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ABSTRACT

An underlying problem in genetic programming (GP) is how
to ensure sufficient useful diversity in the population dur-
ing search. Having a wide range of diverse (sub)component
structures available for recombination and/or mutation is
important in preventing premature converge. We propose
two new fitness disaggregation approaches that make ex-
plicit use of the information in the test cases (i.e., program
semantics) to preserve diversity in the population. The first
method preserves the best programs which pass each indi-
vidual test case, the second preserves those which are non-
dominated across test cases (multi-objectivisation). We use
these in standard GP, and compare them to using standard
fitness sharing, and using standard (aggregate) fitness in
tournament selection. We also examine the effect of includ-
ing a simple anti-bloat criterion in the selection mechanism.
We find that the non-domination approach, employing anti-
bloat, significantly speeds up convergence to the optimum
on a range of standard Boolean test problems. Furthermore,
its best performance occurs with a considerably smaller pop-
ulation size than typically employed in GP.

CCS Concepts

eComputing methodologies — Genetic programming;
eApplied computing — Multi-criterion optimization
and decision-making;
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1. INTRODUCTION

Interest in semantic methods in Genetic Programming
(GP) has increased over the last few years. In GP, a widely-
adopted notion of semantics of a program is the vector of
the program outputs for all (test) input combinations. The
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output vector can be also seen as the disaggregation of the
fitness function in terms of its composite test cases. Recent
results clearly indicate that use of semantics in GP consid-
erably increases performance (e.g., [13]).

Several works have focused on using semantics to guide
the design of novel mutation and crossover operators (e.g.,
[14, 10]). Other works have emphasized the importance of
preserving semantic diversity in the population. McPhee et
al. [12] analysed the impact of subtree crossover in Boolean
problems in terms of semantic building blocks. They found
that a major problem with this operator is that only 10% of
crossover events result in a offspring semantically different
from the parents. This may quickly lead to a loss of seman-
tic diversity in the population, hence to stagnation. Beadle
and Johnson [3] proposed a crossover operator that explic-
itly promotes semantic diversity during search obtaining im-
proved performance. Jackson [7] also showed how another
form of crossover that promotes semantic diversity results
in better performance.

There are some works that use semantics in selection. A
traditional work on this subject is fitness sharing in GP [11]
which uses information from the individual test cases to de-
termine a new fitness measure obtained by a linear combina-
tion of the contributions of the test cases each weighted by
its relative frequency in the population. This is a commonly
used diversity preservation approach in GP. Much more re-
cent work [5] proposes to select parents for recombination
such they are not only fit but also semantically different (in
terms of semantic distance on output vectors). This there-
fore attempts to increase the probability of producing off-
spring semantically different from their parents.

Multi-objectivisation is the conversion of a uni-objective
problem into a multi-objective version to improve search [8,
18]. Bi-objective formulations have regularly been used in
GP where the second objective is to minimise bloat (pro-
gram size) [15]. Recently, in [9], a multi-objectivisation of
GP is proposed, based on features describing the interme-
diate behaviour of programs. Here we examine a multi-
objectivisation of GP based on treating the entire output
vector of a program (its semantics), i.e., its disaggregated
fitness, as a vector of objectives. Disaggregation is appealing
because it is a means to ensure that once an individual test
case has been solved (i.e. passed) by a program in the popu-
lation this capability is not subsequently lost. Furthermore,
non-dominance naturally maintains rich semantic diversity
in the population.

In this paper we look empirically at the Boolean domain,
however we consider more general formulations at the end.



Algorithm 1 Simple Boolean GP algorithm.

Require: D Assessment data, with n test cases
Require: s Population size
Require: ¢ Number of generations
Require: k Max. # of nodes permitted in a program
Require: ¢ Probability of crossover
Require: p Probability of node being mutated

1: X := initialise_population(s, k)
2: fori:=1toi:=sdo

3 Y; := evaluate(X;, D)

4: end for

5: for g generations do

6: for s repititions do

7 p := binary_tournament_selection(X)

8 if Uniform_draw() < ¢ then

9 ¢ := binary_tournament_selection(X \ {X,})

10: x := crossover(Xp, Xq, k)

11: else

12: x := mutate(X,, p)

13: end if

14: y := evaluate(x, D)

15: i := reverse_binary_tournament_selection(X,Y)
16: X;:=x

17: Yi:=y

18:  end for

19: end for

The paper proceeds as follows. In section 2 we describe the
Boolean GP that is the foundation of the empirical work
here, along with traditional fitness sharing in GP. In Sec-
tion 3 we describe two disaggregation approaches, along with
their properties, prior to the empirical comparison in Sec-
tion 4. In Section 5 we discuss the results, their implications,
and directions for future work.

