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Abstract 

This paper suggests an automated design methodology for synthesizing designs for multi-domain systems, such 
as mechatronic systems. The domain of mechatronic systems includes mixtures of, for example, electrical, 
mechanical, hydraulic, pneumatic, and thermal components, making it difficult to design a system to meet specified 
performance goals with a single design tool. The multi-domain design approach is not only efficient for mixed-
domain problems, but is also useful for addressing separate single-domain design problems with a single tool. Bond 
graphs are domain independent, allow free composition, and are efficient for classification and analysis of models, 
allowing rapid determination of various types of acceptability or feasibility of candidate designs. This can sharply 
reduce the time needed for analysis of designs that are infeasible or otherwise unattractive.  Genetic programming is 
well recognized as a powerful tool for open-ended search.  The combination of these two powerful methods is 
therefore an appropriate target for a better system for synthesis of complex multi-domain systems.  The approach 
described here will evolve new designs (represented as bond graphs) with ever-improving performance, in an 
iterative loop of synthesis, analysis, and feedback to the synthesis process. The suggested design methodology has 
been applied here to two design examples. One is domain independent, an eigenvalues-placement design problem 
which is tested for some sample target sets of eigenvalues. The other is in the electrical domain – namely, design of 
analog filters to achieve specified performance over a given frequency range. 

1. INTRODUCTION 

Mechatronic system design is a type of multi-domain problem that differs from conventional design of 
electronic circuits, mechanical systems, and fluid power systems, in part because of the need to integrate several 
types of energy behavior as part of the basic design (Coelingh et al.[1]).  Multi-domain design is difficult because 
such systems tend to be complex and most current simulation tools operate over only a single domain.  In order to 
automate design of multi-domain systems, such as mechatronic systems, a new approach is required.  The goal of 
the work reported in this paper is to develop an automated procedure capable of designing mechatronic systems to 
meet given performance specifications, subject to various constraints.  The most difficult aspect of the research is to 
develop a method that can explore the design space in a topologically open-ended manner, yet find appropriate 
configurations efficiently enough to be useful.   

Our approach combines bond graphs for representing the mechatronic system models with genetic 
programming as a means of exploring the design space.  Bond graphs allow us to capture the energy behavior 
underlying the physical aspects (as opposed to the information aspects) of mechatronic systems in a uniformly 



effective way across domains.  Being topological structures, they are also ideal for representing a structured design 
space for open-ended generation and exploration. Genetic programming is an effective way to generate design 
candidates in an open-ended, but statistically structured, manner.  A critical aspect of the procedure is a fitness 
measure, which must guide the evolution of candidate designs toward a suitable result in a reasonable time.   

There have been a number of research efforts aimed at exploring the combination of genetic programming with 
physical modeling to find good engineering designs. Perhaps most notable is the work of Koza et al. [2-4].  He 
presents a single uniform approach using genetic programming for the automatic synthesis of both the topology and 
sizing of a suite of various prototypical analog circuits, including low-pass filters, operational amplifiers and 
controllers.  This system has already shown itself to be extremely promising, having produced a number of 
patentable designs for useful artifacts; however, it works in a single energy domain. Danielson et al.[5] use both 
bond graphs and a genetic algorithm to design a 2-stroke combustion engine. They start from a preliminary design, 
find near-optimal values for 15 physical parameters for a combustion engine, but without allowing topological 
variation. Tay et al.[6] use a genetic algorithm to vary bond graph models. This approach adopts a variational design 
method, which means they make a complete bond graph model first, then change the bond graph topologically using 
a GA, yielding new design alternatives.  Their goal is to provide a wider range of possible designs, and is closely 
related to that presented here, but within a topologically more limited search space.  

Our approach can address both limitations mentioned above. First, it enables the analysis of multi-energy-
domain systems with a unified inter-domain tool. Second, it allows unlimited search for a topologically open-ended 
solution. Moreover efficient and rapid evaluation of individual designs is provided, using a two-stage procedure -- 
causal analysis of the graph, followed -- only if needed -- by appropriate detailed calculation using a derived state 
model. Also, a library of useful model performance evaluation tools (e.g., eigenvalue analysis, frequency response, 
steady-state calculation) can be embedded as need arises, since the use of these tools is encapsulated in the overall 
process. 

We tested two different problems – one that is domain-independent and another in the electrical domain. The 
first design problem is eigenvalue design – i.e., to realize a design having a specified set of eigenvalues. The second 
problem is analog filter design -- to realize an analog circuit that passes particular ranges of frequencies and rejects 
others. Since both problems can be studied effectively using linear components with constant parameters, we only 
needed to introduce one-port (generalized) resistance, capacitance, and inertance elements in these designs. 

