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Although a number of terrain generation techniques have been proposed during the last few years, all of them have some
key constraints. Modelling techniques depend highly upon designer’s skills, time, and effort to obtain acceptable results, and
cannot be used to automatically generate terrains. The simpler methods allow only a narrow variety of terrain types and offer
little control on the outcome terrain. The Genetic Terrain Programming technique, based on evolutionary design with Genetic
Programming, allows designers to evolve terrains according to their aesthetic feelings or desired features. This technique evolves
Terrain Programmes (TPs) that are capable of generating a family of terrains—different terrains that consistently present the
same morphological characteristics. This paper presents a study about the persistence of morphological characteristics of terrains
generated with different resolutions by a given TP. Results show that it is possible to use low resolutions during the evolutionary
phase without compromising the outcome, and that terrain macrofeatures are scale invariant.
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1. Introduction

Artificial terrain generation techniques are an important
facet of graphical applications that attempt to represent a
real or an imaginary world. Among those applications are
computer animation, architecture, virtual reality, and video
games (for a more extensive list of examples check the Virtual
Terrain Project, http://www.vterrain.org/Misc/Why.html).
On the virtual terrain field, much of the research has been
focused on how to accelerate the visualisation of large
terrains to achieve interactive frame rates. As a result, many
level of detail (LOD) algorithms have been developed [1-3],
which increase rendering speeds by using simpler versions of
the geometry for objects that have lesser visual importance
such as those far away from the viewer [4]. This approach
have been successfully applied on many video games, a field
where artificial terrain generation techniques are probably
more prominent.

On the other hand, terrain generation has received less
attention in the literature. Fractal-based techniques are still
the most prevalent, specially on video games, in spite of the

several generation techniques existing today (see Section 2).
This happens because of their speed, ease of implementation,
and ability to create irregular shapes across an entire range of
LODs. Nevertheless, these techniques allow only a confined
variety of terrain types [2, 5], little control on the outcome,
and are only focused on the generation of realistic terrains.
Although this is important, it might prevent designers from
achieving their goals when they attempt to represent an
alien or an exotic looking terrain. Fractal-based techniques
do not allow designers to express their full creativity or
to evolve a terrain accordingly to their aesthetic feelings
rather than realism. The terrain novelty might have a positive
impact on a product’s target audience and increase their
interest. The Genetic Terrain Programming (GTP) technique
[6] allows the evolution of Terrain Programmes (TPs) based
on aesthetic evolutionary design with Genetic Programming
(GP). For a specific resolution, it is known the ability of those
TPs to generate a family of terrains—different terrains, but
with coherent morphological features. This paper presents
a set of experiments to study the perseverance of terrain
morphological features across different resolutions. This is



a desired characteristic by video games’ designers, as it will
enable them to adapt the terrain to the required processing
power, without recurring to additional algorithms. This
property will also help to improve performance during the
TPs’ evolutionary phase.

Section 2 introduces some background about the tra-
ditional terrain generation techniques and their main con-
strains. It also presents an overview of evolutionary systems
applied to terrain generation. Section 3 describes the GTP
technique, the developed tool, and the achieved results.
Finally, the conclusions and future work are presented on
Section 4.

2. Background

Artificial terrain generation has been addressed by several
researchers for a long time, and therefore many techniques
and algorithms have been developed. To establish a base line
of comparison with real algorithms, Saunders [7] proposed
the following list of traits that an ideal terrain generation
algorithm should have

(i) low requirements of human input,

(ii) allow a high degree of human control,

(iii) to be completely intuitive to control,

(iv) produce models at arbitrary levels of detail,
(v) fast enough for real-time applications,

(vi) to be able to generate a wide variety of recognisable
terrain types and features,

(vii) to be extensible to support new types of terrain.

Some of the listed characteristics are in tension with
one another, such as low requirements of human input
and high degree of human control. This means that all
terrain generation techniques had to choose priorities and
made some compromises regarding their traits. Another
important attribute of a terrain generation technique is
how it represents a terrain. The chosen data structure will
influence the way the terrain is built, the available tools to
manipulate it, and might affect also the terrains features
that can be represented. Height maps are probably the most
common method used to represent terrains, although other
data structures exist. Formally, a height map is a scalar
function of two variables, such that for every coordinate pair
(x, y) corresponds an elevation value h, as shown in (1). In
practice, a height map is a two-dimensional rectangular grid
of height values, where the axis values are spaced with regular
intervals valid over a finite domain (see Figure 1). The most
common data structure to represent them is 2D arrays filled
with the elevations values:

h= f(x,y). (1)

The regular structure of height maps is their main
advantage, since it allows the optimisation of operations
such as rendering, collision detection, and path finding. The
render of huge height maps in real time is now possible due
to the creation of several continuous level of detail (CLOD)
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FIGURE 1: A discrete height map example.

