Skip to main content
Log in

Evolving controllers for high-level applications on a service robot: a case study with exhibition visitor flow control

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

We investigate the application of simulation-based genetic programming to evolve controllers that perform high-level tasks on a service robot. As a case study, we synthesize a controller for a guide robot that manages the visitor traffic flow in an exhibition space in order to maximize the enjoyment of the visitors. We used genetic programming in a low-fidelity simulation to evolve a controller for this task, which was then transferred to a service robot. An experimental evaluation of the evolved controller in both simulation and on the actual service robot shows that it performs well compared to hand-coded heuristics, and performs comparably to a human operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The entire simulation system, including some unit test code, as well as a simple GUI for displaying simulation runs and setting some control parameters, is only 770 lines of Common Lisp code, and required approximately 25 h to implement, so this is clearly not an elaborate simulator.

References

  1. R. Beer, J. Gallagher, Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1(1), 91–122 (1992)

    Article  Google Scholar 

  2. M. Bennewitz, F. Faber, D. Joho, M. Schreiber, S. Behnke, Towards a humanoid museum guide robot that interacts with multiple persons. In Proceedings of IEEE-RAS international conference on humanoid robots (2005), pp. 418–423

  3. W. Burgard, A. Cremers, D. Fox, D. Hhnel, G. Lake-meyer, D. Schulz, W. Steiner, S. Thrun, Experiences with an interactive museum tour-guide robot. Artif. Intell. 114(1-2), 3–55 (1999)

    Article  MATH  Google Scholar 

  4. M. Ebner, A. Zell, Evolving a behavior-based control architecture- from simulations to the real world. in Proceedings of GECCO, (1999) pp. 1009–1014

  5. Fujitsu Ltd. Fujitsu Service Robot (Enon), 2010. http://www.frontech.fujitsu.com/en/forjp/robot/servicerobot/

  6. A.S. Fukunaga, Automated discovery of local search heuristics for satisfiability testing. Evol. Comput. 16(1), 31–61 (2008)

    Article  Google Scholar 

  7. J. Grefenstette, A. Schultz, An evolutionary approach to learning in robots. in Proceedings of the machine learning workshop on robot learning (1994)

  8. S. Handley, The genetic planner: the automatic generation of plans for a mobile robot via genetic programming. in Proceedings of IEEE international symposium on intelligent control, (1993), pp. 190–195

  9. I. Harvey, P. Husbands, D. Cliff. Seeing the light: artificial evolution, real vision. in Proc. Int. Conf. on Simulation of Adaptive Behavior (SAB) (1994) pp. 392–340

  10. G. Hornby, S. Takamura, J. Yokono, O. Hanagata, M. Fujita, J. Pollack, Evolution of controlelrs from a high-level simulator to a high DOF robot. in Evolvable systems: from biology to hardware; proceedings of 3rd international conference (ICES2000), Springer Lecture Notes in Computer Science Vol. 1801, ed. by J. Miller (2000), pp. 80–89

  11. G. Hornby, S. Takamura, J. Yokono, O. Hanagata, M. Fujita, J. Pollack. Evolving robust gaits with AIBO. in IEEE international conference on robotics and automation (2000), pp. 3040–3045

  12. I. Horswill, Polly: A vision-based artificial agent. in Proceedings of AAAI (1993), pp. 824–829

  13. T. Ito, H. Iba, M. Kimura, Robustness of robot programs generated by genetic programming. in Genetic programming 1996: proceedings of the first annual conference, Stanford University, CA, USA, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Cambridge, 1996), pp. 321–326

  14. N. Jakobi, Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  15. S. Kamio, H. Iba, Adaptation technique for integrating genetic programming and reinforcement learning for real robots. IEEE Trans. Evol. Comput. 9(3), 318–333 (2005)

    Article  Google Scholar 

  16. T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, N. Hagita. An affective guide robot in a shopping mall. in Proceedings of 4th ACM/IEEE international conference on human robot interaction (HRI) (2009), pp. 173–180

  17. J. Koza. Evolution of subsumption using genetic programming. in Proceedings of first European conference on artificial life (ECAL) (1992), pp. 110–119

