
École Polytechnique

Masters Thesis

Reversing Operators for Semantic
Backpropagation

Author:

Robyn Ffrancon

Supervisor:

Marc Schoenauer

A thesis submitted in fulfillment of the requirements

for the degree of Masters in

Complex Systems Science

This work was conducted during a 6 month internship at

TAO team, INRIA, Saclay, France

June 2015

https://www.polytechnique.edu/en
http://www.robynffrancon.com
https://www.lri.fr/~marc/
http://www2.warwick.ac.uk/fac/cross_fac/complexity/study/emmcs/
Department or School Web Site URL Here (include http://)
https://tao.lri.fr/tiki-index.php

ÉCOLE POLYTECHNIQUE

Abstract

Complex Systems Science

Masters

Reversing Operators for Semantic Backpropagation

by Robyn Ffrancon

Boolean function synthesis problems have served as some of the most well studied bench-

marks within Genetic Programming (GP). Recently, these problems have been addressed

using Semantic Backpropagation (SB) which was introduced in GP so as to take into

account the semantics (outputs over all fitness cases) of a GP tree at all intermediate

states of the program execution, i.e. at each node of the tree. The mappings chosen for

reversing the operators used within a GP tree are crucially important to SB. This thesis

describes the work done in designing and testing three novel SB algorithms for solving

Boolean and Finite Algebra function synthesis problems. These algorithms generally

perform significantly better than other well known algorithms on run times and solution

sizes. Furthermore, the third algorithms is deterministic, a property which makes it

unique within the domain.

https://www.polytechnique.edu/en
http://www2.warwick.ac.uk/fac/cross_fac/complexity/study/emmcs/
Department or School Web Site URL Here (include http://)

Acknowledgements

I wish to thank my internship supervisor Marc Schoenauer for interesting discussions

and excellent supervision during my six month masters internship at INRIA, Saclay,

France where this work was conducted.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

1 Thesis Overview 1

1.1 General Introduction . 1

1.1.1 Motivation and Problem Domains 2

1.1.2 Semantic Backpropagation . 3

1.1.3 Algorithm Outline and Comparisons 4

1.2 Results Overview . 5

1.3 Discussion and Conclusion . 6

A Memetic Semantic Genetic Programming 7

A.1 Introduction . 7

A.2 Semantic Backpropagation . 9

A.2.1 Hypotheses and notations . 10

A.2.2 Tree Analysis . 10

A.2.3 Local Error . 11

A.2.4 Subtree Library . 12

A.3 Tree Improvement Procedures . 13

A.3.1 Local Tree Improvement . 13

A.3.2 Iterated LTI . 15

A.4 Experimental Conditions . 17

A.5 Experimental results . 18

A.6 Related Memetic Work . 20

A.7 Discussion and Further Work . 21

B Greedy Semantic Local Search for Small Solutions 24

B.1 Introduction . 24

iii

Contents iv

B.2 Semantic Backpropagation . 26

B.2.1 Hypotheses and notations . 26

B.2.2 Rationale . 27

B.2.3 Tree Analysis . 27

B.2.4 Local Error . 29

B.2.5 Subtree Library . 30

B.3 Tree Improvement Procedures . 33

B.3.1 Greedy Local Tree Improvement 33

B.3.2 Iterated GLTI . 34

B.3.3 Modified ILTI . 34

B.4 Experimental Conditions . 35

B.5 Experimental results . 37

B.6 Discussion and Further Work . 39

C Retaining Experience and Growing Solutions 40

C.1 Motivation . 40

C.2 Related Work . 41

C.3 Semantic Backpropagation (SB) . 41

C.4 Node-by-Node Growth Solver (NNGS) . 43

C.5 Proof-Of-Concept Controller . 45

C.5.1 Step-by-step . 46

C.6 Experiments . 48

C.7 Results and Discussion . 49

C.8 Further Work . 50

Bibliography 51

List of Figures

1.1 A simple S-expression tree with three green input argument nodes (la-
belled A1, A2, and A3), one blue internal AND operator node, and one
blue OR operator root node. This example takes three input bits and one
outputs bit. 2

A.1 Function tables for the AND−1, OR−1, NAND−1, and NOR−1. 12

A.2 Comparative results: time to solution for different library sizes. The
benchmark problems appear in the order of Table A.1: Cmp06, Cmp08,
Maj06; Maj08, Mux06, Mux11; Par06, Par08 and Par09. 16

A.3 Evolution of the global error during 30 runs of ILTI on Par08 problem:
average and range. Left: Node selection by error only; Right: node
selection by depth first. 19

B.1 Function tables for the primary algebra operators A4 and B1. 29

B.2 Pseudo-inverse operator function tables for the A4 categorical benchmark. 30

B.3 Standard box-plots for the program solution tree sizes (number of nodes)
for the ILTI algorithm and IGLTI depth 3 algorithm tested on the Boolean
benchmarks. Each algorithm performed 20 runs for each benchmark. Per-
fect solutions were found from each run except for the Cmp06 benchmark
where the IGLTI algorithm failed 4 times (as indicated by the red number
four). 37

B.4 Standard box-plots for the number of operators in program solutions for
the ILTI algorithm and IGLTI algorithm (library tree maximum depths
2 and 3) tested on the categorical benchmarks: For each problem, from
left to right, ILTI, IGLTI-depth 2, and IGLTI-depth 3. Each algorithm
performed 20 runs for each benchmark. Perfect solutions were found from
each run. 39

C.1 Function tables for the reverse operators: AND−1, OR−1, NAND−1, and
NOR−1. 42

C.2 A visual representation of the NNGS algorithm during the development
of a solution tree. 44

C.3 Diagrammatic aid for the proof-of-concept controller. 46

v

List of Tables

A.1 Results of the ILTI algorithm for Boolean benchmarks: 30 runs were con-
ducted for each benchmark, always finding a perfect solution. A library
size of 450 trees was used. BP columns are the results of the best per-
forming algorithm (BP4A) of [1] (* indicates that not all runs found a
perfect solution). The RDO column is taken from [2]. 16

B.1 Library sizes for each categorical benchmark. 33

B.2 Run time (seconds) results for the ILTI algorithm and IGLTI algorithm
(library tree maximum depths 2 and 3) tested on the 6bits Boolean bench-
marks and the categorical benchmarks. 20 runs were conducted for each
benchmark, always finding a perfect solution. The best average results
from each row are in bold. The BP4A column is the results of the best
performing algorithm of [1] (* indicates that not all runs found a perfect
solution). 38

B.3 Solution program size (number of nodes) results for the ILTI algorithm
and IGLTI algorithm (library tree maximum depths 2 and 3) tested on
the 6bits Boolean benchmarks and the categorical benchmarks. 20 runs
were conducted for each benchmark, always finding a perfect solution.
The best average results from each row are in bold. The BP4A column
is the results of the best performing algorithm of [1] (* indicates that not
all runs found a perfect solution). 38

C.1 Results for the NNGS algorithm when tested on the Boolean benchmarks,
perfect solution were obtained for each run. BP4A columns are the results
of the best performing algorithm from [1] (* indicates that not all runs
found perfect solution). The RDOp column is taken from the best per-
forming (in terms of fitness) scheme in [3] (note that in this case, average
success rates and average run times were not given). 49

vi

Chapter 1

Thesis Overview

1.1 General Introduction

Genetic Programming (GP) is a well researched system which is used to synthesise S-

expression tree functions using a method that is analogous to biological evolution [4].

Guided by evolutionary pressure, a population of partial solution functions are bread and

mutated to form subsequent generations until a satisfactory solution function is found.

GP has been used to tackle a wide range of different problems, such as the design of

quantum algorithms [5] and the development of financial investment strategies [6].

This thesis presents three novel algorithms which also tackle function synthesis prob-

lems. However, where as GP evolves and manipulates a population of partial solution

trees, each of these three algorithms perform iterated local (local to a tree’s nodes) im-

provements on a single function tree until it becomes a satisfactory solution. This change

in methodology resulted in significant improvements, as compared to several other suc-

cessful algorithms, when testing on standard benchmarks within two different problem

domains.

All three algorithms have been documented in separate papers which are provided

chronologically in the Appendix. The Iterative Local Tree Improvement (ILTI) algo-

rithm was documented in [7] (Appendix A). This paper is to appear as a full conference

paper at GECCO 2015 [8]. It was nominated for the best paper award within the GP

track. Secondly, the Iterative Greedy Local Tree Improvement (IGLTI) algorithm was

documented in [9] (Appendix B). This paper is to appear in the Semantics Workshop

at GECCO 2015 and has also been submitted to EA 2015 [10]. It features the first

ever application of semantic backpropagation to finite algebra problems. Thirdly, the

Node-by-Node Growth Solver (NNGS) algorithm was documented in [11] (Appendix C).

1

Chapter 1. Overview 2

1.1.1 Motivation and Problem Domains

The ILTI and IGLTI algorithms were designed to solve problems from two different

domains: Boolean and Finite Algebra. However, the NNGS algorithm was designed to

exclusively solve Boolean domain problems.

An obvious example of a Boolean domain problem is the design of electrical circuits [12].

Some heat energy is inevitably lost during the operation of any electrical circuit. This

loss can be minimised by ensuring that the circuit is as concise as possible. Therefore, the

primary goal within this problem domain is to generate the smallest 1 circuits possible

within a reasonable time constraint.

Typically, in a circuit design problem the input and output signals are well-defined and

known to the solver. Therefore, the problem consists of finding a Boolean function which

maps the input signals to the output signal. A set of Boolean operators is made available

to the solver for synthesising the solution function. Usually, but not always, this set is

restricted to the AND, OR, NAND, and NOR operators. Using these operators it is

theoretically possible to synthesise any Boolean function.

OR

ANDA1

A2 A3

Figure 1.1: A simple S-expression tree with
three green input argument nodes (labelled A1,
A2, and A3), one blue internal AND operator
node, and one blue OR operator root node. This
example takes three input bits and one outputs

bit.

Figure 1.1 shows a three input bits ex-

ample S-expression tree Boolean function

which could have been synthesised using

GP or any of the tree algorithms presented

in this thesis.

One reason for restricting the set of op-

erators is to ease the task of performance

comparison between multiple different al-

gorithms. Another method for simplifying

comparisons is to attempt to solve a set

of well known benchmark problems [13].

One example benchmark is the n-bits comparator [1]. This benchmark takes as inputs

n-bits and outputs a single bit. If the n/2 least significant input bits encode a number

that is smaller than the number represented by the n/2 most significant bits the function

returns true (1); otherwise the function returns false (0).

Usefully, this type of benchmark is tunably difficult, that is to say, the benchmark can

be made harder to solve by simply increasing the benchmark bit size n. Other standard

Boolean benchmarks are the multiplexer, majority and even-parity benchmarks. Further

1Note also that a solution’s size is often closely related to the solution’s generalizability. That is to
say, a smaller solution is probably more general. If a solution generalises well, it would only require
testing on a subset of test cases. This is clearly advantageous for problems with many test cases.

Chapter 1. Overview 3

justification for the choice of benchmarks used in this thesis is given in [13] and full

descriptions of all benchmarks used are given in the Appendices.

For a n-bits Boolean benchmark the synthesised solution function must satisfy 2n dif-

ferent fitness cases. This is because there are 2n unique permutations of the input

argument values. In the case of three input arguments, two example permutations are

(A1 = 0, A2 = 0, A3 = 1) and (A1 = 0, A2 = 1, A3 = 1). Each permutation has an

associated single output bit. In fact, each input argument can be thought of as a 2n

element 1D array of Boolean values, where each row within the arrays correspond to one

fitness case (one permutation of input argument values).

An operator acts on two input arrays element-by-element (one fitness case at a time).

In this way, a node produces an output array by acting on it’s child node input arrays.

When the output array produced by the root node corresponds to the target output

array given by the problem, the tree is a correct solution. Note, the inputs and output

arrays are given by the problem definition. Furthermore, internal nodes (such as the

AND node in Fig. 1.1) also produce intermediate output arrays. In fact, each node

within a function tree has an associated 2n element output array of Boolean values.

The second problem domain addressed by the ILTI and IGLTI algorithms deals with

finite algebra. For our purposes, a finite algebra is a two input argument operator

mapping with a single output. They can be considered generalisations of the operators

found within the Boolean domain. A variable (e.g. input argument) in the Boolean

domain can take the value 0 or 1. The input and output values of a finite algebra

operator can be any integer value within the range [0,m− 1] where m is the size of the

finite algebra.

Standard finite algebra benchmarks were first tackled with GP in [14] . They consist of

finding ternary domain algebraic terms such as the discriminator term and the Mal’cev

term. This is motivated by the fact that these terms could prove useful to mathemati-

cians if they were small enough. Note that within this problem domain, as in the Boolean

domain, each node generates an output array when a solution tree is executed.