2. THE BENCHMARK GP OPTIMISER

We employ a Boolean analogue of the symbolic regression
TinyGP of [15] as the baseline algorithm, which is outlined in
Algorithm 1. The low complexity of this algorithm enables
us to focus on the effect of the disaggregation approaches
without too many other interactions which may affect the
results and therefore cloud the conclusions that may be rea-
sonably drawn.

2.1 Basic algorithm

The algorithm maintains a population of fixed size, s.
Each generation s offspring programs are created. These are
either generated by crossover of two parents, each selected
by binary tournament selection, or via mutation of a single
parent selected by binary tournament selection. The quality
measure used in the selection is the standard uni-objective
aggregation — i.e. how many test cases have the two pro-
grams passed (all the test cases in D being processed). After
the generation and evaluation of each child program (lines
6-13) a current population member is selected for replace-
ment by the child. This is accomplished via reverse binary
tournament selection. In the baseline algorithm all solu-
tions, except the single best solution in the population, may
be replaced in the reverse binary tournament selection, thus
making the algorithm elitest. We denote the elite subset of
the population by X/ and refer to its members as marked

solutions, so for the benchmark optimiser Xy = {Xpest}-
By marking and protecting the best solution discovered so
far, the best performing solution will improve monotonically.

We make available all 16 possible Boolean binary oper-
ators as the function set during the program initialisation
(line 1), instead of limiting the set to e.g., AND, OR and
NOT. In this fashion we do not bias the search domain in
favour of gates that are known to be well-suited to the prob-
lems we will be experimenting with. The programs are de-
noted as trees, and represented internally as arrays of nodes.
At initialisation, the root node is always chosen from the
function set. All subsequent nodes in the tree have a 50/50
chance of being selected as a random member of the func-
tion set, or a random terminal (representing one of the in-
put variables), as in [15]. The maximum permitted depth
of the initialised program tree is 10 levels, so nodes at level
10 are always selected as terminals. There is no level con-
straint for child programs enforced by crossover or mutation.
All trees also have the constraint that they must not con-
tain in excess of k nodes in total. We use standard subtree
crossover (line 10). If the resultant child contains more than
k nodes, the crossover points are drawn again until a child is
obtained within the £ bound. We use standard point muta-
tion (line 12), so if a terminal node is selected for mutation
it is changed at random to a different terminal node; if a
function set node is selected it is changed at random to an-
other function set member. We denote this algorithm ‘B’
for benchmark.

All algorithms in our comparison are modifications of this
baseline algorithm. They only differ in the reverse binary
tournament selection (i.e. in the way they determine the
population of programs that may be selected for replace-
ment). To isolate the effect of the diversity in the population
brought by the different replacement mechanisms, we do not
change how parent programs are chosen during selection, or
any other aspects of the baseline GP.

2.2 Fitness sharing

A standard approach to promote diversity in the popula-
tion, which uses information from the test cases, is fitness
sharing (see [11] for an early example of its use in GP). Here
the raw aggregate fitness of a program is modified in light
of how many other programs in the current population solve
the same test cases from the set D. In algorithm ‘B’, the
aggregate fitness of the ith program in the population is:

fagg(Xi,D) = fa(Xi, Da) (1)

Where fq(X;,Dq) returns 1 if the program is correct on the
dth test case, and 0 otherwise. In fitness sharing fugq is
replaced by:

n

fa(Xi, Da)
= max (1,1 f(X;, Da))

This fitness function down-weights the contribution of the
test cases the ith program passes, in proportion to the num-
ber of programs in the population that also pass these test
cases. The max function is used to ensure there are no di-
visions by zero.