algorithms [1-3], which render highly visible areas of the
terrain with detailed geometry, using progressively simpler
geometry for more distant parts of the terrain. Collision
detection is greatly simplified if one of the objects is a
height map, because only a few surrounding triangles need
to be checked for collision. A second advantage is the fact
that height maps are compatible with grey-scale images (if
the heights values are normalised). This means that image
processing and computer vision techniques may be used to
construct, modify, and analyse terrain models represented
as height maps. For example, a height map can be stored,
imported, or exported using an image file format, or a filter
can be applied to smooth a rough terrain. Finally, Geographic
Information Systems (GIS) use height maps to represent
real-world terrain, which are commonly built using remote
sensing techniques such as satellite imagery and land surveys.
This is another advantage due to the significant amount of
real-world terrain models available to work with.

The main limitation of height maps is the inability to
represent structures where multiple heights exist for the same
pair of coordinates. So, height maps are inherently unable
to represent caves, overhangs, vertical surfaces, and other
terrain structures in which multiple surfaces have the same
horizontal coordinates. Fortunately, only a small percentage
of natural terrain fall into this category, and this limitation
can be overcome by using separate objects placed on top of
the terrain model. A second disadvantage of height maps is
that it has a finite uniform resolution, which means there is
no simple way to handle a terrain with different local levels of
details. If the resolution is chosen to match the average scale
of the features in the terrain, then any finer-scale features will
be simplified or eliminated. Conversely, if the resolution is
chosen to be high enough to capture the fine-scale features,
areas containing only coarse features will also be captured
at this same high resolution, an undesirable waste of space
and processing time. Ideally, a terrain representation for
terrain generation would either be infinite in resolution, or
else would adaptively increase its resolution to accommodate
the addition of fine-scale details, rather than requiring a
prior decision about resolution. A third disadvantage of
height maps is its inadequacy to represent terrain on a
planetary scale. Rectangular height maps do not map directly
to spheroid objects; usually a two-pole spherical projection
is used, and in those cases the density of height field points
will be substantially greater in areas near the poles than at
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those near the equator. For the purpose of our technique,
the advantages of height maps outcome their shortcomings,
though.

2.1. Traditional Terrain Generation Techniques. Traditional
techniques for terrain generation can be categorised into
three main groups: (1) measuring, (2) modelling, and (3)
procedural. Next, we briefly review each of these techniques.

(1) Measuring techniques gather elevation data through
real-world measurements, producing digital elevation mod-
els  (http://rockyweb.cr.usgs.gov/nmpstds/demstds.html).
These models are commonly built using remote sensing
techniques such as satellite imagery and land surveys. One
key advantage of measuring techniques lies in the fact that
they produce highly realistic terrains with minimal human
effort, although this comes at the expenses of the designer
control. In fact, if the designer wants to express specific
goals for the terrain’s design and features, this approach
may be very time-consuming since the designer may have to
search extensively for real-world data that meet her targeted
criteria.

(2) Modelling is by far the most flexible technique
for terrain generation. A human artist models or sculpts
the terrain morphology manually using a 3D modelling
programme (e.g., Maya, 3D Studio (http://www.autodesk
.com/fo-products), or Blender (http://www.blender.org)), or
a specialised terrain editor programme (e.g., the editors that
ship with video games like Unreal Tournament 2004 (http:
/[www.mobygames.com/game/unreal-tournament-2004),
SimCity 4 (http://simcity.ea.com/about/simcity4/overview
.php), or SimEarth (http://www.mobygames.com/game/
simearth-the-living-planet)). The way the terrain is built is
different depending on the features provided by the chosen
editor, but the general principle is the same. With this
approach, the designer has unlimited control over the terrain
design and features, but this might be also a disadvantage.
By delegating most or all of the details up to the designer,
this technique imposes high requirements on the designer
in terms of time and effort. Also the realism of the resulting
terrain is fully dependent on the designer’s skills.

Finally, (3) procedural techniques are those in which
the terrains are generated programmatically. This category
can further be divided into physical, spectral synthesis, and
fractal techniques.

Physically-based techniques simulate the real phenomena
of terrain evolution trough effects of physical processes such
as erosion by wind (http://www.weru.ksu.edu), water [8],
thermal [9], or plate tectonics. These techniques generate
highly realistic terrains, but require an in-depth knowledge
of the physical laws to implement and use them effectively.
Physically-based techniques are also very demanding in
terms of processing power.