1.1.2 Semantic Backpropagation

Recall that the goal of a solver algorithm is to synthesise a function, using a restricted set

of operator(s), which produces a known target output array. In this thesis, it is shown

how the output array associated with each node within a partially-correct tree can be

used to iteratively synthesise a perfect solution. To this end, Semantic Backpropagation

(SB) was used to iteratively improve a partially-correct tree in the ILTI and IGLTI

Chapter 1. Overview 4

algorithms. SB was also used in the NNGS algorithm to guide the process of growing a

single solution tree.

However, before understanding SB, the concept of node semantics must be understood.

In simple terms, the output array associated with a node is the semantics of that node

and its rooted subtree. Note that multiple different subtrees may produce the same

output arrays, and therefore have the same semantics. GP systems have recently incor-

porated node semantics to improve search performance [15]. A good example is given

by [1] which introduced the notion of Behavioural Programming. They used machine

learning to analyse the internal semantics of S-expression trees so as to identify useful

subtrees.

Following on from semantic GP, the notion of SB was developed in [2] amongst other

works. The practical SB application methodology is always specific to the problem

domain under investigation and the strategy used by the solver algorithm. For instance,

ILTI and IGLTI both use SB to effectively assign fitness values (score) to nodes within

a single partially-correct solution tree. The NNGS algorithm, on the other hand, uses

SB to assign subsequent nodes whilst growing a single solution tree from root to leaves.

For the purposes of this outline it is sufficient to understand the core motivation behind

SB. Firstly, recall a key fact: the target output array obtained from the synthesised

solution function is given to the solver algorithm from the start. Secondly, note that

SB relies on reversing operators. SB can be crudely understood as executing a tree in

reverse (by reversing operators) whilst using the target output array as an input.

1.1.3 Algorithm Outline and Comparisons

The ILTI and IGLTI algorithms both iteratively improve a single erroneous solution tree

by substituting subtrees with those found in static libraries. They are fundamentally

similar in many ways but differ in the amount of analysis performed on the single

improved tree before a change to that tree is made. The IGLTI algorithm performs

a greater amount of analysis as compared to the ILTI algorithm. Its analysis is geared

towards reducing the solution tree size at every possible opportunity whilst not sacrificing

on error. As a result, the algorithm successfully finds smaller solutions but performs

slower.

The NNGS algorithm, on the other hand, does not iteratively improve an existing (al-

though erroneous) tree. Instead, it grows a solution tree from root node to leaf nodes,

node-by-node. Whilst the algorithm grows the solution tree, the tree is incomplete

(invalid) until the very last node is grown.

Chapter 1. Overview 5

The NNGS algorithm is the least resource intensive algorithm introduced in this thesis.

By growing a single solution tree it avoids (unlike the ILTI and IGLTI algorithms)

forming and searching a library of static trees. It also avoids re-executing the single

improved tree at each iteration. Indeed, the solution tree is not executable until the

NNGS algorithm halts, at which point the solution tree is guaranteed to be correct.

This means that the generated solution tree does not require execution once. Of course,

this is a clear improvement on classical GP where a population of potentially thousands

of trees must be evaluated (executed) at each generation.

The ILTI and IGLTI algorithms are both stochastic, a feature which is helpful for es-

caping local minima within the search space. The NNGS algorithm, on the other hand,

is entirely deterministic. This feature makes the algorithm (as far as the author can

tell) entirely unique within the problem domain with the exception of exhaustive search

algorithms.

1.2 Results Overview

The ILTI algorithm Boolean benchmark results show a 100% success rate. This is a clear

improvement on classical GP where 0% success rates are common on many benchmarks

(e.g. the 6bits even-parity benchmark) [1]. Furthermore, even the best performing

Behavioural Programming algorithm in [1], namely BP4A, routinely achieved less than

100% success rate (in one case as low as 40%). The ILTI algorithm also found smaller

solutions than those synthesised by BP4A and the RDO operator as reported in [2].

In addition, ILTI finds solutions much faster than BP4A and other classical GP systems.

For example, the 8bits even-parity benchmark was completed by BP4A in 3792 seconds

on average with a 40% success rate. The same benchmark was completed in 622 seconds

with 100% success rate by the ILTI algorithm. ILTI was even able to complete the

harder 9bits even-parity benchmark with 100% success rate in 5850 seconds on average.

The IGLTI algorithm found smaller Boolean benchmark and finite algebra benchmarks

solutions than the ILTI algorithm. However, the algorithm operated much slower. The

NNGS algorithm, on the other hand, produced large solutions very quickly. However,

the NNGS algorithm still produced solutions which were smaller than those found by

the best performing RDO operator in [2]. Furthermore, the NNGS algorithms had 100%

success rates on all Boolean benchmarks tested so far.

The NNGS algorithm completed all benchmarks in 0.8% of the runtime required by

the BP4A algorithm on average. This is a very significant improvement. For instance,

the 8bits even-parity benchmark that was completed by BP4A in 3792 seconds took

Chapter 1. Overview 6

the NNGS algorithm 5.73 seconds. However, the solution size obtained by the NNGS

algorithm for this benchmark was much greater than that found by BP4A.

1.3 Discussion and Conclusion

One of the main novelty common to all three algorithms presented in this thesis is their

focus on developing a single solution tree. This strategy improved algorithm efficiency

immensely as compared to classical GP.

The work done in designing and testing the IGLTI algorithm also included the first

ever application of SB to finite algebra problems. The key innovation was to carefully

chose the reverse mapping for the finite algebra operator. In fact, carefully defining the

reverse mapping of the operators proved to be a critical factor in the operation of all

three algorithms.

Future work which stems from this research will constitute carefully analysing why the

NNGS algorithm works even though it is deterministic and also how it could be improved

to generate smaller solutions.

Appendix A

Memetic Semantic Genetic

Programming

A.1 Introduction

Memetic Algorithms [16] have become increasingly popular recently (see e.g., [17]): the

hybridization between evolutionary algorithms and non-evolutionary (generally local)

search has resulted in highly efficient algorithms in practice, mainly in the field of com-

binatorial optimization.

There have been, however, very few works proposing memetic approaches in Genetic

Programming (e.g., the term ”GP” does not even appear in [17]). The main reason is

certainly the lack of recognized efficient local optimization procedures in the usual GP

search spaces (trees, linear-coded GP, Cartesian GP, . . .).

However, from the EC point of view, a stochastic local search procedure in a given search

space can be viewed as a specific mutation operator in which choices are biased, using

domain-specific knowledge, toward improving the fitness of

the parent individual. Clearly, the boundary between memetic and genetic operators

is far from being crisp (a well-known example is the record-winning Evolutionary TSP

solver [18]).

Historical Genetic Programming (GP) [4] evolves trees by manipulating subtrees in a

syntactical way, blind to any possible bias toward fitness improvement, as is the rule in

’pure’ Evolutionary Algorithms: Subtree crossover selects nodes at random from both

parents and swaps them, along with their rooted subtrees. Similarly, point mutation

7

Appendix A. Memetic Semantic Genetic Programming 8

randomly selects one subtree and replaces it with a randomly constructed other subtree.

Subtrees are probabilistically (most often randomly) selected from the parents to which

they belong, as opposed to their own usefulness as functions.

More recently, several works have addressed this issue, gradually building up the field

that is now called Semantic GP. For a given set of values of the problem variables, the

semantics of a subtree within a given tree is defined as the vector of values computed by

this subtree for each set of input values in turn. In Semantic GP, as the name implies,

the semantics of all subtrees are considered as well as the semantics of the context in

which a subtree is inserted (i.e., the semantics of the its siblings), as first proposed and

described in detail in [19] (see also [15] for a recent survey). Several variation operators

have been proposed for use within the framework of Evolutionary Computation (EC)

which take semantics into account when choosing and modifying subtrees.

One such semantically oriented framework is Behavioural Programming GP [1]. The

framework facilitates the use of Machine Learning techniques in analyzing the internal

semantics of individual trees so as to explicitly identify potentially useful subtrees. It

constitutes a step towards archiving and reusing potentially useful subtrees based on the

merits of their functionality rather than solely on the fitnesses of the full trees from which

they derive. However, the usefulness of these subtrees is assessed globally, independent

of the context to which they are to be inserted.

Semantic Backpropagation (SB) [2, 3, 20] addresses this issue: given a set of fitness

cases, SB computes, for each subtree of a target tree, the desired outputs which they

should return so as to minimize the fitness of the tree, assuming that the rest of the

tree is unchanged. A small number of specialised operators have been proposed which

exploit SB, the Random Desired Output (RDO) mutation operator is one example [2].

This operator firstly randomly picks a target node in the parent tree, then replaces this

target node with a tree from a given library of trees whose outputs best match the de-

sired values of the target node [2, 3]. Because it replaces, if possible, the tree rooted at

the selected node of the parent tree with a tree that matches the local semantics of that

node, RDO can also be viewed as a first step towards a memetic operator.

Building on RDO, the present work proposes Local Tree Improvement (LTI), a local

search procedure in the space of GP trees which extends RDO with another bias toward

a better fitness: Rather than selecting the target node in the parent tree at random,

Local Tree Improvement selects the best possible semantic match between all possible

nodes in the parent tree and all trees in the library. The resulting variation operator in

the space of trees is then used within a standard Iterated Local Search procedure: LTI

Appendix A. Memetic Semantic Genetic Programming 9

is repeatedly applied to one single tree with the hope of gradually improving the tree

fitness – whereas a single application of LTI is not guaranteed to do so.

The prerequisites for the LTI procedure are those of Semantic Backpropagation1: i) a

fitness defined by aggregation of some error on several fitness cases ii) a way to compute

from the current context (as defined in [19]), at each node and for each fitness case, the

optimal values which each node should return so that the the whole tree evaluates to the

exact expected values. This is indeed possible in the case for Boolean, Categorical, and

Symbolic Regression problems. However, only Boolean problems will be addressed in

this work with Categorical and Regression problems left for future work (Section B.6).

The rest of the paper firstly recalls (Section B.2), in the interest of completeness, the

general principles of Semantic Backpropagation, though instantiated in the Boolean

context, and thus adopting a slightly different point of view (and notations) to [3].

Section B.3 then details LTI, the main contribution of this work, and how it is used

within the Iterated Local Search procedure ILTI. Experiments conducted with ILTI are

presented in Section B.4: The first goal of these experiments is to demonstrate the

efficiency of ILTI as a stand-alone optimization procedure; the second goal is to study

the sensitivity of the results with respect to the most important parameter of ILTI, the

size of the library. Similarities and differences with previous works dealing with memetic

GP are discussed in Sections A.6, while links with previous Semantic Backpropagation

works are highlighted and discussed in Section B.6, together with related possible further

research paths.

A.2 Semantic Backpropagation

The powerful idea underlying Semantic Backpropagation is that, for a given tree, it is

very often possible to calculate the optimal outputs of each node such that the final tree

outputs are optimized. Each node (and rooted subtree) is analyzed under the assumption

that the functionality of all the other tree nodes are optimal. In effect, for each node,

the following question should be asked: What are the optimal outputs for this node

(and rooted subtree) such that its combined use with the other tree nodes produce the

optimal final tree outputs? Note that for any given node, its optimal outputs do not

depend on its semantics (actual outputs). Instead, they depend on the final tree target

outputs, and the actual output values (semantics) of the other nodes within the tree.

In utilizing the results of this analysis, it is possible to produce local fitness values for each

node by comparing their actual outputs with their optimal outputs. Similarly, a fitness

1though the Approximate Geometric Crossover (AGX) can be defined in a more general context by
artificially creating surrogate target semantics for the root node [3, 20].

Appendix A. Memetic Semantic Genetic Programming 10

value can be calculated for any external subtree by comparing its actual outputs to the

optimal outputs of the node which it might replace. If this fitness value indicates that

the external subtree would perform better than the current one, then the replacement

operation should improve the tree as a whole.

A.2.1 Hypotheses and notations

We suppose that the problem at hand comprises n fitness cases, were each case i is a pair

(xi, fi). Given a loss function `, the goal is to find the program (tree) that minimizes

the global error

Err(tree) =
i=n∑
i=1

`(tree(xi), fi) (A.1)

where tree(xi) is the output produced by the tree when fed with values xi.

In the Boolean framework for instance, each input xi is a vector of Boolean variables,

and each output fi is a Boolean value. A trivial loss function is the Hamming distance

between Boolean values, and the global error of a tree is the number of errors of that

tree.

In the following, we will be dealing with a target tree T and a subtree library L. We will

now describe how a subtree (node location) s is chosen in T together with a subtree

s∗ in L to try to improve the global fitness of T (aggregation of the error measures on

all fitness cases) when replacing, in T , s with s∗.

A.2.2 Tree Analysis

For each node in T , the LTI algorithm maintains an output vector and an optimal vector.

The ith component of the output vector is the actual output of the node when the tree

is executed on the ith fitness case; the ith component of the optimal vector is the value

that the node should take so that its propagation upward would lead T to produce the

correct answer for this fitness case, all other nodes being unchanged.