Section 2 discusses the inter-domain nature, efficient evaluation and graphical generation of bond graphs.  
Section 3 describes evolution of bond graphs by genetic programming.  Section 4 presents some results for the 
eigenvalue design example, and Section 5 present analog filter results for high-pass, low-pass, and  band-pass filters. 
Section 6 concludes the paper.  

2. DESIGN METHODOLOGY 

A. Design Domain  

Design of multi-domain engineering systems, such as mechatronic systems, differs from design of single-
domain systems, such as electronic circuits, mechanisms, and fluid power systems, in part because of the need to 
integrate the several distinct domain characteristics in predicting system behavior as part of the basic design. For 
example, in addition to appropriate “drivers” (sources), lumped-parameter dynamical mechanical systems models 
typically include at least masses, springs and dampers (Figure 1 a)) while “RLC” electric circuits include resistors, 
inductors and capacitors (Figure 1 b)). Figure 2 shows a drive system for a typewriter that involves the drive shaft 
and the load, with important physical properties modeled. The input is the driving torque, Td., generated through the 
belt coupling back to the motor. 

 
B. Bond Graph 

The bond graph is a modeling tool that provides a unified approach to the modeling and analysis of dynamic 
systems.  Bond graph models can describe the dynamic behavior of physical systems by the connection of idealized 
lumped elements based on the principle of conservation of power.  These models provide very useful insights into 
the structures of dynamic systems (Karnopp et al.[7], Rosenberg [8-9]).  Much recent research has explored bond 
graphs as tools for design (Sharpe et al.[10], Youcef-Toumi [11], Redfield [12]).   

Bond graphs consist of elements and bonds.  There are several types of elements, each of which performs 
analogous roles across energy domains.  The first type -- C, I, and R elements -- are passive one-port elements that 
contain no sources of power, and represent capacitors, inductors, and resistors (in the electrical domain).  The 
second type, Se and Sf, are active one-port elements that are sources of power, and that represent effort sources and 



flow sources, respectively (for example, sources of voltage or current, respectively, in the electrical domain). The 
third type, TF and GY, are two-port elements, and represent transformers and gyrators, respectively.  Power is 
conserved in these elements.  A fourth type, denoted as 0 and 1 on bond graphs, represents junctions, which are two- 
(or multi-) port elements.  They serve to interconnect other elements into subsystem or system models.  

Bond graphs have three embedded strengths for design applications – the wide scope of systems that can be 
created because of the multi- and inter-domain nature of bond graphs, the efficiency of evaluation of design 
alternatives, and the natural combinatorial features of bond and node components for generating of design 
alternatives.  First, multi-domain systems (electrical, mechanical, hydraulic, pneumatic, thermal) can be modeled 
using a common notation, which is especially important for design of mechatronic systems.  For example, the 
mechanical system and the electrical circuit in Figure 1 have the same bond graph model (Figure 3). Second, this 
representation of dynamic systems is also efficient for computational implementation.  The evaluation stage is 
composed of two steps: 1) causality analysis, and, when merited, 2) dynamic simulation.   In causality analysis, the 
causal relationships and power flow among elements and subsystems can reveal various system properties and 
inherent characteristics that can make the model unacceptable, and therefore make dynamic simulation unnecessary.   
While the strong typing used in the GP system (see below) will not allow the GP system to formulate “ill-formed” 
bond graphs, even “well-formed” bond graphs can have causal properties that make it undesirable or unnecessary to 
derive their state models or to simulate the dynamics of the systems they represent.  Causality analysis is fast, and 
can rapidly eliminate further cost for many models that are generated by the genetic programming system, by 
performing assignment of effort and flow variables and making checks for violations of the appropriate constraints.  
This simple filtering cuts the evaluation workload dramatically.  For systems passing causal analysis, state equations 
are easily and systematically derived from bond graph models.  Then various analyses (of eigenvalues, for example) 
or simulation based on the state model allow computation of the desired performance measures.  Third, the graphical 
(topological) structure characteristic of bond graphs allows their generation by combination of bond and node 
components, rather than by specification of equations.  This means that any system model can be generated by a 
combination of bond and node components, because of their free composition and unbounded growth capabilities 
(Figure 3).  Therefore it is possible to span a large search space, refining simple designs discovered initially, by 
adding size and complexity as needed to meet complex requirements. 

The particular procedures used for synthesis of bond graph models are a developing and crucial part of this 
work, since they determine the search space within which design solutions will be contained.  
 