We refer to Algorithm 1 employing fitness sharing in the
reverse binary tournament selection subroutine (line 15) as
variant ‘F” for fitness sharing,.

fsha're (Xu D) =
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Figure 1: Illustration of the population, X, in array and tree
notations, and corresponding test case results, Y. In X, the
functional set elements are indicated with a value 1-16, and
terminals with 17+. Each program has a corresponding row
in Y, denoting the success, 1, or failure, 0, on the test cases.
Due to space limitations, we display only five test cases.

3. DISAGGREGATION APPROACHES

A typical elitist approach is to ensure that the best solu-
tion in a population does not degrade in quality from one
generation to the next. This is achieved by either marking
the best solution in a population and ensuring it does not
get selected for replacement, or equivalently, by ensuring the
reverse binary tournament selection draws without replace-
ment when drawing pairs.' In the illustration in Figure 1
this would mean X5 is marked as it has an aggregation fit-
ness of 3 (passing three out of five test cases), which is the
highest in the population.

3.1 Preserving the best solver for each test case

In our first disaggregation approach, for each test case
that has been passed (solved) by at least one member of
the current population, we preserve one such program by
marking it. In the worst case, this results in the marked
subset of X, denoted Xy, consisting of n programs (one
program for each of the n test cases). For instance, this
maximum would occur if all programs only passed at most
one test case, and all test cases have been passed by at least
one population member. When there are many population
members that have solved the same test case, the member of
this subset which has solved the most test cases in total is the
one marked as the best solver for the test concerned. Often
the cardinality of the marked subset will be much smaller
than n as the same solution may be selected to represent
more than one test (as, if it solves many test cases, it is
likely to have a high overall aggregate score, and therefore
is likely to be ranked first for many of the test cases it solves).
As long as Xy is a proper subset of X, the X s solutions
are not considered for replacement. For the test results in
Figure 1 this would mean Xn = {X1, X2, X3} or Xy =

"Many implementations, including [15], draw with replace-
ment, so, unless the elite member is not marked in some
other fashion, there is no guarantee the best solution in the
population will not degrade in quality from one generation
to the next.

{X1,X2,X4}. Xi is marked as it is the aggregate fittest
(and only) solution that solves test 1. X, is marked as it
is the aggregate fittest solver of tests 2, 4 and 5. Test 3 is
solved by X3 and X5, which have equal aggregate fitness —
in this case the program which was assessed first out of these
two will be the marked program.

This approach has two attractive properties:

1. Weakly performing solutions that solve test cases that
others do not are preserved, even if in aggregate they
may be considered less fit (similar to fitness sharing).

2. The size of the marked set grows only linearly with the
number of test cases — meaning with reasonably-sized
populations it is unlikely that any of the X s members
will have to be discarded. To be certain of this, we
could ensure s > n.

We denote this variant of Algorithm 1 by ‘S’ for best
solvers.

3.2 Preserving the non-dominated members

Our second disaggregation approach treats passing each
individual test as a separate objective, recasting the prob-
lem as a form of multi-objective optimisation. This means
that each program is concerned with simultaneously max-
imising n objectives: fq(x), d = 1,...,n. A program x
is said to dominate another x' iff fq(x) > fa(x') Vd =
1,...,n and f(x) # f(x'). This is denoted as x = x'.
To ensure diversity is maintained in this variant the non-
dominated subset of the population is marked for preser-
vation, meaning only dominated members are selected for
replacement. In the illustration in Figure 1 this would mean
Xm = {X1, X2, X3, X5} as X4 is the only dominated mem-
ber of the population (being dominated by X2).

Unfortunately, even for a simple toy problem like the 4-
multiplexer, which has six Boolean inputs (four data signals
and two selectors) and a single Boolean output, there are
64 different test cases and therefore effectively 64 different
objectives. This results in what is commonly known as a
many-objective problem in the multi-objective optimisation
community [17, 6, 4] (i.e. one with four or more objectives).
Traditional Pareto-dominance based approaches scale very
badly on these types of problems, and the development of
effective optimisers is still very much an open area of re-
search.