The idea of storing the output values is one major component of BPGP [1], which is used

in the form of a trace table. In their definition, the last column of the table contained

target output values of the full tree – a feature which is not needed here as they are

stored in the optimal vector of the root node.

Let us now detail how these vectors are computed. The output vector is simply filled

during the execution of T on the fitness cases. The computation of the optimal vectors

is done in a top-down manner. The optimal values for the top node (the root node of

Appendix A. Memetic Semantic Genetic Programming 11

T) are the target values of the problem. Consider now a given fitness case, and a simple

tree with top node A. Denote by a, b and c their output values, and by â, b̂ and ĉ their

optimal values (or set of optimal values, see below)2. Assuming now that we know â,

we want to compute b̂ and ĉ (top-down computation of optimal values).

If node A represents operator F , then, by definition

a = F (b, c) (A.2)

and we want b̂ and ĉ to satisfy

â = F (b̂, c) and â = F (b, ĉ) (A.3)

i.e., to find the values such that A will take a value â, assuming the actual value of the

other child node is correct. This leads to

b̂ = F−1(â, c) and ĉ = F−1(â, b) (A.4)

where F−1 is the pseudo-inverse operator of F . In the Boolean case, however, this

pseudo-inverse operator is ill-defined. For instance, for the AND operator, if â = 0 and

b=0, any value for ĉ is a solution: this leads to set ĉ = #, the ”don’t care” symbol,

representing the set {0, 1}. On the other hand, if â = 1 and b=0, no solution exists for

ĉ. In this case, ĉ is set to the value that does not propagate the impossibility (here for

instance, ĉ = 1). Note that this is an important difference with the Invert function used

in [3], where the backpropagation stops whenever either ”don’t care” or ”impossible”

are encountered. See the discussion in Section B.6.

Function tables for the Boolean operators AND−1, OR−1, NAND−1, and NOR−1 are

given in Fig. B.1. A ”starred” value indicates that â is impossible to reach: in this case,

the ’optimal’ value is set for ĉ as discussed above.

For each fitness case, we can compute the optimal vector for all nodes of T , starting

from the root node and computing, for each node in turn, the optimal values for its two

children as described above, until reaching the terminals.

A.2.3 Local Error

The local error of each node in T is defined as the discrepancy between its output vector

and its optimal vector. The loss function ` that defines the global error from the different

fitness cases (see Eq. B.1) can be reused, provided that it is extended to handle sets of

2The same notation will be implicit in the rest of the paper, whatever the nodes A, B and C.

Appendix A. Memetic Semantic Genetic Programming 12

ĉ = AND−1(â, b)
â b ĉ
0 0 #
0 1 0
1 0 1∗

1 1 1
0
1

ĉ = OR−1(â, b)
â b ĉ
0 0 0
0 1 0∗

1 0 1
1 1 #
0
1

ĉ = NAND−1(â, b)
â b ĉ
0 0 1∗

0 1 1
1 0 #
1 1 0
0
1

ĉ = NOR−1(â, b)
â b ĉ
0 0 1
0 1 #
1 0 0
1 1 0∗

0
1

Figure A.1: Function tables for the AND−1, OR−1, NAND−1, and NOR−1.

values. For instance, the Hamming distance can be easily extended to handle the ”don’t

care” symbol # (for example: `(0,#) = `(1,#) = 0). We will denote the output and

optimal values for node A on fitness case i as ai and âi respectively. The local error

Err(A) of node A is defined as

Err(A) =
∑
i

`(ai, âi) (A.5)

A.2.4 Subtree Library

Given a node A in T that is candidate for replacement (see next Section B.3.1 for

possible strategies for choosing it), we need to select a subtree in the library L that

would likely improve the global fitness of T if it were to replace A. Because the effect

of a replacement on the global fitness are in general beyond this investigation, we have

chosen to use the local error of A as a proxy. Therefore, we need to compute the

substitution error Err(B,A) of any node B in the library, i.e. the local error of node B

if it were inserted in lieu of node A. Such error can obviously be written as

Err(B,A) =
∑
i

`(bi, âi) (A.6)

Then, for a given node A in T , we can find best(A), the set subtrees in L with minimal

substitution error,

best(A) = {B ∈ L;Err(B,A) = minC∈L(Err(C,A)}) (A.7)

and then define the Expected Local Improvement I(A) as

I(A) = Err(A)− Err(B,A) for some B ∈ best(A) (A.8)

Appendix A. Memetic Semantic Genetic Programming 13

If I(A) is positive, then replacing A with any node in best(A) will improve the local

fitness of A. Note however that this does not imply that the global fitness of T will

improve. Indeed, even though the local error will decrease, the cases in error might be

different, and this could badly affect the whole tree. Furthermore, even if B is a perfect

subtree, resulting in no more error at this level (i.e., Err(B,A) = 0), there could remain

some impossible values in the tree (the ”starred” values in Fig. B.1 in the Boolean case)

that would indeed give an error when propagated to the parent of A.

On the other hand, if I(A) is negative, no subtree in L can improve the global fitness

when inserted in lieu of A.

Furthermore, trees in L are unique in terms of semantics (output vectors). In the process

of generating the library (whatever design procedure is used), if two candidate subtrees

have exactly the same outputs, only the one with fewer nodes is kept. In this way, the

most concise generating tree is stored for each output vector. Also, L is ordered based

on tree size, from smallest to largest, hence so is best(A).

A.3 Tree Improvement Procedures

A.3.1 Local Tree Improvement

Everything is now in place to describe the full LTI algorithm. Its pseudo-code can be

found in Algorithm 1. The obvious approach is to choose the node S in T with the

smallest error that can be improved, and to choose in best(S) the smallest tree, to limit

the bloat.

However, the selection process when no node can be improved is less obvious. Hence,

the algorithm starts by ordering the nodes in T by increasing error (line 1). A secondary

technical criterion is used here, the number of # (don’t care) symbols in the optimal

vector of the node, as nodes with many # symbols are more likely to be improved. The

nodes are then processed one by one and selected using a rank-based selection from the

order defined above. Note that all selections in the algorithm are done stochastically

rather than deterministically, to avoid overly greedy behaviors [21].

Choosing the best improvement implies that if there exists a tree B ∈ L whose output

vector perfectly matches the optimal vector of a given node A ∈ T (i.e., Err(B,A) = 0,

Eq. B.7), there is no need to look further in L. Therefore, A is replaced with B and the

algorithm returns (line 11). Otherwise, the algorithm proceeds by computing best(A)

for the node current A (lines 19-23). Importantly, the fact that there has been at least

an improvement (resp. a decrease of local fitness) is recorded, line 14 (resp. 16). At the

Appendix A. Memetic Semantic Genetic Programming 14

Algorithm 1 Procedure LTI(Tree T , library L)

Require: Err(A) (Eq. B.5), Err(B,A) (Eq. B.7), A ∈ T , B ∈ L
1 T ← all T nodes ordered by Err↑, then number of #s↓
2 Improvement ← False
3 OneDecrease ← False
4 for A ∈ T do . Loop over nodes in set T
5 Decrease(A) ← False

6 while T not empty do
7 A← RankSelect(T) . Select and remove from T
8 Best(A)← ∅
9 minErr ← +∞

10 for B ∈ L do . Loop over trees in library
11 if Err(B,A) = 0 then . Perfect match
12 Replace A with B
13 return
14 if Err(B,A) < Err(A) then
15 Improvement ← True
16 else if Err(B,A) > Err(A) then
17 OneDecrease ← True
18 Decrease(A) ← True

19 if Err(B,A) < minErr then . Better best
20 Best(A) = {B}
21 minErr ← Err(B,A)

22 if Err(B,A) = minErr then . Equally good
23 Best(A)← Best(A) + {B}
24 if Improvement then
25 B ← RankSelect(Best(A)) . Order: size↑
26 Replace A with B
27 return

28 if OneDecrease then . At least one decrease
29 M← {A ∈ T ; Decrease(A)}
30 M← top κ from M ordered by depth↓
31 A← RankSelect(M) . Order: Err↑
32 B ← RankSelect(Best(A)) . Order: size↑
33 Replace A with B
34 return

35 A← uniformSelection(T) . Random move
36 B ← randomTree()
37 Replace A with B
38 return

end of the loop over the library, if some improvement is possible for the node at hand

(line 24), then a tree is selected in its best matches (rank-selection on the sizes, line 25),

and the algorithm returns. Otherwise, the next node on the ordered list L is processed.

If no improvement whatsoever could be found, but some decrease of local fitness is

possible (line 28), then a node should be chosen among the ones with smallest decrease.

Appendix A. Memetic Semantic Genetic Programming 15

However, it turned out that this strategy could severely damage the current tree (see

Fig. A.3 and the discussion in Section B.5) when the replacement occurred high in the

tree. This is why depth was chosen as the main criterion in this case: all nodes A with

non-empty best(A) (the nodes with the same errors as A are discarded, to avoid possible

loops in the algorithm) are ordered by increasing depth, and a rank-selection is made

upon the top κ nodes of that list (line 31). The tree from the library is then chosen

based on size (line 32). User-defined parameter κ tunes the relative weights of depth

and error in the choice of target node, and was set to 3 in all experiments presented in

Section B.5 (i.e. depth is the main criterion). Finally, in the event that no improvement

nor any decrease can be achieved, a random tree replaces a random node (line 37).

Complexity Suppose that the library L is of size o. The computation of the output

vectors of all trees in L is done once and for all. Hence the overhead of one iteration

of LTI is dominated, in the worst case, by the comparisons of the optimal vectors of all

nodes in T with the output vectors of all trees in L, with complexity n×m× o.

A.3.2 Iterated LTI

In the previous section, we have defined the LTI procedure that, given a target tree T

and a library of subtrees L, selects a node S in T and a subtree S∗ in L to insert in lieu

of node S so as to minimize some local error over a sequence of fitness cases. In this

section we will address how T and L are chosen, and how one or several LTI iterations

are used for global optimization.

LTI can be viewed as the basic step of some local search, and as such, it can be used

within any Evolutionary Algorithm evolving trees (e.g., GP), either as a mutation oper-

ators, or as a local search that is applied on some individual in the population at every

generation. Such use of local search is very general and common in Memetic Algorithm

(see e.g., Chapter 4 in [17]). Because LTI involves a target tree and a library of subtrees,

it could be used, too, to design an original crossover operator, in which one of the par-

ents would be the target tree, and the library would be the set of subtrees of the other

parents. However, because LTI is an original local search procedure that, to the best of

our knowledge, has never been used before, a natural first step should be devoted to its

analysis alone, without interference from any other mechanism.

This is why this work is devoted to the study of a (Local) Search procedure termed ILTI,

that repeatedly applies LTI to the same tree, picking up subtrees from a fixed library,

without any selection whatsoever. This procedure can also be viewed as a (1,1)-EA, or

as a random walk with move operator LTI.

Appendix A. Memetic Semantic Genetic Programming 16

Table A.1: Results of the ILTI algorithm for Boolean benchmarks: 30 runs were
conducted for each benchmark, always finding a perfect solution. A library size of 450
trees was used. BP columns are the results of the best performing algorithm (BP4A)
of [1] (* indicates that not all runs found a perfect solution). The RDO column is taken

from [2].

Run time [seconds] Program size [nodes] Number of iterations
max mean min BP max mean min BP RDO max mean min

Cmp06 9.9 8.6 ± 0.5 7.8 15 77 59.1 ± 7.2 47 156 185 189 63.9 ± 34.4 19
Cmp08 54.8 19.8 ± 7.8 14.3 220 191 140.1 ± 23.2 81 242 538 2370 459.1 ± 466.1 95
Maj06 10.9 9.5 ± 0.8 8.4 36 87 71.2 ± 10.1 53 280 123 183 89.1 ± 42.2 27
Maj08 44.1 26.7 ± 7.0 18.2 2019* 303 235.9 ± 29.8 185 563* - 2316 938.6 ± 519.0 307
Mux06 11.2 9.4 ± 0.8 8.5 10 79 47.1 ± 11.2 31 117 215 34 20.0 ± 6.8 11
Mux11 239.1 100.2 ± 40.2 59.0 9780 289 152.9 ± 59.0 75 303 3063 1124 302.9 ± 216.4 79
Par06 25.2 16.7 ± 2.4 12.5 233 513 435.3 ± 33.2 347 356 1601 2199 814.8 ± 356.6 326
Par08 854 622 ± 113.6 386 3792* 2115 1972 ± 94 1765 581* - 22114 12752 ± 3603 6074
Par09 8682 5850 ± 1250 4104 - 4523 4066 ± 186 3621 - - 142200 54423 ± 24919 31230

0
2
4
6
8

10
12
14
16Cmp06

0

20

40

60

80

100

120Cmp08

0
10
20
30
40
50
60
70Maj06

0

20

40

60

80

100

120Maj08

0
2
4
6
8

10
12
14Mux06

0

200

400

600

800

1000

1200Mux11

50 100 200 300 400 450 500 550
0

10

20

30

40

50

60 Par06

50 100 200 300 400 450 500 550
0

200

400

600

800

1000

1200Par08

50 100 200 300 400 450 500 550
0

2000

4000

6000

8000

10000

12000Par09

Archive size

Ru
n

tim
e

[s
ec

on
ds

]

� � � �

�� � � � � �� � � �

� ��������

Figure A.2: Comparative results: time to solution for different library sizes. The
benchmark problems appear in the order of Table A.1: Cmp06, Cmp08, Maj06; Maj08,

Mux06, Mux11; Par06, Par08 and Par09.