C. Genetic Programming 

Genetic programming (GP) is an extension of the genetic algorithm method, which applies a model of natural 
evolution to the optimization of computer programs or algorithms to solve some task (Holland[13], Goldberg[14]). 
Often the model has a graph-type (or other structural) representation. The most common form of genetic 
programming is due to John Koza [15] and uses trees to represent the entities to be evolved. Genetic programming 
can be used to “grow” trees that specify increasingly complex models, as described below. In this way it is possible 
to span a large search space. 

Figure 4 illustrates the open-ended search idea that a design in a GP system need not be of any particular size or 
depth compared with GA – models can thus easily be represented with arbitrary levels of complexity. Each GP tree 
represents a particular model in a given generation of models. The next generation is generated by crossover 
operations, by mutation operations, and by direct copying. In our case each tree corresponds to a single bond graph, 
so by using GP tools we can build bond graph candidates efficiently, without the need to create an entire ad hoc 
search structure. 

3. EVOLUTION OF BOND GRAPHS 

A.  The Design Procedure 

The overall procedure is shown in Figure 5. The designer sets the design context by specifying an embryo bond 
graph model (i.e., driver and load ports in any number (required for the objective function to be defined), and if 
desired, any other fixed “plant” which the search process is not allowed to alter). Parameters for the GP search 
process must be set to control both the generation phase (yielding an initial population of candidate solutions in the 
form of GP trees) and the evolution phase.  At each stage of evolution, each of the candidates is evaluated and 
assigned a fitness value. The evolution phase is guided by the statistics of the selection and evolution operators. The 
evolution process terminates when fitness or effort conditions are met. The result is reported as a bond graph (or set 
of them) with the highest fitness rating(s). 



 

B.  Bond Graph Construction 

A typical GP system (like the one used here) evolves trees, rather than more general graphs.  However, bond 
graphs can contain circuits, so we do not represent the bond graphs directly as our GP “chromosomes.”  Instead, a 
GP tree specifies a construction procedure for a bond graph.  Bond graphs are “grown” by executing the sequence 
of GP functions and terminals specified by the tree, upon specific bonds or nodes of the bond graph, using the 
embryo as the starting point. The initial studies reported here use the following set of bond graph elements: {C, I, R; 
0, 1}. This set is sufficient to allow us to achieve designs that have practical meaning in engineering terms, while 
still permitting other methods to be used for comparison, as an aid in assessment of our work.  

We define the GP functions and terminals for bond graph construction as follows.  There are four types of 
functions:  1) add functions that can be applied only to a junction and which add a C, I, or R element;  2) insert 
functions that can be applied to a bond and which insert a 0-junction or 1-junction into the bond; 3)  replace 
functions that can be applied to a node and which can change the type of element and corresponding parameter 
values for C, I, or R elements; and 4) arithmetic functions that perform arithmetic operations and can be used to 
determine the numerical values associated with components (Table 1).  

Some typical operations -- insert_J0 (a 0-junction) and add_R (a 1-port resistor) -- are explained in detail as 
follows.  The insert_J0 function can be applied only at a bond, and performs insertion of a 0-junction at the given 
modifiable site (Figure 6).  Inserting a 0-junction between node R and a 1-junction yields a new bond graph (the 
right side of Figure 6).  As a result, three new modifiable sites are created in the new bond graph. At each modifiable 
site, various bond growth functions can be applied, in accordance with its type.  In GP terminology, this is a strongly 
typed GP.  

In Figure 7, the R element is added to an existing junction by the add_R function. This function adds a node 
with a connecting bond.  An R element also requires an additional parameter value (ERC -- ephemeral random 
constant). 

 

C.  Bond Graph Evaluation 

As mentioned earlier, a two-stage evaluation procedure is executed to evaluate bond graph models.  The first, 
causal analysis, (see Karnopp et al., [7]), allows rapid determination of feasibility of candidate designs, thereby 
sharply reducing the time needed for analysis of designs that are infeasible. For those designs “passing” the causal 
analysis, the state model is automatically formulated.  Then one or more second-level evaluators is used (for 
example, eigenvalue analysis, impulse response, step response, etc.).  An advantage of our evaluation method is its 
ability to share these common evaluation routines, without modification, among various energy domains and 
including multi-domain systems.  The evaluation layers are depicted in Figure 8, but any particular design problem 
probably uses only a subset of these. 
 

