Skip to main content
Log in

A Computational Intelligence-Based Genetic Programming Approach for the Simulation of Soil Water Retention Curves

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Soil water retention curves are a key constitutive law used to describe the physical behavior of an unsaturated soil. Various computational modeling techniques, that formulate retention curve models, are mostly based on existing soil databases, which rarely consider any effect of stress on the soil water retention. Such effects are crucial in the case of swelling soils. This study illustrates and explores the ability of computational intelligence-based genetic programming to formulate the mathematical relationship between the water content, in terms of degree of saturation, and two input variables, i.e., net stress and suction for three different soils (sand–kaolin mixture, Gaduk Silt and Firouzkouh clay). The predictions obtained from the proposed models are in good agreement with the experimental data. The parametric and sensitivity analysis conducted validates the robustness of our proposed model by unveiling important parameters and hidden non-linear relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, N., Farshchi, I., Mu’azu, M.A., Rees, S.W.: Soil–root interaction and effects on slope stability analysis. Electron. J. Geotech. Eng. 17(C) 319–328 ISSN 1089–3032 (2012)

  • Ali, N., Rees, S.W.: Linear root water uptake. Malays. J. Civ. Eng. 21(2) 110–124 ISSN 1823–7843 (2009)

  • Arya, L.M., Leij, F.J., van Genuchten, MTh, Shouse, P.J.: Scaling parameter to predict the soil–water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63, 510–519 (1999)

    Article  Google Scholar 

  • Bishop, A.W.: The principle of effective stress. Teknisk Ukeblad 106(39), 859–863 (1959)

    Google Scholar 

  • Bolt, G.H.: Soil physics terminology. Int. Soc. Soil Sci. Bull. 49, 26–36 (1976)

    Google Scholar 

  • Bregman, R., Graven, P.: Subcuticular secretion by cactus seeds improves germination by means of rapid uptake and distribution of water. Ann. Bot. 80(4), 525–531 (1997)

    Article  Google Scholar 

  • Cevik, A., Guzelbey, I.H.: A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng. Struct. 29, 383–394 (2007)

    Article  Google Scholar 

  • Cevik, A., Sonebi, M.: Modelling the performance of self-compacting sifcon of cement slurries using genetic programming technique. Comput. Concr. 5, 475–491 (2008)

    Article  Google Scholar 

  • Chan, K.Y., Kwong, C.K., Dillon, T.S., Tsim, Y.C.: Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. Appl. Soft Comput. 11, 1648–1656 (2011)

    Article  Google Scholar 

  • Fredlund, D.G., Rahardjo, H.: The role of unsaturated soil behaviour in geotechnical engineering practice. Proceedings of the 11th Southeast Asian Geotechnical Conference, pp. 37–49 (1993)

  • Fredlund, D.G., Morgenstern, N.R.: Stress state variables for unsaturated soils. J. Geotech. Geoenviron. Eng. 103(ASCE 12919) (1977)

  • Gandomi, A.H., Alavi, A.H.: Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction. Int. J. Earthq. Eng. Hazard Mitig. Praise Worthy Prize 1(1), 1–8 (2013a)

    Google Scholar 

  • Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. part II Geotechnical and earthquake engineering problems. Neural Comput. Appl. Springer 21(1), 189–201 (2012)

    Article  Google Scholar 

  • Gandomi, A.H., Alavi, A.H.: Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf. Sci. 181, 5227–5239 (2011)

    Article  Google Scholar 

  • Gandomi, A.H., Alavi, A.H., Arjmandi, P., Aghaeifar, A., Seyednoor, M.: Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of cfrp-confined concrete cylinders. J. Mech. Mater. Struct. 5, 735–753 (2010)

    Article  Google Scholar 

  • Garg, A., Bhalerao, Y., Tai, K.: Review of empirical modeling techniques for modeling of turning process’. Int. J. Model. Identif. Control 20(2), 121–129 (2013a)

    Article  Google Scholar 

  • Garg, A., Tai, K., Savalani, M.M.: State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp. J. 20(2), 164–178 (2014a)

    Article  Google Scholar 

  • Garg, A., Sriram S, Tai K.: Empirical analysis of model selection criteria for genetic programming in modeling of time series system. Proceedings of 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), Singapore, 16–19 April 2013, pp. 84–88 (2013b)