Another procedural approach is the spectral synthesis.
This technique is based on the observation that fractional
Brownian motion (fBm) noise has a well-defined power
spectrum. So random frequency components can be easily
calculated and then the inverse fast Fourier transform (FFT)
can be computed to convert the frequency components into
altitudes. The problem of using this technique for simulating

real-world terrain is that it is statistically homogeneous and
isotropic, two properties that real terrain does not share [9].
Furthermore, it does not allow much control on the outcome
of terrains’ features.

Self-similarity is the key concept behind any fractal
technique. An object is said to be self-similar when magnified
subsets of the object look like (or identical to) the whole
and to each other [10]. This allows the use of fractals to
generate terrain which still looks like terrain, regardless of
the scale in which it is displayed [11]. Every time these
algorithms are executed they generate a different terrain due
to the incorporated randomness. This class of algorithms
is the favourite one by game’s designers, mainly due to
their speed and simplicity of implementation. There are
several tools available that are predominantly based on
fractal algorithms, such as Terragen (which is a hybrid frac-
tal/modelling tool) (http://www.planetside.co.uk/terragen)
and GenSurf (a mapping tool for Quake 3 Arena video game)
(http://tarot.telefragged.com/gensurf). However, generated
terrains by this techniques are easily recognised because
of the self-similarity characteristic of fractal algorithms.
Besides, not all terrain types exhibit the self-similar property
across all scales. For example, both photos from Figure 2 are
from Death Valley (Calif, USA), but seen at very different
scales. On Figure 2(a) is a close-up of cracked dried mud
in a creek from the Death Valley and on Figure 2(b) is a
satellite image of the same region. As is easily verified, in
this case there is no self-similarity between the two scales
of these terrain photos. Although these algorithms present
some parameters that can be tweaked to control, for example,
the roughness, the designer does not have control on the
resulting terrain features.

2.2. Evolutionary Terrain Generation Techniques. Evolution-
ary algorithms (EAs) are a kind of bioinspired algorithms
that apply Darwin’s theory [12] of natural evolution of
the species, where living organisms are rewarded through
their continued survival and the propagation of its own
genes to its successors. There are four main classes of EAs:
genetic algorithms (GAs) [13], evolutionary strategies [14],
GP [15], and evolutionary programming [16]. Evolutionary
algorithms can be seen as search techniques [17]. They are
able to achieve good solutions to many types of problems,
thanks to their flexibility and adaptability to different search
scenarios. This characteristic is the key factor of success in
such diverse fields as engineering, art, biology, economics,
marketing, genetics, operations research, robotics, social
sciences, physics, and chemistry. Apart from their use as opti-
misers, evolutionary algorithms have also been used as an
experimental framework to validate theories about biological
evolution and natural selection, particularly through work in
the field of artificial life [18].

Evolutionary design is a branch of evolutionary com-
putation which has its roots in three different disciplines:
computer science, evolutionary biology, and design. Evolu-
tionary design has taken place in many different areas over
the last decade. Designers have optimised selected parts of
their designs using evolution; artists have used evolution to
generate aesthetically pleasing forms; architects have evolved
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FIGURE 2: Images of Death Valley: (a) “cracked mud on the way to the borax haystacks,” by redteam, Creative Commons license, (b) a satellite
image from NASA (public domain). On this example, there is no self-similarity between the two scales of this region.
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FIGURE 3: Evolutionary design categories.

new building plans from scratch; computer scientists have
evolved morphologies and control systems of artificial life.
Evolutionary design can be divided into four main categories
[19]: evolutionary design optimisation, creative evolutionary
design, evolutionary art, and evolutionary artificial life
forms. However, some author’s work may be included in two
or more categories creating four overlapping subcategories
shown in Figure 3.

Evolutionary art systems are similar in many ways.
They all generate new forms or images from the ground
up (random initial populations); they rely upon a human
evaluator to set the fitness value of an individual based on
subjective evaluation, such as aesthetic appeal; population
sizes are very small to avoid user’s fatigue and allow a quick
evaluation, and user interfaces usually present a grid on the
screen with the current population individuals, allowing the
user to rank them. However, they differ on their phenotype
representations [20].

GP has been the most fruitful evolutionary algorithm
applied to evolve images interactively. Karl Sims used GP to
create and evolve computer graphics by mathematical equa-
tions. The equations are used to calculate each pixel [21]. He
created several graphic art pieces including Panspermia and
Primordial Dance, and also allowed visitors to interact with
his interactive art system at art shows and exhibitions. His
Galapagos (http://www.karlsims.com/galapagos/index.html)
is an L-system-based interactive evolutionary computation
(IEC) system that allows visitors to create their own graphic
art through their interaction.