However, in this situation our underlying problem is uni-
objective, and the disaggregation into multiple competing
objectives is for the purposes of diversity preservation (and
subsequent exploitation). We will often deem a GP run
which does not result in a solution satisfying all the test
cases a failure — whereas it is usual in multi/many-objective
optimisation to expect a set of solutions to be returned, from
which the end-user will have to select one or more individu-
als to use. Furthermore, in Boolean problems the properties
are rather different to those usually confronted in many-
objective optimisation. In the Boolean GP situation the
evaluation of each test case (objective) can result in one of
only two values: correct or incorrect, rather than a wide
range of values as would be the case if, for instance, a sym-
bolic regression problem was being solved. Because of this
we may determine, a priori, the maximum cardinality of
the non-dominated set for any arbitrary Boolean problem
(given we do not permit duplicates in quality), as a function



of the number of test problems, n, namely: (LZJ)' In this
2

worst case, the non-dominated set would consist entirely of
solutions which solve exactly | 5 | tests, with all possible per-
mutations of the objective combinations present. Although
this worst-case configuration is unlikely to occur regularly
in practice, even approaching it will exceed the capacity
of all but the most excessively large GP populations (e.g.
64 18

(52) > 10,

If X (here the non-dominated members of X)) is a proper
subset of X then only the dominated members of X may be
selected for replacement. If however Xp; = X, then all
members are available for replacement. In both cases it is
the worst aggregated fitness (the uni-objective fitness) which
is used to determine which of the two competing candidates
is replaced by a new offspring program. This has the effect
that programs with diverse combinations across test cases,
which have good aggregated test performance, are preserved.
We denote this algorithm variant ‘D’ for domination-based.

3.3 Preferring shorter equivalent programs

As well as the four algorithms detailed above, B, F, S
and D, four variants are also compared here, which include
a mechanism to encourage the evolution of smaller programs.
Bias towards evolving programs that are much larger than
the minimum possible to solve the problem at hand is a
well-known issue for GP commonly referred to as program
growth or bloat. As mentioned in the introduction, one way
of confronting this is to cast the minimisation of the pro-
gram size (e.g. number of nodes in the program tree) as
an additional objective, other approaches to mitigate bloat
include using penalty terms, and biasing how programs are
evolved — a recent review of approaches is provided at the
start of [16].

Here, rather than using program size as an explicit ad-
ditional objective, or modifying the fitness calculation, or
the search operators, we instead use program size as a dif-
ferentiator in the reverse binary tournament selection when
two solutions are otherwise characterised as equal. If the
two are equal on their quality measure - the larger program
is selected for replacement. Likewise, when offspring solu-
tions are compared to currently marked solutions, if they
are equal in quality to the currently marked solution, but
shorter, then they will replace them in the marked set. Tak-
ing program length into consideration in this fashion en-
sures that the marked members of the population are the
most parsimonious designs discovered so far for the quality
performance they represent, and shorter programs are more
likely to persist in the population. This means any differ-
ences in program structure are more likely to be related to
differing performance on test cases. Furthermore, it is well-
known (see e.g., [12]) that changes to the program structure
by a genetic operator that are far from the root of the tree
are likely not to have any effect on the semantics of the
program, so producing offspring semantically equivalent to
the parent. Preferring shorter individuals tend to lessen this
problem, because in shorter individuals structural changes
are necessarily closer to the root more often, hence more
likely to have an effect on the semantics.

In the illustration in Figure 1, this would mean that in the
parsimony preserving variant of the S algorithm, denoted
Sp, X5 would always be chosen over X3 to be marked for
test case 3, as although both programs solve test case 3, and
have the same overall fitness, X5 is the shorter of the two.

3.4 Algorithm differences

A subscript P (for parsimonious) denotes the variant of
each algorithm which encourages smaller program sizes as
described in Section 3.3. It is worth emphasising at this
juncture that for all of the algorithms described above (B,
Bp, F, Fp, S, Sp, D and Dp) the only difference between
them is the tournament selection used for replacing popu-
lation members (Algorithm 1, line 15). All other aspects of
the algorithms are identical (though different storage costs
may be incurred). We additionally implement a random op-
timiser, denoted R, which generates programs at random
according to the initialisation approach used in the bench-
mark optimiser. This algorithm has no population as such,
and merely records the aggregate best performing program
it has generated so far in a run, until a perfect solver has
been located or the limit on the number of function evalua-
tions is reached.