4. CASE STUDY 1 – EIGENVALUE DESIGN 

A.  Problem Definition  

The problem of eigenvalue assignment has received a great deal of attention in control system design.  Design 
of systems to avoid instability is often an important and practical problem.  In the example that follows, a set of 
target eigenvalues is given and a bond graph model with those eigenvalues is generated.  The embryo model 
provided is shown in Figure 9. The dotted box represents the initial modifiable site (“writehead”).  The construction 
steps specified in the GP tree are executed at that point. The numbers in parentheses represent the parameter values 
found for the elements. The fitness function is defined as follows. The raw fitness, defined as rawFitness  is sum of 
the distances between target points and the closest solution points, after they are paired.  Then normalized fitness is 
calculated according to: 

)1(
15.0

raw
norm FitnessFitness ++=  

 



B.  Experimental Setup 

We used a strongly-typed version (Luke[16]) of lil-gp (Zongker and Punch[17]) to generate bond graph models.  
The GP parameters were as shown below.  The examples shown here were run on a single Pentium III processor 
rather than on a PC cluster, in order to simplify the measurement of the resources consumed.  Results were first 
reported in Seo et al. [18], in July, 2001. The GP parameters used for these eigenvalue design problems were as 
follows (in the standard notation of the GP literature):  

 
Number of generations:  100 – 500 
Population size:  100 – 500 
Initial population:  half_and_half 
Max depth:  17 
Initial depth:  2-6 
Selection:  Tournament (size=7) 
Crossover:  0.9 
Mutation:  0.1 
 

The following three sets (consisting of 2, 4, and 6 target eigenvalues, respectively) were used as targets for lilgp 
runs:  

{-1±2j}  
{-1±2j, -2±j}  
{-1±2j, -2±j, -3±0.5j} 

 

C. Results 

Figure 10 gives the solution eigenvalues obtained for a typical run with targets -1±2j. The distance errors from 
the targets, evolved number of bonds and components, and the corresponding bond graph model are also shown. 
One 1-junction and three elements (one each of C, I, and R) were added to the embryo bond graph model in 
evolution of the solution. This final resulting bond graph was obtained after some post-processing to remove 
unnecessary connections and reduce the non-state variable R to its simplest equivalent form, using a well-
established procedure.  

Figure 11 illustrates the solution eigenvalues obtained for the target set  -1±2j, -2±j. One 1-junction and six 
elements (two each of C, I, and R) evolved from the embryo.  Four state variables were evolved – one for each C or 
I element. 

Figure 12 illustrates the eigenvalues of the best solution for the target set -1±2j, -2±j, -3±0.5j. It shows that a 
bond graph with more junctions and elements was evolved, yielding a more complex structure than in the case of the 
four-eigenvalue problem.  There are some interesting observations to be made across these examples:  each bond 
graph model evolved had a symmetric number of storage (state variable) C and I elements (for example, three of 
each). Although not enough experiments have yet been run to make any statistical assertions, the results appear to be 
good for these small example problems.  These runs were produced before the ADF (Automatically Defined 
Function) facility was implemented for this strongly-typed bond graph representation, but we expect that ADF will 
allow production of better results for much larger problems, based on the prior work of Koza and our observation of 
the emergence of some useful subpatterns in the bond graphs evolved in our experiments. 
 

5. CASE STUDY 2 – ANALOG FILTER DESIGN 

A.  Problem Definition  

A filter design problem was used as a test of our approach for evolving electrical circuits with bond graphs, as first 
reported in July, 2001, in Fan et al. [19]. Three kinds of filters were chosen to verify our approach - high-pass, low-
pass, and band-pass filters. The embryo electric circuit and corresponding embryo bond graph model used in our 
filter design is shown in Figure 13. We used converted Matlab routines to evaluate frequency response of the filters 
created. As Matlab provides many powerful toolboxes for engineering computation and simulation, it facilitates 
development of source codes for our genetic programming evaluation dramatically. In addition, as all individual 



circuits passed to Matlab code for evaluation are causally valid, the occurrence of singularities is excluded, which 
enables the program to run continuously without interruption. The fitness function is defined as follows:  within the 
frequency range of interest, uniformly sample 100 points; compare the magnitudes of the frequency response at the 
sample points with target magnitudes; compute their differences and obtain the squared sum of differences as raw 
fitness.  Then normalized fitness is calculated according to: 

)1(
15.0

raw
norm FitnessFitness ++=  

The GP parameters used for eigenvalue design were as follows: 

Number of generations:  500 
Population size:  500 
Initial population:  half_and_half 
Max depth:  16 
Initial depth:  4-6 
Selection:  Tournament (size=7) 
Crossover:  0.8 
Mutation:  0.2 

 

B. Results 

The frequency output of the high-pass filter evolved is shown in Figure 14. The upper part is the magnitude of 
the frequency response, while the lower part describes its phase angle. The figure illustrates that the result is quite 
satisfactory. To get this result, the program ran in a P-III 550 for 121.9 minutes. It took the genetic programming 
algorithm 272 generations to evolve it.  