Tatsuo Unemi developed Simulated Breeding ART
(SBART) [22, 23], an IEC graphics system open to public.
SBART wuses GP to create mathematical equations for
calculating each pixel value and its (x,y) coordinates. As
GP nodes, SBART assigns the four arithmetic fundamental
operators (+, —, X, and +), power, sqrt, sin, cos, log, exp, min,
and max. The terminal nodes are constants and variables.
Three values at each pixel are calculated using one generated
mathematical equation by assuming that the constants are
3D vectors consisting of three real numbers, and the variables
are a 3D tuple consisting of (x, ¥,0). The three calculated
values are regarded as members of a vector (hue, lightness,
and saturation), and are transformed to RGB values for
each pixel. These three values are normalised to values in
[—1,1] using a saw-like function. The SBART’s functions
were expanded to create a collage [24]. A human user
selects preferred 2D images from 20 displayed images at each
generation, and the system creates the next 20 offspring.
Sometimes exporting/importing parents among multiple
SBART instances is allowed. This operation is iterated until
the user obtains a satisfactory image.

In Neuro Evolutionary Art (NEvAr) [25], of Machado
and Cardoso, the function set is composed mainly of
simple functions such as arithmetic, trigonometric, and logic
operations. The terminal set is composed of a set of variables
x,y, and random constants. The phenotype (image) is
generated by evaluating the genotype for each (x,y) pair
belonging to the image. In order to produce colour images,
NEVATr resorts to a special kind of terminal that returns a
different value depending on the colour channel—red, green,
or blue—that is being processed. This tool focuses on the
reuse of useful individuals, which are stored in an image
database and led to the development of automatic seeding
procedures.

To the best of our knowledge, Ong et al. [26] were the
first authors to propose an evolutionary approach to generate
terrains. They proposed an evolutionary design optimisation
technique to generate terrains by applying genetic algorithms
to transform height maps in order to conform them to the
required features. Their approach breaks down the terrain
generation process into two stages: the terrain silhouette
generation phase, and the terrain height map generation
phase. The input to the first phase is a rough 2D map
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laying out the geography of the desired terrain that can be
randomly generated or specified by the designer. This map
is processed by the first phase to remove any unnaturally
straight edges and then fed to the second phase, along with a
database of preselected height map samples representative of
the different terrain types. The second phase searches for an
optimal arrangement of elevation data from the database that
approximates the map generated in the first phase. Since the
height map generation algorithm is inherently random, the
terrains generated from two separate runs of the algorithm
will not be the same, even if they use the same map.

We proposed a new technique, based on aesthetic evolu-
tionary design, designated GTP [6]. Our approach consists
on the combination of interactive evolutionary art systems
with GP to evolve mathematical expressions, designated TPs,
to generate artificial terrains as height maps. GTP relies on
GP as evolutionary algorithm, which creates mathematical
expressions as solutions (further details are presented on
Section 3).

2.3. Genetic Programming. Genetic programming (GP) is an
evolutionary computation (EC) technique that automatically
solves problems without requiring the user to know or
specify the form or structure of the solution in advance. More
precisely, GP is a systematic domain-independent method
for getting computers to solve problems automatically start-
ing from a high-level statement of what needs to be done.
In GP, a population of computer programmes is evolved.
Generation by generation, a population of programmes
is stochastically transformed into new, hopefully better,
populations of programmes [27]. Due to its heuristic nature,
GP can never guarantee results. However, it has been
used successfully in many areas, such as [17] artificial life,
robots and autonomous agents, financial trading, neural
networks, art, image and signal processing, prediction and
classification, and optimisation.

Algorithm 1 shows the basic steps of GP. The generated
programmes are run for evaluation (Line 3) and compared
with some ideal. This comparison is quantified to give
a numeric value called fitness. The best programmes are
chosen to breed (Line 4) and produce new programmes for
the next generation (Line 5). The primary genetic operators
used to create new programmes from existing ones are the
following:

(i) crossover: the creation of a child programme by
combining randomly chosen parts from two selected
parent programmes,

(ii) mutation: the creation of a new child programme
by randomly altering a randomly chosen part of a
selected parent programme.

In GP, programmes are usually expressed as trees rather
than as lines of code. For example, Figure 4 shows the tree
representation of the programme max(x + x,x + 3% y). The
variables and constants in the programme (x, y, and 3) are
leaves of the tree, or terminals in GP terminology. The
arithmetic operations (+, *, and max) are internal nodes

called functions. The sets of allowed functions and terminals
together form the primitive set of a GP system.

For those who wish to learn more about GP, the book
A Field Guide to Genetic Programming from Poli et al. [27]
has a very good introduction to GP. A thoroughly analysis on
this topic is provided on the book Genetic Programming—On
the Programming of Computers by Means of Natural Selection
by Koza [15], the main proponent of GP who has pioneered
the application of Genetic Programming in various complex
optimisation and search problems.