4. EMPIRICAL COMPARISON

We employ a number of commonly used Boolean test
problems [19] in the experiments here, specifically: the 6,
7 and 8 input versions of the Boolean even n-Parity prob-
lem and the Boolean majority problem (which have 2" test
cases each), the 2, 4 and 8-multiplexer problems?, which
have 22, 2° and 2'! test cases respectively and the 6, 8 and
10 input comparator problems. When a new offspring pro-
gram is created it is assessed to check if the problem has
been completely solved, in which case the algorithm records
how many function evaluations were required in total.> A
maximum of 10° function evaluations is permitted on each
problem, if the problem remains unsolved after 10° evalua-
tions the algorithm terminates.

Each algorithm was run 50 times, and the same 50 ran-
dom seeds were used for each set of runs across the algo-
rithms. Additionally four different population sizes were
employed for each algorithm for each test problem: s =
{10',10%,10%, 10"}, which enables us to examine how differ-
ent diversity preservation regimes perform in relation to the
number of programs stored (as the population size would be
expected to heavily affect the diversity). This results in a
total of 8 x 4 x 12 x 50 + 12 x 50 = 19800 algorithm runs
in our experiments (representing the algorithm configura-
tions across population sizes, problem types, and random
seed plus the random optimiser for each problem and ran-
dom seed). Other algorithm parameters are: crossover rate
¢ = 0.9, point mutation probability p = 0.05, maximum
number of nodes k = 10* (which match those used by the
TinyGP of [15]).*

We now compare the algorithms based on their median
performance on the problems (median evaluations required
to find a program passing all test cases), their extreme per-
formance (i.e. their rate of failure to find a zero-error pro-
gram in 10° evaluations), examine the effect of using the
parsimony preference, and investigate the dynamics of the
marked subset of the population in the different approaches.

2These are sometimes referred to as 3, 6, and 11-multiplexer
problems. This counts the total number of inputs as opposed
to the number of data streams which is the standard naming
convention in electronics (which we adhere to here).

3 A single function evaluation here refers to the complete set
of test cases being processed by a program.

4Java implementations of all the algorithms used here are
available at https://github.com/fieldsend.
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Figure 2: Average (median) number of function evaluations until problem solved, or 10% evaluations exhausted, for each
population size. Algorithm B denoted with black line, F' with a red line, S with green line and D with a blue line. Bp, Fp,
Sp and Dp are denoted with the correspondingly coloured dashed lines. Axes are plotted on a log scale. The horizontal dotted
line corresponds to random program generation (which does not depend on any population size). Only on the 2-multiplexer

problem does the median random generator result solve the task within the 10° evaluation limit.

4.1 Perfomance comparison

Figure 2 shows the median performance of each of the al-
gorithms on each test problem, for each of the population
sizes. A number of interesting trends are immediately ap-
parent. Algorithms D and Dp are able to solve many of
the difficult problems not only with fewer function evalua-
tions than the other approaches, but also with far smaller
populations. Conversely maintaining the largest population
size (s = 10000) is seen to cause relatively worse perfor-
mance in D and Dp compared to the other algorithms. This
is likely due to the preservation of proportionally more so-
lutions that solve relatively few test cases, but are never-
theless non-dominated, meaning convergence to the perfect
solution is delayed. This is because a sizeable amount of
the search will be expended on spreading out the image of
the non-dominated set in the n-dimensional test objective
space, rather than pushing it forward. This does not affect
the smaller population sizes to the same degree as the ag-
gregate fitness is used to effectively strip weaker solutions

from X whenever Xy = X.

As the number of test cases increases all algorithms con-
verge more slowly, however B, Bp, S and Sp tend to degrade
faster. All approaches tend to do better than random (for
where this can be detected, i.e. where over half of the runs

Table 1: Best performing configuration(s) on each problem
(written as: alg-s). The number of times the best is sig-
nificantly better is given in parenthesis (maximum is 32).
Assessed using the non-parametric Wilcoxon signed ranks
test at the 5% level for all pairs of algorithms modified us-
ing Bonferroni correction - i.e. @ = 0.05/33.