  • Garg, A., Tai, K.: Selection of a robust experimental design for the effective modeling of the nonlinear systems using genetic programming. Proceedings of 2013 IEEE Symposium on Computational Intelligence and Data mining (CIDM), Singapore (2013c)

  • Garg, A., et al.: Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst. Appl. 41(4), 1389–1399 (2014b)

    Article  Google Scholar 

  • Garg, A., Tai, K.: Comparison of regression analysis, Artificial Neural Network and genetic programming in Handling the multicollinearity problem. In: Proceedings of 2012 International Conference on Modelling, Identification and Control (ICMIC2012), Wuhan, 24–26 June 2012. IEEE. pp. 353–358 (2012)

  • Garg, A., Tai, K., Lee, C.H., Savalani, M.M.: A Hybrid M5: genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling Of FDM process. J. Intell. Manuf. 2013d. doi:10.1007/s10845-013-0734-1

  • Garg, A., Rachmawati, L., Tai, K.: Classification-driven model selection approach of genetic programming in modelling of turning process. Int. J. Adv. Manuf. Technol. 69, 1137–1151 (2013e)

    Article  Google Scholar 

  • Garg, A., Garg, A., Tai, K.: A multi-gene genetic programming model for estimating stress dependent soil water retention curves. Comput. Geosci. 18(1), 45–56 (2014c)

    Article  Google Scholar 

  • Garg, A., Garg, A., Tai, K., Sreedeep, S.: Estimation of factor of safety of rooted slope using an evolutionary approach. Ecol. Eng. 64, 314–324 (2014d)

    Article  Google Scholar 

  • Gonçalves, I., Silva, S., Melo, J., Carreiras, J.B.: Random sampling technique for overfitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) Genetic Programming. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  • Graham, E.A., Nobel, P.S.: Root water uptake, leaf water storage and gas exchange of a desert succulent: implications for root system redundancy. Ann. Bot. 84(2), 213–223 (1999)

    Article  Google Scholar 

  • Gupta, S., Larson, W.E.: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15(6), 1633–1635 (1979)

    Article  Google Scholar 

  • Groenevelt, P.H., Bolt, C.H.: Water retention in soil. Soil Sci. 113(4), 238–245 (1972)

    Article  Google Scholar 

  • Hinchliffe, M., Hiden, H., Mckay, B., Willis, M., Tham, M., Barton, G.: Modelling Chemical Process Systems Using A Multi-Gene Genetic Programming Algorithm. 28–31 (1996a)

  • Koza, J.R.: On the Programming of Computers by Means of Natural Selection. Mit Press, Cambridge (1996)

    Google Scholar 

  • Leij, F.J., Alves, W.J., van Genuchten, M.T., Williams, J.R.: The UNSODA unsaturated soil hydraulic database, version 1.0. EPA, Report, EPA/600, 96, 095 (1996)

  • Mirzaii, A., Yasrobi, S.S.: Effect of net stress on hydraulic conductivity of unsaturated soils. Transp. Porous Med. 95(3), 497–505 (2012)

    Article  Google Scholar 

  • Mitchell, J.K.: Fundamentals of Soil Behavior. Wiley, New York (1993)

    Google Scholar 

  • Orozco-Segovia, A., Márquez-Guzmán, J., Sánchez-Coronado, M.E., De Buen, A.G., Baskin, J.M., Baskin, C.C.: Seed anatomy and water uptake in relation to seed dormancy in opuntia tomentosa (cactaceae, opuntioideae). Ann. Bot. 99(4), 581–592 (2007)

    Google Scholar 

  • Pachepsky, Y.A., Rawls, W.J.: Development of Pedotransfer Functions in Soil Hydrology. Elsevier Science, Philadelphia (2004)

    Google Scholar 

  • Pachepsky, Y.A., Timlin, D., Varallyay, G.: Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60(3), 727–733 (1996)

    Article  Google Scholar 

  • Philip, J.R.: Moisture equilibrium in the vertical in swelling soils. I. Basic theory. Aust. J. Soil Res. 7, 99–120 (1969)