3. Genetic Terrain Programming

Current terrain generation techniques have their own advan-
tages and disadvantages, as detailed in Section 2. Notwith-
standing the importance of real-looking terrains, none of the
existing methods focused on generating terrains accordingly
to designers’ aesthetic appeal. The main goals of GTP are
to address the weaknesses of existing methods, allowing
also the generation of aesthetic terrains. Thus, providing a
better way of generating virtual terrains for a broad range of
applications, with a special emphasis on video games.

In light of the idealised terrain generator, the goals of
GTP are (in order of decreasing importance) as follows:

(1) capable of generating diverse features and terrain
types, both aesthetic and realistic,

(2) extensibility,
(3) intuitive to control,
(4) automated generation with arbitrary resolution,

(5) low requirements of human input.

To achieve these goals, we use aesthetic evolutionary
design with GP, where the phenotypes are terrains repre-
sented as height maps. This approach consists of a guided
evolution, through interactive evolution, according to a
specific desired terrain feature or aesthetic appeal. The
extensibility and ability to generate diverse features and
terrain types are assured by the GP. The diversity of solutions
is directly dependent on the GP terminal and function sets.
So, the extensibility feature can be easily achieved by adding
new functions and terminals. The designer will guide the
terrains evolution, performing this way the control of the
outcome, by selecting which ones he prefers for his specific
goals. Consequently, the software tool will be easy and
intuitive to use with low input requirements. The outcome of
the interactive evolution will be TPs, which are mathematical
expressions with incorporated randomness. Those TPs can
be used, like a procedural technique, to automatically
generate different terrains with different resolutions and the
same consistent features.

3.1. Method. The initial population is created randomly,
with trees depth size limited initially to 6 and a fixed
population size of 12. The number of generations is decided
by the designer, who can stop the algorithm at any time.
The designer can select one or two individuals to create
the next population, and the genetic operators used depend
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: repeat

probabilities

7: return the best-so-far individual

: Randomly create an initial population of programs from the available primitives

Execute each program and ascertain its fitness

Select one or two program(s) from the population with a probability based on
fitness to participate in genetic operations

5:  Create new individual program(s) by applying genetic operations with specified

6: until an acceptable solution is found or some other stopping condition is met (e.g.,
a maximum number of generations is reached)

ArLgoriTHM I: Genetic programming basic algorithm [27].

FIGURE 4: GP tree representation of max(x + x, x + 3% y).

upon the number of selected individuals. If one individual is
selected, only the mutation operator will be used. In case the
designer chooses to select two individuals, both the standard
crossover and mutation operators [15] will be applied (see
Table 3). Like in others IEC systems, the fitness function
relies exclusively on designers’ decision, either based on his
aesthetic appeal or on desired features.

According to Bentley [20], the designer is likely to
score individuals highly inconsistently as he might adapt
his requirements along with the evolved results. So, the
continuous generation of new forms based on the fittest
from the previous generation is essential. Consequently,
nonconvergence of the EA is a requirement. Evolutionary
art systems do not usually use crossover operators on their
algorithms, because EAs are used as a continuous novelty
generators, not as optimisers. Therefore, in our algorithm,
the use of two individuals for breeding the next generation
should be limited. The extensive use of crossover operator
will converge the population to a single solution, leading
to the loss of diversity and limiting the designer to explore
further forms.

Each GP individual is a tree composed by functions,
listed in Table 1, and height maps as terminals (see Table 2).
Most terminals depend upon a random ephemeral constant
(REC) to define some characteristics, such as the spectrum
value of fftGen. All terminals have some form of randomness,
which means that consecutive calls of the same terminal will
always generate a slightly different height map. This is a
desired characteristic because we want to be able to create
different terrains by each TP, but we want them to share

TasLE 1: GP functions.

Name

plus(hy, hy)
minus(hy, h,)
multiply(hy, hy)

Description

Arithmetical functions

sin(h)

cos(h) Trigonometric functions

tan(h)

atan(h)

myLog(h) Returns 0 if & = 0 and log(abs(h))

otherwise

Returns 0 if hlfz is NaN or Inf, or has
. . . ha
imaginary part, otherwise returns h;
Returns h; if h, = 0and h; + h,

myPower(hy, h,)

myDivide(h;, hy)

otherwise
myMod(hy, hy) Returns 0 if h, = 0 and mod (hy, hy)
otherwise
mySqrt(h) Returns sqrt (abs(h))
negative(h) Returns —h
FFT(h) 2D discrete Fourier transform
smooth(h) Circular averaging filter with r = 5
gradient X (h) Returns the gradient (dh/dx or dh/dy)
gradient Y (h) of a height map h. Spacing between

points is assumed to be 1

the same features. All terminals generate surfaces that are
proportional to the side size of the height map. This ensures
that the terrain features of a TP are scale invariant. Figure 5
shows height maps of size 30 X 30 generated by terminals
fftGen, gauss, step, and sphere. Except rand, all terminals
depend upon a random ephemeral constant (REC) to define
some characteristics. REC is a special terminal that creates
values randomly which remain constant until it disappears
from the GP tree due to the use of a genetic operators.
Figure 6 presents an example of a TP in tree form with two
REC values represented in grey ellipses within the terminals.