  18. J.R. Koza, Genetic programming: on the programming of computers by means of natural selection. (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  19. W.-P. Lee, J. Hallam, H.H. Lund. Applying genetic programming to evolve behavior primitives and arbitrators for mobile robots. in Proceedings of IEEE 4th international conference on evolutionary computation, vol. 1. (IEEE Press, New York, 1997) to appear

  20. M.J. Mataric, D. Cliff, Challenges in evolving controllers for physical robots. Robot. Auton. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

  21. F. Mondada, D. Floreano, Evolution of neural control structures: some experiments on mobile robots. Robot. Auton. Syst. 16, 183–195 (1995)

    Article  Google Scholar 

  22. D.J. Montana, Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

    Article  Google Scholar 

  23. I. Muslea, SINERGY: a linear planner based on genetic programming. in Fourth European conference on planning, vol. 1348 of Lecture notes in artificial intelligence, Toulouse, France, ed. by S. Steel, R. Alami (Springer, Berlin, 24–26 Sept. 1997)

  24. A. Nelson, G. Barlow, L. Doitsidis, Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

    Article  Google Scholar 

  25. S. Nolfi, D. Floreano, O. Miglino, F. Mondada, How to evolve autonomous robots: different approaches in evolutionary robotics. in Proceedings of 4th international workshop on artificial life (1994)

  26. P. Nordin, W. Banzhaf, An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming. Adapt. Behav. 5(2), 107–140 (Fall 1996)

    Google Scholar 

  27. P. Nordin, W. Banzhaf, M. Brameier, Evolution of a world model for a miniature robot using genetic programming. Robot. Auton. Syst. 25(1–2), 105–116 (1998)

    Article  Google Scholar 

  28. I. Nourbakhsh, C. Kunz, T. Willeke, The mobot museum robot installations: a five year experiment. in Proceedings of IEEE/RSJ IROS, (2003), pp. 3636–3641

  29. I.R. Nourbakhsh, An affective mobile robot educator with a full-time job. Artif. Intell. 114(1–2), 95–124 (1999)

    Article  MATH  Google Scholar 

  30. M.L. Pilat, F. Oppacher, Robotic control using hierarchical genetic programming. in GECCO (2) (2004), pp. 642–653

  31. A. Schultz, J.J. Grefenstette, W. Adams, Robo-shepherd: Learning complex robotic behaviors. in In robotics and manufacturing: recent trends in research and applications, vol. 6 (1996), pp. 763–768

  32. S. Sharabi, M. Sipper, Gp-sumo: using genetic programming to evolve sumobots. Genetic Progr. Evol. Mach. 7(3), 211–230 (2006)

    Article  Google Scholar 

  33. M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita, Interactive humanoid robots for a science museum. IEEE Intell. Syst. 22(2), 25–32 (2007)

    Article  Google Scholar 

  34. R. Siegwart, K.O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen, R. Piguet, G. Ramel, G. Terrien, N. Tomatis, Robox at expo.02: a large-scale installation of personal robots. Robot. Auton. Syst. 42(3–4), 203–222 (2003)

    Article  MATH  Google Scholar 

  35. L. Spector, Genetic programming and ai planning systems. in Proceedings of AAAI (1994), pp. 1329–1334

  36. I. Tanev, Genetic programming incorporating biased mutation for evolution and adaptation of snakebot. Genetic Progr. Evol. Mach. 8(1), 39–59 (2007)

    Article  Google Scholar 

  37. S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hähnel, C.R. Rosenberg, N. Roy, J. Schulte, D. Schulz, Probabilistic algorithms and the interactive museum tour-guide robot minerva. I. J. Robot. Res. 19(11), 972–999 (2000)

    Article  Google Scholar 

  38. K. Wolff, P. Nordin. Learning biped locomotion from first principles on a simulated humanoid robot using linear genetic programming. in GECCO (2003), pp. 495–506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Fukunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaga, A., Hiruma, H., Komiya, K. et al. Evolving controllers for high-level applications on a service robot: a case study with exhibition visitor flow control. Genet Program Evolvable Mach 13, 239–263 (2012). https://doi.org/10.1007/s10710-011-9152-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-011-9152-3

Keywords

Navigation