    Article  Google Scholar 

  • Pringle, M.J., Romano, N., Minasny, B., Chirico, G.B., Lark, R.M.: Spatial evaluation of pedotransfer functions using wavelet analysis. J. Hydrol. 333(2–4), 182–198 (2007)

    Article  Google Scholar 

  • Rawls, W.J., Brakensiek, D.L.: Estimation of soil-water retention and hydraulic properties. In: Morel-Seytoux, H.J. (ed.) Unsaturated Flow in Hydrologic Modeling Theory and Practice, pp. 275–300. Kluwer Academic, Beltsville (1989)

    Chapter  Google Scholar 

  • Romano, N., Palladino, M.: Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrol. 265(1–4), 56–75 (2002)

    Article  Google Scholar 

  • Schaap, M.G., Bouten, W.: Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32(10), 3033–3040 (1996)

    Article  Google Scholar 

  • Schaap, M.G., Leij, F.J.: Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res. 47(1), 37–42 (1998)

    Article  Google Scholar 

  • Schaap, M.G., Leij, F.J.: Improved prediction of unsaturated hydraulic conductivity with the Mualem–van Genuchten model. Soil Sci. Soc. Am. J. 64(3), 843–851 (2000)

    Article  Google Scholar 

  • Searson, D.P., Leahy, D.E., Willis, M.J.: Gptips: an opensource genetic programming toolbox formultigene symbolic regression. Int. Multiconf. Eng. Computersci. 1, 77–80 (2010)

    Google Scholar 

  • Serrato-Valenti, G., Cornara, L., Ghisellini, P., Ferrando, M.: Testa structure and histochemistry related to water uptake in leucaena leucocephala lam. (de wit). Ann. Bot. 73(5), 531–537 (1994)

    Article  Google Scholar 

  • Tamari, S., Wösten, J.H.M., Ruiz-Suarez, J.C.: Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci. Soc. Am. J. 60(6), 1732–1741 (1996)

    Article  Google Scholar 

  • Tempel, P., Batjes, N.H., van Engelen, V.W.P.: IGBP-DIS Soil Data Set for Pedotransfer Function Development. nternational Soil Reference and Information Centre, Wageningen (1996)

    Google Scholar 

  • Terzaghi, K.: The shear resistance of saturated soils. Proceedings for the 1st. In: International Conference on Soil Mechanics and Foundation Engineering, Cambridge 1, 54–56 (1936)

  • Vereecken, H., Maes, J., Feyen, J., Darius, P.: Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148(6), 389–403 (1989)

    Article  Google Scholar 

  • Volaire, F., Thomas, H.: Effects of drought on water relations, mineral uptake, water-soluble carbohydrate accumulation and survival of two contrasting populations of cocksfoot (Dactylis glomerata L.). Ann. Bot. 75(5), 513–524 (1995)

  • Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C.: Development and use of a database of hydraulic properties of european soils. Geoderma 90, 169–185 (1999)

    Article  Google Scholar 

  • Yildiz, A.R.: A comparative study of population-based optimization algorithms for turning operations. Inf. Sci. 210, 81–88 (2012)

    Article  Google Scholar 

  • Yildiz, A.R.: A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl. Soft Comput. 13(3), 1561–1566 (2013a)

    Article  Google Scholar 

  • Yildiz, A.R.: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl. Soft Comput. 13(5), 2906–2912 (2013b)

    Article  Google Scholar 

  • Yildiz, A.R.: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci. 220, 399–407 (2013c)

    Article  Google Scholar 

  • Yildiz, A.R.: Hybrid taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 13(3), 1433–1439 (2013d)

    Article  Google Scholar 

  • Yildiz, A.R.: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 64(1–4), 55–61 (2013e)

    Article  Google Scholar 

  • Yıldız, A.R.: A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot. Comput. Integr. Manuf. 25(2), 261–270 (2009a)

    Article  Google Scholar 

  • Yıldız, A.R.: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J. Mater. Process. Technol. 209(6), 2773–2780 (2009b)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Singapore Ministry of Education Academic Research Fund through research grant RG30/10, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Garg, A., Tai, K. et al. A Computational Intelligence-Based Genetic Programming Approach for the Simulation of Soil Water Retention Curves. Transp Porous Med 103, 497–513 (2014). https://doi.org/10.1007/s11242-014-0313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0313-8

Keywords

Navigation