One advantage of starting simple is that ILTI does not have many parameters to tune,

and will hopefully allow us to get some insights about how LTI actually works. The

parameters of ILTI are the method used to create the initial tree (and its parameters,

e.g., the depth), the method (and, again, its parameters) used to create the subtrees in

the library, the parameter κ for node selection (see previous Section B.3.1), and the size

of the library. The end of the paper is devoted to some experimental validation of ILTI,

and the study of the sensitivity of the results w.r.t. its most important parameter, the

library size.

Appendix A. Memetic Semantic Genetic Programming 17

A.4 Experimental Conditions

The benchmark problems used for these experiments are classical Boolean problems that

have been widely studied, and are not exclusive to the GP community (see Section A.6

also). We have chosen this particular benchmarks because they are used in [1, 3] (among

other types of benchmarks). For the sake of completeness, we reiterate their definitions

as stated in [1]: The solution to the v-bit Comparator problem Cmp-v must return true

if the v
2 least significant input bits encode a number that is smaller than the number

represented by the v
2 most significant bits. For the Majority problem Maj-v, true should

be returned if more that half of the input variables are true. For the Multiplexer problem

Mul-v, the state of the addressed input should be returned (6-bit multiplexer uses two

inputs to address the remaining four inputs, 11-bit multiplexer uses three inputs to ad-

dress the remaining eight inputs). In the Parity problem Par-v, true should be returned

only for an odd number of true inputs.

All results have been obtained using an AMD Opteron(tm) Processor 6174 @ 2.2GHz.

All of the code was written in Python3.

In all experiments presented here, the library L was made of full trees of depth 2:

there are hence a possible 64×#variables different trees. Experiments regarding other

initializations of L (e.g., other depths, or using the popular ramp-half-and-half method

instead of building full trees) are left for further studies. Similarly, the target tree T

was initialized as a full tree of depth 2. Several depths have been tested without any

significant modification of the results. The only other parameter of LTI (and hence

of ILTI) is parameter κ that balances the selection criterion of the target node for

replacement in cases where no improvement could be found for any node (Section B.3.1,

line 30 of Algorithm 1). As mentioned, it was set to 3 here, and the study of its sensitivity

is also left for further work.

After a few preliminary experiments, the runs were given strict run-time upper limits:

60s for all easy runs (xxx06), 100s for the more difficult Cmp08 and Maj08, 1000s for

the much more difficult Mux11 and Par08, and 10800 (3 hours) for the very difficult

Par09 (the only benchmark investigated in this paper that was not reported in [1]). If a

run did not return a perfect solution within the time given, it was considered a failure.

3The entire code base is freely available at
robynffrancon.com/LTI.html

robynffrancon.com/LTI.html

Appendix A. Memetic Semantic Genetic Programming 18

A.5 Experimental results

Figure A.2 plots standard boxplots of the actual run-time to solution of ILTI for library

sizes in {50, 100, 200, 300, 400, 450, 500, 550} for all benchmarks. Note that the (red)

numbers on top of some columns indicate the number of runs (out of 30) for library sizes

which failed to find an exact solution.

On these plots, a general tendency clearly appears: the run-time increases with the size

of the library for easy problems (Cmp06, Mux6, and Maj06, even though sizes 50 and

100 fail once out of 30 runs). Then, as the problem becomes more difficult (see Par06),

the results of small library sizes start to degrade, while their variance increases, but all

runs still find the perfect solution. For more difficult problems (Cmp08, Mux11, and

Maj08) more and more runs fail, from small to medium sizes. Finally, for the very hard

Par08 and Par09 problems, almost no run with size 50 or 100 can find the solution, while

sizes 200 and 300 still have occasional difficulties to exactly solve the problem. These

results strongly suggest that for each problem, there exists an optimal library size, which

is highly problem dependent, with a clear tendency: the more difficult the problem the

larger the optimal size. A method for determining the optimal size a priori, from some

problem characteristics, is left for further work.

Regarding the tree sizes of the solutions, the results (not shown here) are, on the oppo-

site, remarkably stable: all library sizes give approximately the same statistics on the

tree sizes (when a solution is found) - hence similar to the results in Table A.1, discussed

next.

Based on the above, the comparative results of Table A.1 use a library of size 450. They

are compared with the Boolean benchmark results of the best performing Behavior

Programming GP (BPGP) scheme, BP4A [1], and when possible with the results of

RDO given in [2] or in [3].

We will first consider the success rates. All algorithms seem to solve all problems which

they reported on. Note however that results for Par09 are not reported for BP, and

results for Par08, Par09 and Maj08 are not reported for RDO. Furthermore, there are

some small exceptions to this rule, the ”*” in Table A.1 for BP, and Par06 for RDO

(success rate of 0.99 according to [2]).

Even though it is difficult to compare the run-times of ILTI and BPGP [1] because of the

different computing environments, some comments can nevertheless be made regarding

this part of Table A.1: Firstly, both BP4A and ILTI have reported run-times of the

same order of magnitude . . . for the easiest problems. But, when considering the results

Appendix A. Memetic Semantic Genetic Programming 19

Number of iterations

0 5000 10000 15000 20000150000 5000 10000 20000 25000 30000
0

20

40

60

80

100

120

Figure A.3: Evolution of the global error during 30 runs of ILTI on Par08 problem:
average and range. Left: Node selection by error only; Right: node selection by depth

first.

of more difficult problems, they also suggest that ILTI scales much more smoothly than

BP4A with problem size/difficulty. ILTI clearly stands out when comparing the run-

times of Cmp06 vs Cmp08, Maj06 vs Maj08, Mux06 vs Mux11 and, to a lesser extend,

Par06 vs Par08. On the other hand, even though the runtimes were not directly available

for the RDO results, the measure of ”number of successes per hour” given in [2] suggests

that obtaining the exact solution with RDO is one or two orders of magnitude faster

than with ILTI or BP.

When considering the average tree size, ILTI seems more parsimonious than BP4A by a

factor of around 2, with the exception of the parity problems. In particular, for Par08,

the average size for BP4A is smaller than that of ILTI by a factor of 3. It is clear that

the fine details of the parity problems deserve further investigations. On the other hand,

RDO results [2] report much larger tree sizes, from twice to 20 times larger than those

of ILTI.

Finally, Fig. A.3 displays the evolution of the global error (of the whole tree T) during the

30 runs on the difficult problem Par08 for a library size of 450. It compares the behavior

of ILTI using two different strategies for selecting the node to be replaced when no

improvement could be found. On the left, the straightforward strategy, similar to the

one adopted in case an improvement was found, which simply chooses the node with

smallest error. On the right, the strategy actually described in Algorithm 1 which first

favors depth, and then chooses among the deepest κ nodes based on their substitution

error (lines 28-32 of Algorithm 1). As can be seen, the error-based strategy generates

far more disastrous increases of the global error. A detailed analysis revealed that this

happens when nodes close to the root are chosen. Even if they have a small local

Appendix A. Memetic Semantic Genetic Programming 20

error, the effect of modifying them might destroy many other good building blocks of

the target tree. This was confirmed on the Par09 problem, for which the first strategy

simply repeatedly failed – and this motivated the design of the depth-based strategy.

A.6 Related Memetic Work

As mentioned in the introduction, there are very few works at the crossroad between

GP and Memetic algorithms. Some papers claim to perform local search by doing

offspring filtering, i.e., generating several offspring from the same parents and keeping

only the best ones to include in the surviving pool [22]. Though this is indeed some sort

of local search (the usual GP variation operators being used as elementary moves for

the local search), it does not really involve any external search procedure with distinct

search abilities from those of the underlying GP itself, and could in fact be presented

as another parametrization of the GP algorithm. Furthermore, such procedure really

makes sense only when the offspring can be approximately evaluated using some very

fast proxy for the true fitness evaluation (see the ’informed operators’ proposed in the

context of surrogate modeling [23]).

Some real memetic search within GP has been proposed in the context of decision trees

for classification [24]: the very specific representation of (Stochastic) Decision Trees is

used, together with problem-specific local search procedures, that directly act on the

subspaces defining the different classes of the classification. Though efficient in the

proposed context, this procedure is by no way generic.

Probably the most similar work to LTI have been proposed in [25]: the authors intro-

duce the so-called memetic crossover, that records the behavior of all trees during the

execution of the programs represented by the trees (though the word ’semantic’ is not

present in that work), and choose the second parent after randomly choosing a crossover

point in the first one, and selecting in the second parent a node that is complementary

to the one of the first parent. However, this approach requires that the user manually

has splitted the problem into several sub-problems, and has identified what are the pos-

itive and negative contributions to the different subproblems for a given node. This is

a severe restriction to its generic use, and this approach can hence hardly be applied to

other problems than the ones presented.

On the other hand, the generality of LTI has been shown here for the class of Boolean

problems, and can be extended to regression problems very easily (on-going work). In

particular, the high performances obtained on several very different hard benchmarks

(like Maj08, Par09 and Mux11 demonstrate that this generality is not obtained by

Appendix A. Memetic Semantic Genetic Programming 21

decreasing the performance. This needs to be confirmed on other domain (e.g., regression

problems).

Regarding performances on Boolean problems, the very specific BDD (Binary Deci-

sion Diagrams) representation allowed some authors to obtain outstanding results using

GP [26] and was first to solve the 20-multiplexer (Mux20); and 10 years later these re-

sults were consolidated on parity problems up to size 17 [27]. However, handling BDDs

with GP implies to diverge from standard GP, in order to meet the constraints of BDDs

during the search [27, 28], thus strictly limiting application domains to Boolean prob-

lems. It is hoped that the LTI-based approach is more general, and can be ported to

other domains, like regression, as already suggested.

A.7 Discussion and Further Work

Let us finally discuss the main differences between LTI and previous work based on

the idea of Semantic Backpropagation, namely RDO [2, 3], and some possible future

research directions that naturally arise from this comparison.

The main difference lies in the choice of the target node for replacement in the parent

tree: uniformly random for RDO, and biased toward local fitness improvement for LTI

that looks for the best possible semantic match between the target node and the replacing

tree. On the one hand, such exhaustive search explains that LTI seems much slower than

the original RDO, though competitive with BP [1]. On the other hand, it is only possible

for rather small libraries (see below). However, the computational costs seem to scale

up more smoothly with the problem dimension for LTI than for RDO or BP (see e.g.,

problem Par09, that none of the other semantic-based methods was reported to solve.

Nevertheless, the cost of this exhaustive search will become unbearable when addressing

larger problems, and some trade-off between LTI exhaustive search and RDO random

choice might be a way to overcome the curse of dimensionality (e.g., some tournament

selection of the target node).

The other crucial difference is that the results of LTI have been obtained here by embed-

ding it into a standard Iterated Local Search, i.e., outside any Evolutionary framework.

In particular, ILTI evolves a single tree, without even any fitness-based selection, simi-

lar to a (1+10)-EA. However, though without any drive toward improving the fitness at

the level of the whole tree itself, ILTI can reliably solve to optimality several classical

Boolean problems that have been intensively used in the GP community (and beyond),

resulting in solutions of reasonable size compared to other GP approaches.

Appendix A. Memetic Semantic Genetic Programming 22

Hence it is clear that ILTI somehow achieves a good balance between exploitation and

exploration. It would be interesting to discover how, and also to investigate whether

this implicit trade-off could or should be more explicitly controlled. In particular, would

some selection pressure at the tree level help the global search (i.e., replacing the current

(1,1)-EA by some (1+1)-EA and varying the selection pressure)? Similar investigations

should also be made at the level of LTI itself, which is the only component which drives

a tree towards better fitness. Different node selection mechanisms could be investigated

for the choice of a target node for replacement.

Finally, the way ILTI escapes local optima should also be investigated. Indeed, it was

empirically demonstrated that even though it is necessary to allow LTI to decrease the

global fitness of the tree by accepting some replacement that degrade the local perfor-

mance (and hence the global fitness of the tree at hand), too much of that behaviour is

detrimental on complex problems (though beneficial for easy ones) – see the discussion

around Fig. A.3 in Section B.5.