Figure 15 gives the frequency response of an evolved low-pass filter.  The program ran for 151.8 minutes, in 
which it evolved for 157 generations to get this result. 

Figure 16 gives the frequency response of the evolved band-pass filter. The program ran for 193.8 minutes, for 
a total of 270 generations, to get this result. Obviously, it is the most difficult of the three filter design problems. 

The evolved high pass filter circuit and bond graph are shown in Figure 17. From the evolved bond graph, it is 
clear that the topological structure could be simplified.  This topological redundancy is frequently observed in our 
research. We believe that allowing (or even fostering) this kind of topological redundancy is useful for ensuring the 
robustness of the evolution process. It may help the search process to traverse rugged landscapes and to avoid 
getting stuck in local minima.   
 

6. CONCLUSION 

This paper has suggested a new design methodology for automatically synthesizing designs for multi-domain, 
lumped-parameter dynamic systems – assembled from mixtures of electrical, mechanical, hydraulic, pneumatic, and 
thermal components.  A careful combination of bond graphs and genetic programming, including a multi-step 
evaluation procedure that greatly increases the efficiency of fitness assessment, appears to yield an appropriate 
approach for development of a method for synthesis of complex multi-domain systems, such as mechatronic 
systems.  As a proof of concept for this approach, evolution of a limited set of bond graphs for two design problems 
– a specified-target-eigenvalues design and filter design -- was tested. Experiments showed that both yielded 
satisfactory results in moderate times and computational expenses.  

The eigenvalue design problem can be used not only to assure the stability and transient behavior of a system, 
but also to explore various topology issues. Bond graph representation of electrical circuits permits many kinds of 
circuits to be created, and can also be extended to include diodes, transistors and various types of energy sources in 
circuits.    

These early results provide support for the conjecture that much more complex multi-domain systems with 
much more detailed performance specifications can be automatically designed, given longer execution times and/or 
using inexpensive cluster computing facilities.  

To make the automated design methodology of multi-domain systems more applicable in practice, several 
research directions are being undertaken:  1) design novel function sets for genetic programming to improve on 



current designs, comparing their advantages and disadvantages with the current function set, and seeking insights 
into the evolutionary process of genetic programming on bond graphs; 2) use a parallel realization of genetic 
programming to enhance its ability to search and improve computational efficiency; and 3) because practical designs 
usually have many constraints and criteria entering into the evaluation of design quality, such as sensitivity of the 
system to variation in the parameters of its components, implement a multi-objective genetic programming system 
to tackle this problem.  

The guiding objective continues to be to refine the approach such that it is useful for automated design of 
practical and important mechatronic systems. 
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Figure 1.  Example single-domain systems:  a) mechanical, and b) electrical  

 

 

 

 

Figure 2.  Schematic diagram of an example mechatronic system – the ball drive of an electric typewriter 

 

 

 

 

 

 

 

 

 
 

Figure 3.  The combinatorial nature of bond graph generation 
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Figure 4.  The open-ended search capability of GP compared with GA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The GP design procedure 
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Table 1. GP terminals and functions 

 

  Name #Args   Description 

  add_C 

  add_I 
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Figure 6.  The insert_J0 function  
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Figure 7.  The add_R function  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Evaluation layers for bond graph models  
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Figure 9. Embryo bond graph model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Two eigenvalues result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Four eigenvalues result 
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Figure 12. Six eigenvalues result 

 

 

R 0 

R 

S e 1 

R(0.289) 

(1.072) 

   C 
I(0.235) 

C(2.702) 

R(3.009) 

1 1 

C(1.23) 

R(0.106) 

R(4.197) 
I(0.982) 

0 

I(0.222) 0 

  

Target  eigenvalues  :  -1 ± 2j, -2 ± j , -3±0.5j 

Solution  eigenvalues : -0.998 ± 2.005j, 

  -1.983 ± 0.961j 

  -2.970 ± 0.492j 

Average distance error : 0.026 

 

added junctions : 4                                                                 

added elements  : 10                                                               

added bonds : 14                                                                

 

 

uS

RS

RL

GND
evolved circuit

:Se
uS

1

SR

RL0

Figure 13. Embryo circuit and its bond graph representation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 15. Frequency response of evolved low-pass filter 
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   Figure 16. Frequency response of evolved band-pass filter 
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   Figure 14. Frequency response of evolved high-pass filter 
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Fig 17. Evolved high-pass filter circuit and bond graph representation 