Problem # tests Best alg(s)
B-parity 64 Dp-10 (30)
T-parity 128 Dp-10 (28)
8-parity 256 Dp-10 (32)
6-majority 64 Dp-100 (31)
7-majority 128 Dp-100 (30)
8-majority 256 Dp-100, D-100 (30)
6-comparator 64 Dp-100 (30)
8-comparator 256 Dp-100 (32)
10-comparator | 1024 Dp-100 (32)
2-multiplexer 8 D-10 (27)
4-multiplexer 64 Dp-100 (30)
8-multiplexer 2048 Dp-100 (31)
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Figure 4: Number of problems where an anti-bloat variant was significantly better than its base algorithm (black bar), where
there was no significant difference (grey bar) and where the base algorithm was significantly better than its anti-bloat variant
(white bar), for each population size and optimiser.

find a solution within 10° function evaluations), except for nation of parents which contain a function set member, or
on the 2-multiplexer problem. Here B, Bp, Fip and Sp when via mutation of a parent’s existing function set node).

s = 10 and Bp when s = 100 all perform worse than the Table 1 presents the pairwise statistical comparison of
random optimiser. On inspection of the runs we find that convergence time of each optimiser with a particular popu-
the populations tend to rapidly fill with single node solu- lation size, against all other algorithms and population sizes,
tions containing terminals, meaning the population reaches and the random optimiser. The algorithm that significantly
a state where the optimum is no longer reachable given the outperforms the most is recorded for each test problem. The
search operators of TinyGP (as a member of the function Dp algorithm performs best (except on the 2-multiplexer),

set can only be introduced in a child program via recombi- with the optimal population size being either 10 or 100.
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Marked subset sizes for algorithms Sp, and Dp as search progresses on each of the 50 runs for each population

size on the Boolean even 7-parity and 7-majority problems. Green denotes s = 10000, blue s = 1000, red s = 100 and black
s = 10 runs. Note that for Dp the marked set rapidly reaches the limit of X = X/ and oscillates up to this bound until
the problem is solved (causing X to collapse to a single solution). For Sp, although there are n = 128 test cases, |Xa| is
rarely above 10 on any of the runs (even those for which |X| substantially exceeds this). Although the dimensionality of the
problems is the same, we can see the non-dominated set in Dp takes longer to fill out for the 7-majority problem, highlighting

the differences in search landscapes the two problems induce.

Figure 3 shows the percentage of runs where an algorithm
failed to find a solution which passed all the test cases within
10° program evaluations, for each population size. Dp with
both s = 100 and s = 1000 achieves convergence to a perfect
solution within 10° function evaluations for all test problems
for every run — this feat is not achieved by any other opti-
miser or configuration.

4.2 Anti-bloat effects

The use of the anti-bloat mechanism tends to improve the
performance of all algorithms, or have no significant effect,
as shown in Figure 4. Only for a handful of problems and al-
gorithm configurations does it appear to make performance
significantly degrade. Interestingly, approach D seems to
benefit from this most. However, it should be highlighted
that when the median results of evaluations of both the orig-
inal algorithm, and its parsimony preserving variant, is 10°
evaluations, then there will be insufficient evidence to sup-
port any significant difference in the distribution of results.
As such, a high count of no significant difference compar-
isons is to be expected given the results shown in Figure 2
for many of the algorithms.

4.3 Marked subset dynamics

In algorithms B, Bp, I’ and Fp the marked subset only
ever has a single member marked. For the disaggregation
approaches the marked subset may vary in size throughout
the run, though it is limited to min(n, s) in the case of algo-
rithm S and Sp and min((@) ,8) in the case of algorithms

D and Dp. Figure 5 illustrates the dynamics of |Xas| for
a couple of problems for Sp and Dp. |Xa| in Sp is not
greatly influenced by population size for either of these 128-
test case problems. |Xs| is however clearly limited by the
population size in Dp variants, although the time to satu-
ration does vary between problems.