Several other implementation differences should also be highlighted. First, regarding the

library, LTI currently uses a small static library made of full trees of depth 2, whereas

the libraries in [3] are either the (static) complete set of full trees up to a given depth (3

for Boolean problems, resulting in libraries from size 2524 for 6-bits problems to 38194

for Mux11), or the dynamic set of all subtrees gathered from the current population (of

variable size, however reported to be larger than the static libraries of depth 3). Such

large sizes probably explain why the perfect match with the semantics of the target

node is found most of the time. On the other hand, it could be also be the case that

having too many perfect matches is in fact detrimental in the framework of Iterated

Local Search, making the algorithm too greedy. This is yet another possible parameter

of the exploitation versus exploration trade-off that should be investigated.

Second, RDO implements a systematic test of the ephemeral constants that is chosen as

replacement subtree if it improves over the best match found in the library. Such mech-

anism certainly decreases the bloat, and increases the diversity of replacing subtrees,

and its effect within LTI should be investigated.

Also, LTI and RDO handle the ”don’t care” and ”impossible” cases very differently

. . . maybe due to the fact that, at the moment, LTI has only been applied to Boolean

problems. Indeed, as discussed in Section B.2.3, the backpropagation procedure in RDO

stops whenever an ”impossible” value is encountered, whereas it continues in LTI, using

the value that is least prone to impossibility as optimal value. But such strategy will

not be possible anymore in the Symbolic Regression context: the extension of LTI to

regression problems might not be as easy as to Categorical problems (such as the ones

experimented with in [1]), which appears straightforward (on-going work).

Appendix A. Memetic Semantic Genetic Programming 23

Tackling continuous Symbolic Regression problems also raise the issue of generalization:

How should we ensure that the learned model behaves well on the unseen fitness cases?

Standard Machine Learning approaches will of course be required, i.e., using a training

set, a test set, and a validation set.

In order to avoid over-fitting the training set, the LTI procedure should not be run

until it finds a perfect solution on the current training set, and several different training

sets might be needed in turn. Interestingly, solving very large Boolean problems will

raise similar issues, as it will rapidly become intractable to use all existing fitness cases

together, for obvious memory requirement reasons.

Last but not least, further work should investigate the use of LTI within a standard GP

evolutionary algorithm, and not as a standalone iterated procedure. All the differences

highlighted above between LTI and RDO might impact the behavior of both RDO and

AGX: Each implementation difference should be considered as a possible parameter

of a more general procedure, and its sensitivity should be checked. Along the same

line, LTI could also be used within the initialization procedure of any GP algorithm.

However, again, a careful tuning of LTI will then be required, as it should probably

not be applied at full strength. Finally, a reverse hybridization between LTI and GP

should also be tested: when no improvement can be found in the library during a LTI

iteration, a GP run could be launched with the goal of finding such an improving subtree,

thus dynamically extending the library. However, beside the huge CPU cost this could

induce, it is not clear that decreases of the local fitness are not the only way toward

global successes, as discussed above.

Overall, we are convinced that there are many more potential uses of Semantic Back-

propagation, and we hope to have contributed to opening some useful research directions

with the present work4.

4More recent results in the same research direction, including the handling of categorical context,
will be presented during the SMGP workshop at the same GECCO 2015 conference (see Companion
proceedings).

Appendix B

Greedy Semantic Local Search for

Small Solutions

B.1 Introduction

Local search algorithms are generally the most straightforward optimization methods

that can be designed on any search space that has some neighbourhood structure. Given

a starting point (usually initialized using some randomized procedure), the search pro-

ceeds by selecting the next point, from the neighbourhood of the current point, which

improves the value of the objective function, with several possible variants (e.g., first

improvement, best improvement, etc). When the selection is deterministic, the resulting

Hill Climbing algorithms generally perform poorly, and rapidly become intractable on

large search spaces. Stochasticity must be added, either to escape local minima (e.g.

through restart procedures from different random initializations, or by sometimes al-

lowing the selection of points with worse objective value than the current point), or

to tackle very large search spaces (e.g., by considering only a small part of the neigh-

bourhood of the current point). The resulting algorithms, so-called Stochastic Local

Search algorithms (SLS) [29], are today the state-of-the-art methods in many domains

of optimization.

The concept of a neighbourhood can be equivalently considered from the point of view

of some move operators in the search space: the neighbourhood of a point is the set

of points which can be reached by application of that move operator. This perspective

encourages the use of stochasticity in a more flexible way by randomizing the move

operator, thus dimming the boundary between local and global search. It also allows

the programmer to introduce domain specific knowledge in the operator design.

24

Appendix B. Greedy Local Search for Small Solutions 25

All (1+, λ)-EAs can be viewed as Local Search Algorithms, as the mutation operator acts

exactly like the move operator mentioned above. The benefit of EAs in general is the

concept of population, which permits the transfer of more information from one iteration

to the next. However in most domains, due to their simplicity, SLS algorithms have been

introduced and used long before more sophisticated metaheuristics like Evolutionary

Algorithms (EAs). But this is not the case in the domain of Program Synthesis 1 where

Genetic Programming (GP) was the first algorithm related to Stochastic Search which

took off and gave meaningful results [4]. The main reason for that is probably the fact

that performing random moves on a tree structure rarely result in improvement of the

objective value (aka fitness, in EA/GP terminology).

Things have begun to change with the introduction of domain-specific approaches to GP,

under the generic name of Semantic GP. For a given set of problem variable values, the

semantics of a subtree within a given tree is defined as the vector of values computed by

this subtree for each set of input values in turn. In Semantic GP, as the name implies, the

semantics of all subtrees are considered as well as the semantics of the context in which

a subtree is inserted (i.e., the semantics of its siblings), as first proposed and described

in detail in [19] (see also [30] for the practical design of semantic geometric operators,

and [15] for a recent survey). Several variation operators have been proposed for use

within the framework of Evolutionary Computation (EC) which take semantics into

account when choosing and modifying subtrees. In particular, Semantic Backpropagation

(SB) [2, 3, 20] were the first works to take into account not only the semantic of a

subtree to measure its potential usefulness, but also the semantics of the target node

where it might be planted. The idea of SB was pushed further in a paper published by

the authors in this very conference [7], where the first (to the best of our knowledge)

Local Search algorithm, called Iterated Local Tree Improvement (ILTI), was proposed

and experimented with on standard Boolean benchmark problems for GP. Its efficiency

favorably compared to previous works (including Behavioural Programming GP [1],

another successful approach to learn the usefulness of subtrees from their semantics

using Machine Learning).

The present work builds on [7] in several ways. Firstly, Semantic Backprogation is ex-

tended from Boolean to categorical problems. Second, and maybe more importantly, the

algorithm itself is deeply modified and becomes Iterated Greedy Local Tree Improve-

ments (IGLTI): On one hand, the library from which replacing subtrees are selected

usually contains all possible depth-k subtrees (k = 2 or k = 3), hence the greediness.

On the other hand, during each step of the algorithm, a strong emphasis is put on trying

to minimize the total size of the resulting tree. Indeed, a modern interpretation of the

1see also [?] for a survey on recent program synthesis techniques from formal methods and inductive
logic programming, to GP.

Appendix B. Greedy Local Search for Small Solutions 26

Occam’s razor principle states that small solutions should always be preferred to larger

ones – the more so in Machine Learning in general, where large solutions tend to learn

”by heart” the training set, with poor generalization properties. And this is even more

true when trying to find an exact solution to a (Boolean or categorical) problem with

GP. For instance in the categorical domain of finite algebras (proposed in [14]), there

exists proven exact methods for generating the target terms. However these methods

generate solutions with millions of terms that are of little use to mathematicians.

Assuming that the reader will have access to the companion paper [7], the paper is

organized as follows: Section B.2 recalls the basic idea of Semantic Backpropagation,

illustrated in the categorical case here. Section B.3 then describes in detail the new

algorithm IGLTI. Section B.4 introduces the benchmark problems, again concentrating

on the categorical ones, and Section B.5 presents the experimental results of IGLTI,

comparing them with those of the literature as well as those obtained by ILTI [7].

Finally Section B.6 concludes the paper, discussing the results and sketching further

directions of research.

B.2 Semantic Backpropagation

B.2.1 Hypotheses and notations

The context is that of supervised learning: The problem at hand comprises n fitness

cases, were each case i is a pair (xi, fi), xi being a vector of values for the problem

variables, and fi the corresponding desired tree output. For a given a loss function `,

the goal is to find the program (tree) that minimizes the global error

Err(tree) =

i=n∑
i=1

`(tree(xi), fi) (B.1)

where tree(xi) is the output produced by the tree when fed with values xi.

In the Boolean framework for instance, each input xi is a vector of Boolean variables,

and each output fi is a Boolean value. A trivial loss function is the Hamming distance

between Boolean values, and the global error of a tree is the number of errors of that

tree.

Appendix B. Greedy Local Search for Small Solutions 27

B.2.2 Rationale

The powerful idea underlying Semantic Backpropagation is that, for a given tree, it is

very often possible to calculate the optimal outputs of each node such that the final tree

outputs are optimized. Each node (and rooted subtree) is analyzed under the assumption

that the functionality of all the other tree nodes are optimal. In effect, for each node,

the following question should be asked: What are the optimal outputs for this node

(and rooted subtree) such that its combined use with the other tree nodes produce the

optimal final tree outputs? Note that for any given node, its optimal outputs do not

depend on its semantics (actual outputs). Instead, they depend on the final tree target

outputs, and the actual output values (semantics) of the other nodes within the tree.

In utilizing the results of this analysis, it is possible to produce local fitness values for

each node by comparing their actual outputs with their optimal outputs.

Similarly, a fitness value can be calculated for any external subtree by comparing its

actual outputs to the optimal outputs of the node which it might replace. If this fitness

value indicates that the external subtree would perform better than the current one,

then the replacement operation should improve the tree as a whole.

In the following, we will be dealing with a master tree T and a subtree library L. We will

now describe how a subtree (node location) s is chosen in T together with a subtree

s∗ in L to try to improve the global fitness of T (aggregation of the error measures on

all fitness cases) when replacing, in T , s with s∗.

B.2.3 Tree Analysis

For each node in T , the LTI algorithm maintains an output vector and an optimal vector.

The ith component of the output vector is the actual output of the node when the tree

is executed on the ith fitness case; the ith component of the optimal vector is the value

that the node should take so that its propagation upward would lead T to produce the

correct answer for this fitness case, all other nodes being unchanged.

The idea of storing the output values is one major component of BPGP [1], which is used

in the form of a trace table. In their definition, the last column of the table contained

target output values of the full tree – a feature which is not needed here as they are

stored in the optimal vector of the root node.

Let us now detail how these vectors are computed. The output vector is simply filled

during the execution of T on the fitness cases. The computation of the optimal vectors is

done in a top-down manner. The optimal values for the top node (the root node of T) are

Appendix B. Greedy Local Search for Small Solutions 28

the target values of the problem. Consider now a simple tree with top node A and child

nodes B and C. For a given fitness case, denote by a, b and c their respective returned

values, and by â, b̂ and ĉ their optimal values (or set of optimal values, see below)2.

Assuming now that we know â, we want to compute b̂ and ĉ (top-down computation of

optimal values).

If node A represents operator F , then, by definition

a = F (b, c) (B.2)

and we want b̂ and ĉ to satisfy

â = F (b̂, c) and â = F (b, ĉ) (B.3)

i.e., to find the values such that A will take a value â, assuming the actual value of the

other child node is correct. This leads to

b̂ = F−1b (â, c) and ĉ = F−1c (â, b) (B.4)

where F−1k is the pseudo-inverse operator of F which must be used to obtain the optimum

k̂ of variable k. The definition of the pseudo-inverse operators in the Boolean case is

simpler than that in the categorical case. Only the latter will be discussed now – see [7]

for the Boolean case.

In the Boolean case, all operators are symmetrical - hence F−1b and F−1c are identi-

cal. However, in the categorical problems considered here, the (unique) operator is not

commutative (i.e., the tables in Fig. B.1 are not symmetrical), hence F−1b and F−1c are

different.

The pseudo-inverse operator is multivalued: for example, from inspecting the finite

algebra A4 (Fig. B.1-left), it is clear to see that if â = 1 and b = 0 then ĉ must equal 0

or 2. In which case we write ĉ = (0, 2). That is to say, if c ∈ ĉ and b = 0 then a = 1.

For this example, the pseudo-inverse operator is written as F−1c (1, 0) = (0, 2). On the

other hand, from Fig. B.1-right, it comes that F−1b (1, 0) = 0.

Now, consider a second example where the inverse operator is ill-defined. Suppose â = 1,

b = 1, and we wish to obtain the value of ĉ = F−1c (1, 1). From inspecting row b = 1 of

A4 we can see that it is impossible to obtain â = 1 regardless of the value of c. Further

inspection reveals that â = 1 when b = 0 and c = (0, 2), or when b = 2 and c = 1.

2The same notation will be implicit in the rest of the paper, whatever the nodes A, B and C.