While in [23, 24], the mathematical equations are used to
calculate both the pixel value and its coordinates, in GenTP
only the height will be calculated. The (x, y) coordinates will
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FIGURE 5: Examples of height maps terminals fftGen, gauss, step, and sphere.

TaBLE 2: GP terminals.

Name Description

Map with random heights between 0
and 1

Spectral synthesis-based height map,
whose spectrum depends on an REC:
1/(fREC)

Gaussian bell shape height map, whose
wideness depends on an REC

rand

ftGen

gauss

Flat inclined plane height map whose
orientation depends on an REC within
8 values

plane

Step shape height map whose
step orientation depends on an REC within
4 values

Semisphere height map whose centre
location is random and the radius
depends on an REC

sphere

be dictated by the matrix position occupied by the height
value.

In GTP, the 12 individuals of the population must be
executed during the interactive evolutionary phase to be
evaluated by a designer, which will choose the TPs for the
next generation. This means that using high resolution on
this phase will consume more time, and the application
will be less responsive. An additional variable (that will

FIGURE 6: Example of a GP tree individual with two RECs (in grey
ellipses).

be denoted as s) is introduced in all terminals to control
the resolution during the TP execution. The axis values in
the terminals’ functions are discrete with regular intervals,
and the variable s controls the spacing between axis values
by specifying the height map grid size, which covers a
predefined area. The greater is the s value, the lesser is
the distance between each grid point and greater is the
resolution.

3.2. GenTP Tool. To implement this new technique, we
developed Generator of Terrain Programs (GenTP) [28],
an application developed with GPLAB (http://gplab
.sourceforge.net/), an open source GP toolbox for MATLAB
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TABLE 3: Parameters for a GTP run.

Objective
Function set
Terminal set

Selection and fitness

Generate realistic or aesthetic terrains
Functions from Table 1, all operating on matrices with float numbers
Terminals from Table 2 chosen randomly

Decided by the designer accordingly to desired terrain features or aesthetic appeal

Population Fixed size with 12 individuals; initial depth limit 6; no tree size limits; random initialisation
If 2 individuals are selected: 90% subtree crossover and 10% mutation; if just one individual is
Parameters selected: 50% mutation (without crossover)
Three mutation operators are used with equal probability: (1) Replace mutation where a random
node is replaced with a new random tree generated by the grow method; (2) Shrink mutation
where a random subtree (S) is chosen from the parent tree and replaced by a random subtree of S;
Operators (3) Swap mutation where two random subtrees are chosen from the parent tree and swapped,
whenever possible the two subtrees do not intersect. One crossover operator is used: subtree
crossover where random nodes are chosen from both parent trees, and the respective branches are
swapped creating two offsprings
Termination Can be stopped at any time by the designer, the “best” individual is chosen by the designer
( Main interface N Analyze interface h
Interactive evolution Resolu'tion,
- rotation,
Generation n — 1 | Zoom
Generation n .
Multiple
TP1 ..t " ]_L]executions
- Lo of the
Lo TP12 same TP
A== L\l
e e
—)_—)‘ Family of terrains i
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Generation module | with coherent :
1 morphological
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FIGURE 7: GenTP’s functional modules.

(http://www.mathworks.com/). GenTP has three functional
modules (depicted in Figure 7):

(i) interactive evolution,
(ii) analyse,

(iii) generation.

The interactive evolution module is where the GP is
implemented, and the designer chooses the desired terrains
for the next generation, for the analyse or generation
modules. Figure 8 shows the graphical user interface (GUI)
of GenTP’s main interface, which is the visible part of the
interactive evolution module. The 12 individuals of current
population are represented as 3D surfaces and displayed in
a 3 x 4 grid. Each TP is evaluated to produce a height map
of size 100 x 100 to be displayed to the designer. The height
map size can be changed, but should be kept small otherwise
it might have a negative impact in the tool responsiveness.
We will return to this point later on Section 3.3.

The GenTP main GUI allows a designer to select one
or two individuals to create the next population generation.

F1IGURE 8: GenTP main user’s interface.

The number of selected TPs will influence their evolution.
If just one TP is selected—only the mutation operator will
be applied—the next generation will present few variations
from the selected individual, and the TP will evolve slowly.
On the other hand, if the designer opts to select two
individuals, the next generation will present more diversity
and the evolved TPs can change their look more dramatically.