Although the | X | for the Dp algorithm appears to sit on
the limit, on close inspection we find that the |Xas| actually
oscillates just below and up to the upper bound. This is be-
cause when X = X, then the weakest member of the pop-
ulation in terms of aggregate fitness is removed. Once this
occurs there is one of three possibilities: (1) its replacement
is itself mutually non-dominated with the remaining Xas,

so it is inserted into X s, which must again be truncated in
the next iteration; (2) the child program is dominated, so
Xn # X and the dominated solution will be replaced in the
next iteration; (3) the child dominates one or more members
of the current Xz, resulting in X, shrinking in size overall
once the child program is entered. Xps therefore is forced
to contain non-dominated solutions which are also in aggre-
gate fit, the degree of aggregate fitness determined by | X| —
the larger the | X| the less fit in aggregate a non-dominated
solution needs to be in order to ensure its preservation. As
such, there is an implicit balance between having a popula-
tion size sufficient to contain solutions which cover all test
cases, but not to such a degree where search is biased to-
ward programs which only solve a small number of test cases
(albeit in a combination not otherwise maintained). We can
see from Figure 2 that for Dp a population in the range
100-1000 is sufficient for problems where n = 2 to n = 2048,
at least for the range of problem types considered here. This
is an encouraging result, as a wide population range covers
a wide range of test sizes and types with good consistency.

5. CONCLUSION AND DISCUSSION

We have investigated the effect of a number of different
diversity preservation approaches for deciding which popu-
lation members to replace in GP, and also the effect within
these of biasing the replacement of longer programs. Al-
though disaggregating the problem and preserving programs
which pass individual tests does not generally give better
performance than fitness sharing, multi-objectivisation of
the problem, preserving the non-dominated subset of pro-
grams and truncating when capacity is reached based on the
aggregate fitness is seen consistently to give the best perfor-
mance. This improvement is both in terms of median time
to zero-error program discovery (sometimes over an order
of magnitude faster), and in terms of consistency in find-
ing zero-error solutions across repeated runs with different
starting random seeds and starting population s.

Although we have undertaken nearly 20 000 separate runs
across a range of problem types and sizes we have restricted
our examination to Boolean problems here. Symbolic re-
gression problems may also be approached using a similar



multi-objectivisation approach to preserve diversity, how-
ever some additional considerations would need to be taken.
Unlike in the Boolean case, it is impossible to derive a theo-
retical limit on the cardinality of X ;. Additionally it is not
immediately obvious that the aggregate fitness will be the
best differentiator when truncating non-dominated solutions
when the X/ capacity is reached. For Boolean problems,
selecting to reject based upon the aggregate fitness is equiv-
alent to selection using the hypervolume, selection using the
favour relation, and selection using the average rank. In
general these quality measures are not equivalent, although
they have all been proposed for use in many-objective opti-
misation (see e.g. the comparison in [4]), and it may be the
case that some are better suited that others for the general
multi-objectivisation of GP optimisation. The maintenance
of a non-dominated set also has a cost: this part of our code
took between 1072 and 10~ 'ms on average per update (on
a 2.66GHz machine). However, the overall cost is marginal
for the most effective s = 100 variant, taking 0.25-3.13% of
the total run time (depending on the problem), and the use
of specialised data structures can reduce this further [2].

Partially evaluating programs (only considering a random
subset of tests) is often used in GP, giving an approximate
fitness but with lower computational cost. Maintaining a
non-dominated set for Boolean problems opens the possi-
bility of leveraging such partial program evaluations in a
systematic fashion, without introducing additional stochas-
ticity. Given a current X)s, one can identify a priori the
quality profiles that would be either accepted into Xas, or
rejected. It would be possible therefore to undertake a par-
tial evaluation and determine that, irrespective of the perfor-
mance on the remaining tests, a program would be rejected
(for instance if the aggregate will be lower than the least
fit program currently in an X); at capacity), rather than
using a random selection of tests. Furthermore, as the over-
all quality of the X/ members improves, a fewer number
of tests would need evaluating before poor solutions may
be rejected. We intend to investigate empirically the speed
up that might be attained in this fashion. Alternatively
multi-objective algorithms for coping with delayed objec-
tives could be exploited [1], as these employ techniques to
cope with ‘missing’ objective values.
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