Appendix B. Greedy Local Search for Small Solutions 29

c
A4 0 1 2

0 1 0 1
b 1 0 2 0

2 0 1 0

c
B1 0 1 2 3

0 1 3 1 0
b 1 3 2 0 1

2 0 1 3 1
3 1 0 2 0

Figure B.1: Function tables for the primary algebra operators A4 and B1.

Therefore, in order to chose ĉ for â = 1 and b = 1, we must assume that b = 0 or that

b = 2. If we assume that b = 2 we then have ĉ = 1. Similarly, if we assume that b = 0

we will have ĉ = (0, 2). The latter assumption is preferable because we assume that it is

less likely for c to satisfy ĉ = 1 than ĉ = (0, 2). In the latter case, c must be one of two

different values (namely c = 0 or c = 2) where as in the former case there is only one

value which satisfies ĉ (namely c = 1). We therefore choose F−1c (1, 1) = (0, 2). However,

as a result, we must also have F−1b (1, 0) = 0 and F−1b (1, 2) = 0.

Of course, for the sake of propagation, the pseudo-inverse operator should also be defined

when â is a tuple of values. For example, consider the case when â = (1, 2), c = 0, and

b̂ is unknown. Inspecting column c = 0 in A4 will reveal that the only a value that will

satisfy â (namely a = 1 satisfies â = (1, 2)) is found at row b = 1. Therefore, in this case

b̂ = F−1b ((1, 2), 0) = 1.

Using the methodologies outlined by these examples it is possible to derive pseudo-

inverse function tables for all finite algebras considered in this paper. As an example,

Fig. B.2 gives the complete pseudo-inverse table for finite algebra A4.

Having defined the pseudo-inverse operators, we can compute, for each fitness case, the

optimal vector for all nodes of T , starting from the root node and computing, for each

node in turn, the optimal values for its two children as described above, until reaching

the terminals.

B.2.4 Local Error

The local error of each node in T is defined as the discrepancy between its output

vector and its optimal vector. The loss function ` that defines the global error from

the different fitness cases (see Eq. B.1) can be reused, provided that it is extended to

handle sets of values. A straightforward extension in the categorical context (there is

no intrinsic distance between different values) is the following.

We will denote the output and optimal values for node A on fitness case i as ai and âi

respectively. The local error Err(A) of node A is defined as

Appendix B. Greedy Local Search for Small Solutions 30

â b ĉ

0
0 1
1 (0,2)
2 (0,2)

1
0 (0,2)
1 (0,2)
2 1

2
0 1
1 1
2 1

(0,1)
0 (0,1,2)
1 (0,2)
2 (0,1,2)

(0,2)
0 1
1 (0,1,2)
2 (0,2)

(1,2)
0 (0,2)
1 1
2 1

(0,1,2)
0 (0,1,2)
1 (0,1,2)
2 (0,1,2)

â c b̂

0
0 (1,2)
1 0
2 (1,2)

1
0 0
1 2
2 0

2
0 1
1 1
2 1

(0,1)
0 (0,1,2)
1 (0,2)
2 (0,1,2)

(0,2)
0 (1,2)
1 (0,1)
2 (1,2)

(1,2)
0 0
1 (1,2)
2 0

(0,1,2)
0 (0,1,2)
1 (0,1,2)
2 (0,1,2)

Figure B.2: Pseudo-inverse operator function tables for theA4 categorical benchmark.

Err(A) =
∑
i

`(ai, âi) (B.5)

were

`(ai, âi) =

0, if ai ∈ âi

1, otherwise.
(B.6)

B.2.5 Subtree Library

Given a node A in T that is candidate for replacement (see next Section B.3.1 for possible

strategies for choosing it), we need to select a subtree in the library L that would likely

improve the global fitness of T if it were to replace A. Because the effect of replacement

on the global fitness is, in general, beyond the scope of this investigation, we have chosen

to use the local error of A as a proxy. Therefore, we need to compute the substitution

error Err(B,A) of any node B in the library, i.e. the local error of node B if it were

inserted in lieu of node A. Such error can obviously be written as

Appendix B. Greedy Local Search for Small Solutions 31

Err(B,A) =
∑
i

`(bi, âi) (B.7)

Then, for a given node A in T , we can find best(A), the set subtrees in L with minimal

substitution error,

best(A) = {B ∈ L;Err(B,A) = minC∈L(Err(C,A)}) (B.8)

and then define the Expected Local Improvement I(A) as

I(A) = Err(A)− Err(B,A) for some B ∈ best(A) (B.9)

If I(A) is positive, then replacing A with any node in best(A) will improve the local

fitness of A. Note however that this does not imply that the global fitness of T will

improve. Indeed, even though the local error will decrease, the erroneous fitness cases

may differ, which could adversely affect the whole tree. On the other hand, if I(A) is

negative, no subtree in L can improve the global fitness when inserted in lieu of A.

Two different IGLTI schemes were tested on the categorical benchmarks which we will

refer to as: IGLTI depth 2 and IGLTI depth 3. In the IGLTI depth 2 scheme the library

consisted of all semantically unique trees from depth 0 to depth 2 inclusive. Similarly,

in the IGLTI depth 3 scheme all semantically unique trees from depth 0 to depth 3 were

included. Only the IGLTI depth 3 scheme was tested on the Boolean benchmarks. In

this case, the library size was limited to a maximum of 40000 trees.

The library for the ILTI algorithm was constructed from all possible semantically unique

subtrees of 2500 randomly generated full trees of depth 2. In this case the library had

a strict upper size limit of 450 trees and the library generating procedure immediately

finished when this limit was met. Note that for the categorical benchmarks, the size of

the library was always below 450 trees. For the Boolean benchmarks on the other hand,

the library size was always 450 trees.

In the process of generating the library (whatever design procedure is used), if two

candidate subtrees have exactly the same outputs, only the tree with fewer nodes is

kept. In this way, the most concise generating tree is stored for each output vector. The

library L is ordered by tree size, from smallest to largest, hence so is best(A). Table B.1

gives library sizes for each categorical benchmarks.

Appendix B. Greedy Local Search for Small Solutions 32

Algorithm 2 Procedure GLTI(Tree T , library L)

Require: Err(A) (Eq. B.5), Err(B,A) (Eq. B.7), A ∈ T , B ∈ L

1 T ← {A ∈ T ; if Err(A) 6= 0}

2 bestErr ← +∞
3 bestReduce← +∞
4 bestANodes← {}

5 for A ∈ T do . Loop over nodes which could be improved
6 A.minErr ← +∞
7 A.minReduce← +∞
8 A.libraryTrees← {}
9 indexA← index position of A in tree T

10 for B ∈ L do . Loop over trees in library
11 if B ∈ T.bannedBTrees(indexA) then
12 continue

13 BReduce← size(B)− size(A)

14 if Err(B,A) < A.minErr then
15 A.minErr ← Err(B,A)
16 A.minReduce← BReduce
17 A.libraryTrees← {B}

18 if Err(B,A) = 0 then
19 break . Stop library search for current A

20 else if Err(B,A) = A.minErr then
21 if BReduce < A.minReduce then
22 A.minReduce← BReduce
23 A.libraryTrees← {B}

24 else if BReduce = A.minReduce then
25 A.libraryTrees.append(B)

26 if A.minErr < bestErr then
27 bestErr ← A.minErr
28 bestReduce← A.minReduce
29 bestANodes← {A}

30 else if A.minErr = bestErr then
31 if A.minReduce < bestReduce then
32 bestReduce← A.minReduce
33 bestANodes← {A}

34 else if A.minReduce = bestReduce then
35 bestANodes.append(A)

36 chosenA← random(bestANodes)
37 chosenB ← random(chosenA.libraryTrees)

38 indexA← index position of chosenA in T
39 T.bannedBTrees(indexA).append(chosenB)

40 return chosenA, chosenB, T

Appendix B. Greedy Local Search for Small Solutions 33

Table B.1: Library sizes for each categorical benchmark.

.

Library size
Benchmark IGLTI IGLTI ILTI

depth 3 depth 2 depth 2

D.A1 16945 138 72
D.A2 19369 144 78
D.A3 18032 145 81
D.A4 14963 133 69
D.A5 20591 145 81

M.A1 12476 134 68
M.A2 16244 144 78
M.A3 10387 145 81
M.A4 11424 130 66
M.A5 19766 145 81

M.B 21549 - 81

B.3 Tree Improvement Procedures

B.3.1 Greedy Local Tree Improvement

Everything is now in place to describe the full LTI algorithm, its pseudo-code can be

found in algorithm 2. The algorithm starts (line 1) by storing all nodes A ∈ T where

Err(A) 6= 0 in the set T . Then, the nodes in T are each examined individually (line 5).

The library L is inspected (lines 14 - 25) for each node A ∈ T with the aim of recording

each associated library tree B which firstly minimises Err(B,A) and secondly minimises

BReduce = size(B) − size(A). In the worst case, for each node A, every tree B within

the library L is inspected. However, the worst case is avoided, and the inspection of the

library is aborted, if a tree B ∈ L is found which satisfies Err(B,A) = 0.

The master tree T can effectively be seen as an array where each element corresponds

to a node in the tree. When a library tree B replaces a node and rooted subtree in T

a record is kept of the index position at which B was inserted. For a node A in the

master tree, at line 11 the algorithm ensures that the library trees which have previously

been inserted at the T array index position of node A are not considered for insertion

again at that index position. This ensures that the algorithm does not become stuck in

repeatedly inserting the same B trees to the same array index positions of the master

tree T .

After inspecting the library for a given node A, the values A.minErr and A.minReduce

are used to determine the set of the very best A ∈ T nodes, bestANodes ⊆ T (lines 26 -

35).

Appendix B. Greedy Local Search for Small Solutions 34

Next, the algorithm (line 36) randomly chooses a node chosenA ∈ bestANodes and

randomly chooses an associated tree from its best library tree set

chosenB ∈ chosenA.libraryTrees.

Finally, the algorithm records the chosen library tree chosenB as having been inserted

at the array index position of chosenA in T .

Complexity Suppose that the library L is of size o. The computation of the output

vectors of all trees in L is done once and for all. Hence the overhead of one iteration of

LTI is dominated, in the worst case, by the comparisons of the optimal vectors of all m

nodes in T with the output vectors of all trees in L, with complexity n×m× o.

B.3.2 Iterated GLTI

In the previous section, we have defined the LTI procedure that, given a master tree T

and a library of subtrees L, selects a node chosenA in T and a subtree chosenB in L
to insert in lieu of node chosenA so as to minimize some local error over a sequence of

fitness cases as primary criterion, and the full tree size as secondary criterion. In this

section we will turn LTI into a full Stochastic Search Algorithm.

As discussed in [7], or as done in [3], GLTI could be used within some GP algorithm to

improve it with some local search, ”à la” memetic. However, following the road paved

in [7], we are mainly interested here in experimenting with GLTI a full search algorithm

that repeatedly applies GLTI to the same tree. Note that the same tree and the same

library will be used over and over, so the meaning of ”iterated” here does not involve

random restarts. On the other hand, the only pressure toward improving the global

fitness will be put on the local fitness defined by Eq. B.9. In particular, there are cases

where none of the library trees can improve the local error: the smallest decrease is

nevertheless chosen, hopefully helping to escape some local optimum.

The parameters of IGLTI are the choice of the initial tree, the method (and its param-

eters) used to create the library, and the size of the library. The end of the paper is

devoted to some experimental validation of IGLTI and the study of the sensitivity of

the results w.r.t. its most important parameter, the depth of the library trees.

B.3.3 Modified ILTI

The ILTI scheme (first introduced in [7]) was modified for use in this paper. In the

IGLTI algorithm, a record is kept of which library trees were inserted at each array

index positions of the master tree. This feature ensured that the same library tree was

Appendix B. Greedy Local Search for Small Solutions 35

not inserted at the same array index positions of the master tree more than once. A

typical situation where this proved necessary is when a single-node subtree achieves

very small number of errors when put at the root position. Without the modification,

this single-node tree is inserted at the root every second iteration. Similar situations

can also take place at other positions, resulting in endless loops. This modification

was particularly useful for problem D.A43. This feature was also implemented in the

modified ILTI scheme. Note that for the rest of this paper the modified ILTI scheme

will simply be referred to as the ILTI scheme.

B.4 Experimental Conditions

The benchmark problems used for these experiments are classical Boolean problems and

some of the finite algebra categorical problems which have been proposed in [14] and

recently studied in [1, 3]. For the sake of completeness, we reiterate their definitions as

stated in [1].

”The solution to the v-bit Comparator problem Cmp-v must return true if the v
2 least

significant input bits encode a number that is smaller than the number represented by

the v
2 most significant bits. For the Majority problem Maj-v, true should be returned if

more that half of the input variables are true. For the Multiplexer problem Mul-v, the

state of the addressed input should be returned (6-bit multiplexer uses two inputs to

address the remaining four inputs, 11-bit multiplexer uses three inputs to address the

remaining eight inputs). In the Parity problem Par-v, true should be returned only for

an odd number of true inputs.