On the bottom of the main GUI, the designer can see
the TP mathematical expression that generated the selected
terrain and save it on a text file or database. This option will
allow the integration of TPs, as a procedural technique, to
produce terrains for example on a video game.

Although the main interface serves its purpose, some
times it is difficult to see all TP features due the display
angle used to show the generated terrain. It may be also
difficult to inspect small details of a generated terrain, and
it is not possible to test the TP’s features perseverance across
multiple executions. For these reasons, it might be difficult
for the designer to chose the TPs for the next generation. To
solve these limitations, the analyse module was added to our
application. This new functionality opens a new window, see
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FIGURE 10: Family of terrains from TP in (2): (a) represented as
grey-scale images, (b) rendered with 3D studio.

Figure 9, and performs 8 consecutive executions of the TP
selected from the main interface. To allow a more detailed
analysis of the TP characteristics, this interface allows the
designer to rotate, zoom, and change the terrains resolution.
This way the designer has more information about a TP to
decide if it will be selected, or not, for the next generation.
When the designer achieves the desired TP, then he can
save it in a file, or can pass it to the generator module. This
module is responsible for the generation of height maps, as
many as desired, from the selected TP. Those height maps
can be saved as VRML 2.0 permitting its import from other
applications, such as 3D modelling and render tools.

3.3. Experimental Results. Our previous work [6] has shown
the ability of our technique to evolve TPs capable of
generating a family of height maps (different terrains that
share the same morphological characteristics). Figure 10
shows terrains from a TP evolved with river beds in mind,

[N

FIGURE 11: Family of terrains from TP in (3): (a) represented as
grey-scale images, (b) rendered with 3D studio.

and Figure 11 shows terrains from a TP evolved to obtain a
family of aesthetic terrains. All these results were obtained
with a fixed resolution of 200 x 200.

An experiment was conducted to test the perseverance of
terrain features across several resolutions and the consequent
impact in generation time on our evolutionary tool [29]. A
set of TPs was chosen to generate terrains with grid sizes from
50 to 450 with increments of 50. To perform these tests, it
was necessary to modify the terminals in order to include the
variable s to specify the resulting height map size.

Figures 12, 13, 14, and 15 present the results of TP’s
shown in (4), (5), (6), and (7) at three different resolutions
with grid sizes of 50 x 50, 150 x 150, and 450 x 450.

TP = myLog (myLog (cos(minus (fftGen (2.00),

fiGen (3.75) @
TP = myLog (myLog (myLog(myLog (myLog ( 3)
myLog(fftGen (3.00)))))))

TP = myLog (myLog (myMod (myLog (fftGen (s, 3.75)),
myLog (myLog (fftGen (s, 4.25))))))
(4)
TP = myPower (cos(myDivide (myLog (smooth(
fftGen(s,2.75))), myMod (sin(fftGen (s,0.50)),
myDivide (myLog (smooth (fftGen (s,2.75))),
myMod ((sin(fftGen (s,0.50))), fftGen (s,2.25))))))
(5)
TP = multiply( sin(fftGen(s, 3.00)), smooth(
multiply(sin(cos(sin(cos(multiply(fftGen (s, 1.75),

fftGen (5,0.75)))))), fftGen (s,0.50))))
(6)
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FIGURE 12: Exotic terrain generated by TP in (4), with resolutions
50 x 50, 150 x 150, and 450 x 450.

TP = plus (fftGen (s,2.00),
smooth (myMod (gauss (s, 0.75), (7)
cos(fftGen (s,1.00)))))

In these experiments, all TPs have preserved their main
features independently of the chosen grid size. Due to the
inherent randomness embedded in terminals, consecutive
calls of the same TP will always generate a slightly different
height map. This is a desired characteristic, that can be
controlled by fixating the random number seed. Note that
when generating terrains at different resolutions, the amount
of necessary random numbers will vary accordingly with the
chosen resolution. This explains the differences from terrains
at different resolutions generated by the same TP.

Figure 16 shows the average time of 10 executions of
each TP at each grid size on a Pentium Core 2 Duo at
1.66 GHz with 2 GB of RAM. As expected, the generation
time increases at a quadratic pace with the increase of the
number of grid points, for example, for TP 7 from 18.4
millisecond at 50 x 50 to 1066.0 millisecond at 450 x 450.
The generation time also increased, as anticipated, with the
number of TP’s nodes.

