary art, and
evolution in general: the ability to generate creative and
interesting solutions to problems.

Another unexpected result is the possible application
of power spectra in identifying evolved images which have
uncomfortable properties. A few example images show the
spectral properties previously identified by Fernandez and
Wilkins [3] in their study of uncomfortable art. Although
more research on this topic is needed, there is the possibility
of using such analyses within fitness strategies in order to
avoid production of images with undesirable visual proper-
ties.

The success of the results shown in this paper depends
upon two key factors. First, our coefficient reduction scheme
proves effective in refining the search by simplifying the com-
putational optimizations required in reproducing Fourier
coefficients. Although further improvements and enhance-
ments to this strategy are possible, our approach is generally
effective for compositional targets and produced the results
shown. Second, it is important that the procedural texture
language used in the GP system has adequate power for
producing images that conform to characteristics seen in
the target image. The property of language adequacy and
bias is well known in GP research. With our system, some
target images are trivial to reproduce, where others are
consistently difficult to handle with the basic procedural
texture language. Improvements immediately arise when
the language is supplemented with polar coordinates, noise
generators, tiling operators, or other language features as
needed by the target. On the other hand, some photographs
we used as target images rarely yield successful outcomes,
even with these additions. We hypothesize that our texture
language remains incapable of easily generating images that
match these targets. An enhanced texture language and
coefficient reduction schememay be warranted in these more
challenging cases.

In summary, computer vision strategies such as spectral
analysis continue to showwide success in applications involv-
ing image analysis, art classification, image retrieval, and
other applications. These techniques should be given serious
consideration in evolutionary art as well, in order to improve
the quality and sophistication of machine-synthesized art.
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