The categorical problems deal with evolving algebraic terms and dwell in the ternary (or

quaternary) domain: the admissible values of program inputs and outputs are {0, 1, 2}
(or {0, 1, 2, 3}. The peculiarity of these problems consists of using only one binary

instruction in the programming language, which defines the underlying algebra. For

instance, for the A4 and B1 algebras, the semantics of that instruction are given in

Figure B.1.

For each of the five algebras considered here, we consider two tasks. In the discriminator

term tasks, the goal is to synthesize an expression (using only the one given instruction)

that accepts three inputs x, y, z and returns x if x 6= y and z if x = y. In ternary

domain, this gives rise to 33 = 27 fitness cases.

3Notice that Behavioural Programming [1] performed rather poorly on problem D.A4 with a success
rate of only 23%.

Appendix B. Greedy Local Search for Small Solutions 36

The second task defined for each of algebras consists in evolving a so-called Mal’cev

term, i.e., a ternary term that satisfies m(x, x, y) = m(y, x, x) = y. Hence there are only

15 fitness cases for ternary algebras, as the desired value for m(x, y, z), where x, y, and

z are all distinct, is not determined.”

In the ILTI algorithm a master tree is initialised as a random full tree of depth 2. For

the IGLTI algorithm, the initial master tree is chosen as the best performing subtree

from the subtree library. If there are multiple library trees with the same performance,

the smallest tree is chosen.

Hard run time limits of 5000 seconds were set for each experiment. A run was considered

a failure if a solution was not found within this time.

All results were obtained using an 64bits Intel(R) Xeon(R) CPU X5650 @ 2.67GHz. All

of the code was written in Python4.

4The entire code base is freely available at
robynffrancon.com/GLTI.html

robynffrancon.com/GLTI.html

Appendix B. Greedy Local Search for Small Solutions 37

B.5 Experimental results

Cmp06 Maj06 Par06 Mux06 Cmp08
Benchmarks

0

100

200

300

400

500
Nu

m
be

r o
f n

od
es

 in
 s

ol
ut

io
n

tr
ee

LTI
GLTI - depth 3

Figure B.3: Standard box-plots for the program solution tree
sizes (number of nodes) for the ILTI algorithm and IGLTI
depth 3 algorithm tested on the Boolean benchmarks. Each
algorithm performed 20 runs for each benchmark. Perfect so-
lutions were found from each run except for the Cmp06 bench-
mark where the IGLTI algorithm failed 4 times (as indicated

by the red number four).

Figure B.3 shows standard

box-plots for solution tree

sizes obtained while testing

the ILTI and IGLTI depth

3 algorithms on the 6 bit

and Cmp08 Boolean bench-

marks. It shows how the

IGLTI algorithm finds solu-

tion trees which are smaller

(number of nodes) than

those found by the ILTI al-

gorithm. Four failed runs are

reported in this figure which

occurred when the IGLTI

depth 3 algorithm was tested

on the Cmp08 benchmark.

The figure also shows how

the spread of solution sizes are generally narrower for IGLTI depth 3 than for ILTI.

The only exception to this generality is the results of the Cmp08 benchmark. Addi-

tional supporting data for this figure is given in Table B.3. From inspecting the figure

and table together, it is clear that the 20 solution trees obtained from testing IGLTI

depth 3 on the Mux06 benchmark were all of the same size.

Figure B.4 shows standard box-plots for the number of operators used in the categorical

benchmark solutions which were found using the ILTI, IGLTI depth 3, and IGLTI depth

2 schemes. Supporting data for this figure can also be seen in Table B.3. However, note

that this table measures tree sizes by the number of nodes and not by the number of

operators.

The figure shows how the IGLTI depth 3 scheme found the smallest solutions on the

D.A2, D.A4, D.A5, M.A1, and M.A2 benchmarks. For all other three variable categor-

ical benchmarks, the IGLTI depth 2 scheme found the smallest solutions. In all cases,

the spread of solution sizes (number of operators) were smallest for IGLTI depth 3 and

largest for the ILTI scheme. Reminiscent of the Mux06 benchmark results, the IGLTI

depth 3 scheme found twenty solutions which were all of the same size when tested on

the M.A3 benchmark.

Appendix B. Greedy Local Search for Small Solutions 38

Table B.2: Run time (seconds) results for the ILTI algorithm and IGLTI algorithm
(library tree maximum depths 2 and 3) tested on the 6bits Boolean benchmarks and the
categorical benchmarks. 20 runs were conducted for each benchmark, always finding
a perfect solution. The best average results from each row are in bold. The BP4A
column is the results of the best performing algorithm of [1] (* indicates that not all

runs found a perfect solution).

.

Run time [seconds]
GLTI - library depth 3 GLTI - library depth 2 modified LTI BP4A

max mean min max mean min max mean min mean
D.A1 325.6 298.1 ± 15.2 272.3 24.3 9.8 ± 6.8 2.3 5.9 2.6 ± 1.4 1.1 136*
D.A2 366.5 315.5 ± 18.9 289.6 12.3 4.7 ± 2.2 2.0 2.1 1.3 ± 0.3 0.8 95*
D.A3 357.1 302.2 ± 23.0 276.7 11.6 4.0 ± 3.0 1.0 2.2 1.2 ± 0.4 0.7 36*
D.A4 373.9 308.0 ± 24.4 268.9 320.8 53.5 ± 69.6 4.0 17.6 5.3 ± 3.3 2.7 180*
D.A5 421.4 349.2 ± 39.7 282.6 45.8 23.8 ± 9.0 11.9 6.1 3.1 ± 1.6 0.9 96*
M.A1 213.2 191.3 ± 15.7 162.5 3.4 1.1 ± 0.6 0.4 1.6 1.0 ± 0.3 0.5 41*
M.A2 252.4 241.2 ± 8.6 230.8 2.0 1.0 ± 0.4 0.5 1.1 0.8 ± 0.2 0.4 21*
M.A3 172.0 161.7 ± 7.4 148.0 1.7 0.8 ± 0.3 0.4 1.1 0.9 ± 0.2 0.5 27*
M.A4 182.3 171.1 ± 5.7 160.7 5.4 3.2 ± 1.3 1.3 1.8 1.0 ± 0.3 0.5 9
M.A5 327.5 298.1 ± 20.8 263.9 4.7 1.7 ± 1.1 0.4 1.4 0.9 ± 0.2 0.5 14
M.B 6749* 2772.9* ± 1943.0 432* - - - 1815* 843.6* ± 876.2 4* -

Cmp06 165.9 111.3 ± 23.3 61.4 - - - 5.3 4.1 ± 0.6 2.9 15
Maj06 129.6 95.7 ± 13.0 70.7 - - - 5.1 4.1 ± 0.5 2.9 36
Par06 396.3 258.2 ± 53.2 164.7 - - - 20.1 13.2 ± 2.5 7.9 233
Mux06 73.7 66.1 ± 6.4 48.8 - - - 4.9 4.1 ± 0.8 2.6 10

Table B.2 gives the algorithm runtimes for each benchmark. The ILTI algorithm is

the best performing algorithm for this measure. However, note that the IGLTI depth

2 scheme showed similar average runtimes (but larger spreads) for the three variable

Mal’cev term benchmarks.

Nine runs of the ILTI algorithm failed to find a solution within the 5000 second time

limit when testing on the M.B benchmark. An average of 387.2± 283.0 operators were

used per correct solution. The IGLTI depth 3 scheme failed to find a solution once when

testing on the M.B benchmark. An average of 88.4 ± 21.4 operators were used by the

correct solutions found in this case.

Table B.3: Solution program size (number of nodes) results for the ILTI algorithm and
IGLTI algorithm (library tree maximum depths 2 and 3) tested on the 6bits Boolean
benchmarks and the categorical benchmarks. 20 runs were conducted for each bench-
mark, always finding a perfect solution. The best average results from each row are
in bold. The BP4A column is the results of the best performing algorithm of [1] (*

indicates that not all runs found a perfect solution).

.

Program size [nodes]
GLTI - library depth 3 GLTI - library depth 2 modified LTI BP4A

max mean min max mean min max mean min mean
D.A1 107 95.3 ± 4.4 91 107 80.7 ± 14.1 55 575 260.5 ± 122.0 137 134*
D.A2 87 65.7 ± 15.9 41 121 92.0 ± 18.7 43 295 144.5 ± 48.1 81 202*
D.A3 71 65.1 ± 4.4 61 71 54.7 ± 6.6 45 241 146.1 ± 46.4 79 152*
D.A4 103 84.9 ± 10.4 67 115 92.6 ± 12.4 67 549 320.9 ± 84.8 187 196*
D.A5 87 64.6 ± 10.8 47 173 98.0 ± 23.1 57 465 238.0 ± 100.1 89 168*
M.A1 45 37.8 ± 2.4 37 71 46.9 ± 7.9 33 191 104.4 ± 41.9 43 142*
M.A2 49 44.8 ± 3.2 33 59 44.3 ± 7.7 33 107 70.8 ± 18.2 45 160*
M.A3 49 49.0 ± 0.0 49 41 34.8 ± 3.2 31 259 143.1 ± 51.0 75 104*
M.A4 53 47.9 ± 2.9 41 71 49.8 ± 10.9 33 211 119.5 ± 35.6 61 115
M.A5 39 37.8 ± 1.8 35 59 31.7 ± 13.1 21 123 77.1 ± 26.2 33 74
M.B 243* 179.4* ± 42.3 95* - - - 3409* 1591.4* ± 1078.6 353* -

Cmp06 41 32.9 ± 5.2 27 - - - 93 64.1 ± 11.9 51 156
Maj06 61 51.2 ± 3.3 47 - - - 89 71.4 ± 7.6 57 280
Par06 283 260.0 ± 12.1 233 - - - 491 436.0 ± 29.3 361 356
Mux06 21 21.0 ± 0.0 21 - - - 77 46.3 ± 11.8 33 117

Appendix B. Greedy Local Search for Small Solutions 39

B.6 Discussion and Further Work

The results presented in this paper show that SB can be successfully used to solve stan-

dard categorical benchmarks when the pseudo-inverse functions are carefully defined.

Furthermore, the IGLTI algorithm can be used to find solutions for the three variable

categorical benchmarks, which are small enough to be handled by a human mathemati-

cian (approximately 45 operators), faster than any other known method.

Interestingly, the results suggest that using a larger library can sometimes lead to worse

results (compare the IGLTI depth 2 and IGLTI depth 3 algorithms on the D.A3 bench-

mark for instance). This is likely as a result of the very greedy nature of the IGLTI

algorithm. A larger library probably provided immediately better improvements which

lead the algorithm away from the very best solutions.

Future work should entail making modification to the IGLTI algorithm so that it is

less greedy. In principle, these modifications should be easy to implement by simply

adding a greater degree of stochasticity so that slightly worst intermediate results can

be accepted. Furthermore, the pseudo-inverse functions should be tested as part of

schemes similar to those which feature in [3] with dynamic libraries and a population of

potential solutions.

D.A1 D.A2 D.A3 D.A4 D.A5 M.A1 M.A2 M.A3 M.A4 M.A5
Benchmarks

0

50

100

150

200

250

300

Nu
m

be
r o

f t
im

es
 o

pe
ra

to
r u

se
d

in
 s

ol
ut

io
n

LTI
GLTI - depth 2
GLTI - depth 3

Figure B.4: Standard box-plots for the number of operators in program solutions for
the ILTI algorithm and IGLTI algorithm (library tree maximum depths 2 and 3) tested
on the categorical benchmarks: For each problem, from left to right, ILTI, IGLTI-depth
2, and IGLTI-depth 3. Each algorithm performed 20 runs for each benchmark. Perfect

solutions were found from each run.

Appendix C

Retaining Experience and

Growing Solutions

C.1 Motivation

Most genetic programming (GP) [4] systems don’t adapt or improve from solving one

problem to the next. Any experience which could have been gained by the system is

usually completely forgotten when that same system is applied to a subsequent problem,

the system effectively starts from scratch each time.

For instance, consider the successful application of a classical GP system to a standard

n-bits Boolean function synthesis benchmark (such as the 6-bits comparator as described

in [1]). The population which produced the solution tree is not useful for solving any

other n-bits Boolean benchmark (such as the 6-bits multiplexer). Therefore, in general,

an entirely new and different population must be generated and undergo evolution for

each different problem. This occurs because the system components which adapt to solve

the problem (a population of trees in the case of classical GP) become so specialised

that they are not useful for any other problem.

This paper addresses this issue by introducing the Node-by-Node Growth Solver (NNGS)

algorithm, which features a component called the controller, that can be improved from

one problem to the next within a limited class of problems.

NNGS uses Semantic Backpropagation (SB) and the controller, to grow a single S-

expression solution tree starting from the root node. Acting locally at each node, the

controller makes explicit use of the target output data and input arguments data to

determine the properties (i.e. operator type or argument, and semantics) of the subse-

quently generated child nodes.