The values presented on Figure 16 are the times for
generating each individual. The time to generate the entire
population must be multiplied by the population size. For
TP 5 (with 17 nodes) with a resolution of 450 x 450,
each individual takes 3.122 seconds. So, to generate an
entire population of 12 indviduals, 37.464 seconds will be

FIGure 13: Exotic terrains generated by TP in (5), with resolutions
50 x 50, 150 x 150, and 450 x 450.

needed. A delay of this magnitude is not negligible and will
have a negative impact on the response time of interactive
application such as our tool. According to Card et al. [30]
and Testa and Dearie [31],

(i) 0.1 second is about the limit for having the user feel
that the system is reacting instantaneously, meaning
that no special feedback is necessary except to display
the result;

(ii) 1.0 second is about the limit for the user’s flow of
thought to stay uninterrupted, even though the user
will notice the delay. Normally, no special feedback
is necessary during delays of more than 0.1 but less
than 1.0 second, but the user does lose the feeling of
operating directly on the data;

(iii) 10 seconds are about the limit for keeping the user’s
attention focused on the dialogue. For longer delays,
users will want to perform other tasks while waiting
for the computer to finish, so they should be given
feedback indicating when the computer expects to
be done. Feedback during the delay is especially
important if the response time is likely to be highly
variable, since users will then not know what to
expect.
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FIGURE 14: Mountains generated by TP in (6), with resolutions 50 X
50, 150 x 150, and 450 X 450.

The response times should be as fast as possible to keep
designer’s attention focused on the application. Our goal is
to keep generation times for the entire population around 1
second and never exceeding 10 seconds. The generation time
depends on the chosen resolution and on each individual
number of nodes, which tends to increase with the number
of GP generations, a phenomenon known as bloat [27]. So,
from the responsiveness point of view, the use of the lowest
resolutions for the evolutionary phase is better. However, if
the used resolution is too low the output might not represent
all the terrain features, specially small details, and force the
designer to use the analyse window more often. This will
increase the time needed by the designer to choose the best
terrain at each generation and consequently the overall time
to achieve the desired terrain. A compromise must be made
between the terrain resolution for the evolutionary phase and
the application responsiveness. From our set of experiences
we found the grid size of 100 X 100 to be the best settlement.
Short generation times will be also advantageous for the
future implementation of automated terrain evolution.

Once the TP is designed it can be used on a video game
like any other procedural technique. On this case, the time
for generating a new terrain is negligible, given that it will be
generated before the game begins, during the “load” period.

FIGURE 15: Volcanoes generated by TP in (7), with resolutions 50 x
50, 150 x 150, and 450 x 450.

4. Conclusions and Future Work

This paper presented the GTP technique which allows the
evolution of TPs to produce terrains accordingly to designers’
aesthetic feelings or desired features. Through a series of
experiments we have shown that the feature persistence
is independent of the chosen resolution. This means that
during the evolutionary phase low resolutions can be used
without compromising the result. Consequently less time
will be required for our evolutionary tool, enabling it to
be more responsive, which is an important characteristic
on interactive tools. Additionally, the resulting TPs can be
incorporated in video games, like any other procedural
technique, to generate terrains, with the same features,
independently of the chosen resolution.

Some game publishers require that all players have the
same game “experience” if they make the same choices.
They want to measure or obtain quality control both on
the user experience side as well as on the development
and testing end. This requirement seems to contradict
our goal of achieving different terrains with the same TP.
However, if a TP is incorporated on a video game as a
procedural technique, our technique can deliver two levels of
control regarding randomness. First, a specific TP will always
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FIGURE 16: Terrain generation times versus grid sizes.

generate terrains with the same features, this means that in
spite of the present randomness those terrains are similar and
not completely random. Second, if full control over the final
terrain is required the seed for the random number generator
can be kept the same across separate runs of the TP, allowing
the same terrain to be regenerated as many times as desired.

The TPs’ scale invariance showed in our results preludes
the implementation of a zoom feature. Fixating the random
number generator seed is not enough to implement this
feature due to the variation of the amount of necessary
random numbers accordingly with the zoom. Besides, some
terminals, like rand and fftGen, are not based on continuous
functions. Other improvement to our technique will be the
composition of a terrain through the use of several TPs,
previously stored on a database, where the generated terrains
will be joined on a credibly and smooth way. This will allow
the control over localised terrain features. We also want
to implement the GTP technique as a Blender plug-in to
increase both the flexibility and the target audience for our
technique.

The search for a terrain with a specific feature might be a
tiresome endeavour on interactive evolutionary applications
[20]. Therefore, it is desirable to automate, as much as
possible, the task of evaluating TPs to avoid designers

International Journal of Computer Games Technology

fatigue. We plan to develop fitness functions to perform
the automatic evaluation of TPs accordingly to a feature by
means of statistic measures. Another future work will be
the inclusion of more features in our technique in order to
generate full landscapes including textures, vegetation, and
buildings.
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