40

Appendix C. Retaining Experience and Growing Solutions 41

The proof-of-concept controller discussed in this paper constitutes a set of deterministic

hand written rules and has been tested, as part of the NNGS algorithm, on several

popular Boolean function synthesis benchmarks. This work aims to pave the way towards

the use of a neural network as an adaptable controller and/or, separately, towards the use

of meta-GP for improving the controller component. In effect, the aim is to exploit the

advantages of black-box machine learning techniques to generate small and examinable

program solutions.

The rest of this paper will proceed as follows: Section C.2 outlines other related research.

Section C.3 details semantic backpropagation. A high level overview of the NNGS sys-

tem is given in Section C.4, and Section C.5 describes the proof-of-concept controller.

Section C.6 details the experiments conducted. The experimental results and a discus-

sion is given in Section C.7. Section C.8 concludes with a description of potential future

work.

C.2 Related Work

The isolation of useful subprograms/sub-functions is a related research theme in GP.

However, in most studies subprograms are not reused across different problems. In [31]

for instance, the hierarchical automatic function definition technique was introduced

so as to facilitate the development of useful sub-functions whilst solving a problem.

Machine learning was employed in [1] to analyse the internal behaviour (semantics) of GP

programs so as to automatically isolate potentially useful problem specific subprograms.

SB was used in [3] to define intermediate subtasks for GP. Two GP search operator

were introduced which semantically searched a library of subtrees which could be used

to solve the subtasks. Similar work was carried out in [7, 9], however in these cases

subtree libraries were smaller and static, and only a single tree was iteratively modified

as opposed to a population of trees.

C.3 Semantic Backpropagation (SB)

Semantic backpropagation (SB) within the context of GP is an active research topic [3,

7, 9, 20].

Consider the output array produced by the root node of a solution tree, where each

element within the array corresponds to the output from one fitness case. This output

array is the semantics of the root node. If the solution is perfectly correct, the output

Appendix C. Retaining Experience and Growing Solutions 42

array will correspond exactly to the target output array of the problem at hand. In

a programmatic style, the output array of a general node node x will be denoted as

node x.outputs and the output from fitness case i will be denoted by node x.outputs[i].

Each node within a tree produces an output array, a feature which has been exploited

in [1] to isolate useful subtrees. The simplest example of a tree (beyond a single node) is

a triplet of nodes: a parent node node a, the left child node node b, and the right child

node node c.

As a two fitness case example, suppose that a triplet is composed of a parent node node a

representing the operator AND, a left child node node b representing input argument

A1 = [0, 1], and a right child node node c representing input argument A2 = [1, 1]. The

output array of the parent node is given by:

node a.outputs = node b.outputs AND node c.outputs

= [0, 1] AND [1, 1]

= [0, 1].

(C.1)

On the other hand, given the output array from the parent node of a triplet node a,

it is possible to backpropagate the semantics so as to generate output arrays for the

child nodes, if the reverse of the parent operator is defined carefully. This work will

exclusively tackle function synthesis problems within the Boolean domain, and therefore,

the standard [1, 31] set of Boolean operators will be used: AND, OR, NAND, and

NOR.

b̂, ĉ = AND−1(â)

â b̂ ĉ
1 1 1
0 0 #
0 # 0
#

b̂, ĉ = OR−1(â)

â b̂ ĉ
1 1 #
1 # 1
0 0 0
#

b̂, ĉ = NAND−1(â)

â b̂ ĉ
1 0 #
1 # 0
0 1 1
#

b̂, ĉ = NOR−1(â)

â b̂ ĉ
1 0 0
0 1 #
0 # 1
#

Figure C.1: Function tables for the reverse operators: AND−1, OR−1, NAND−1, and
NOR−1.

Figure C.1 gives function tables for the element-wise reverse operators: AND−1, OR−1,

NAND−1, and NOR−1 (their use with 1D arrays as input arguments follows as ex-

pected). As an example use of these operators the previous example will be worked in

Appendix C. Retaining Experience and Growing Solutions 43

reverse: given the output array of node a, the arrays node b.outputs and node c.outputs

are calculated as:

node b.outputs, node c.outputs = AND−1(node a.outputs)

= AND−1([0, 1])

= [0, 1], [#, 1]

or

= [#, 1], [0, 1].

(C.2)

The hash symbol # in this case indicates that either 1 or 0 will do. Note that two differ-

ent possible values for node b.outputs and node c.outputs exist because AND−1(0) =

(0,#) or (#, 0). This feature occurs as a result of rows 4 and 5 of the NAND−1 function

table. Note that each of the other reverse operators have similar features, specifically

for: OR−1(1), NAND−1(1), and NOR−1(0).

Note also, that for any array loci i in node a.outputs where node a.outputs[i] = #, it is

true that node b.outputs[i] = # and node c.outputs[i] = #. For example, NOR−1([1,#]) =

([0,#], [0,#]).

Using the reverse operators in this way, output arrays can be assigned to the child nodes

of any parent node. The child output arrays will depend on two decisions: Firstly, on

the operator assigned to the parent node, as this is the operator that is reversed. And

secondly, on the choices made (note the AND−1(0) example above), at each loci, as to

which of the two child output arrays contains the # value. These decisions are made by

the controller component.

Using these reverse operators for SB can only ever produce a pair of output arrays which

are different from the problem target outputs in two ways. Firstly, the output arrays can

be a flipped (using the NOT gate on each bit) or an un-flipped versions of the problem

target outputs. Secondly, some elements of the output arrays will be # elements.

C.4 Node-by-Node Growth Solver (NNGS)

A visual representation of the NNGS algorithm can be seen in Fig. C.2, which shows

a snapshot of a partially generated solution tree. This tree, in it’s unfinished state,

is composed of: AND and OR operators, an input argument labelled A1, and two

unprocessed nodes. The basic role of the NNGS algorithm is to manage growing the

solution tree by passing unprocessed nodes to the controller and substituting back the

generated/returned node triplet.

Appendix C. Retaining Experience and Growing Solutions 44

?OR

AND
Found fitting input
pattern

Nodes in need of
processing

?
?

OR

A2

?

Controller
Node to be
processed

Select
unprocessed
node

Generated
subtree

A1

Replace processed node
with generated subtree

Figure C.2: A visual representation of the NNGS algorithm during the development
of a solution tree.

Algorithm 3 gives a simple and more thorough explanation of NNGS. In line 2 the output

values of the solution tree root node are set to the target output values of the problem

at hand. The output values of a node are used, along with the reverse operators, by

the controller (line 9) to generate the output values of the returned child nodes. The

controller also sets the node type (they are either operators or input arguments) of the

input parent node and generated child nodes.

Nodes which have been defined by the controller as input arguments (with labels: A1,

A2, A3... etc.) can not have child nodes (they are by definition leaf nodes) and are

therefore not processed further by the controller (line 6). When every branch of the tree

ends in an input argument node, the algorithm halts.

Note that the controller may well generate a triplet where one or more of the child

nodes require further processing. In this case the NNGS algorithm will pass these nodes

back to the controller at a later stage before the algorithm ends. In effect, by using the

controller component the NNGS algorithm simply writes out the solution tree.

Appendix C. Retaining Experience and Growing Solutions 45

Algorithm 3 The Node-by-Node Growth Solver
NNGS(target outputs, controller)

1 solution tree ← {}
2 root node.outputs ← target outputs
3 unprocessed nodes ← {root node}

4 while len(unprocessed nodes) > 0 do
5 node a← unprocessed nodes.pop()

. check for leaf node
6 if node a.type = ’argument’ then
7 solution tree.insert(node a)
8 continue . move on to next node

9 node a, node b, node c←
controller(node a, target outputs)

10 unprocessed nodes.insert({node b, node c})
11 solution tree.insert(node a)

12 return solution tree

C.5 Proof-Of-Concept Controller

Given an unprocessed node, the controller generates two child nodes and their output

arrays using one of the four reverse operators. It also sets the operator type of the parent

node to correspond with the chosen reverse operator that is used.

The ultimate goal of the controller is to assign an input argument to each generated

child node. For example, suppose that the controller generates a child node with an

output array node b.outputs = [0, 1, 1,#] and that an input argument is given by A1 =

[0, 1, 1, 0]. In this case, node b can be assigned (can represent) the input argument

A1 because [0, 1, 1,#] = [0, 1, 1, 0]. The algorithm halts once each leaf node has been

assigned an input argument.

Before giving a detailed description of the proof-of-concept controller, there are a few

important general points to stress: Firstly, the entire decision making process is deter-

ministic. Secondly, the decision making process is greedy (the perceived best move is

taken at each opportunity). Thirdly, the controller does not know the location of the

input node within the solution tree. The controller has priori knowledge of the input

argument arrays, the operators, and the reverse operators only. Furthermore, the con-

troller, in its current state, does not memorise the results of it’s past decision making. In

this regard, when processing a node, the controller has knowledge of that node’s output

array only. In this way, the controller acts locally on each node. Multiple instances of

the controller could act in parallel by processing all unprocessed nodes simultaneously.

Appendix C. Retaining Experience and Growing Solutions 46

C.5.1 Step-by-step

a

cb

0 1 1 # 1 0

0 # # # # 00 1 1 # 1 0

Step 1

Step 2

Step 3

b
0 1 1 # 1 0

A2

0 1 0 1 0 1

OR-A2
error table

Number
of
errors

Number of
possible
hash moves

1 errors 1 0

0 errors 2 2

Step 4

cb
0 # # # # 00 1 1 # 1 0

cb
0 # 1 # 1 00 1 # # # 0

OR-A1 error table

OR-A2 error table

NAND-A3 error table

...

OR-A2 error table

NAND-A3 error table

OR-A1 error table

...

Step 5

cb
0 # 1 # 1 00 1 # # # 0

a
0 1 1 # 1 0

p
1 0 0 1 0 1

OR-1

Figure C.3: Diagrammatic aid for the proof-of-
concept controller.

This subsection will give a step-by-

step run-through of the procedure un-

dertaken by the proof-of-concept con-

troller. Figure C.3 serves as a dia-

grammatic aid for each major step.

Step 1

Given an input (parent) node node a,

and for each reverse operator in Ta-

ble C.1, the first step taken by the

controller is to generate output arrays

for each of the child nodes. In the

example given in step 1 of Fig. C.3

only the OR−1 reverse operator is

used. The OR−1 reverse operator

generates # values in the child out-

put arrays due to the following prop-

erty OR−1(1) = (1,#) or (#, 1). In

this step, whenever the opportunity

arises (regardless of the reverse oper-

ator employed), all generated # val-

ues within the child output arrays will

be placed in the output array of the

right child node node c. For example

in the case of OR−1(1): (1,#) will be

used and not (#, 1).

Note that the reverse operators prop-

agate all # elements from parent to

child nodes. This feature is exempli-

fied in step 1 of Fig. C.3 by the prop-

agation of the # value at locus 4 of node a.outputs to loci 4 of both node b.outputs and

node c.outputs.

Appendix C. Retaining Experience and Growing Solutions 47

Step 2

By this step, the controller has generated four different (in general) node b.outputs

arrays, one for each reverse operator. The goal for this step is to compare each of those

arrays to each of the possible input argument arrays (A1, A2... etc). As an example,

in step 2 of Fig. C.3 the generated node b.outputs array is compared to the A2 input

argument array.

Two separate counts are made, one for the number of erroneous 0 argument values E0

and one for the number of erroneous 1 argument values E1 (highlighted in blue and

red respectively in Fig. C.3). Two further counts are made of the number of erroneous

node b loci, for 0 and 1 input arguments values, which could have been # values (and

therefore not erroneous) had the controller not specified in step 1 that all # values should

be placed in the node c.outputs array whenever possible. These last two statistics will

be denoted by M0 and M1 for 0 and 1 input arguments values respectively. These four

statistics form an error table for each reverse operator-input argument pair.

Step 3

In this step, the controller sorts the error tables by a number of statistics. Note that M0−
E0 and M1−E1 are the number of remaining erroneous 0 argument values and erroneous

1 argument values respectively if all # values were moved from the node c.outputs array

to the node b.outputs array whenever possible. To simplify matters we note that

if M1 − E1 ≤M0 − E0

let k = 1, j = 0

otherwise

let k = 0, j = 1.

(C.3)

Each error table is ranked by (in order, all increasing): Mk −Ek, Ek, Mj −Ej , Ej , and

the number of # values in node c.outputs. In a greedy fashion, the very best error table

(lowest ranked) will be select for the next step (in Fig. C.3 the OR-A2 error table is

selected). Note that the ranked list of error tables might need to be revisited later from

step 5.

Appendix C. Retaining Experience and Growing Solutions 48

Step 4

The error table selected in step 3 effectively serves as an instruction which details how

the node b.outputs and

node c.outputs arrays should be modified. The goal of the controller is to move the

minimum number of # values from the node c.outputs array to the node b.outputs array

such as to satisfy the error count for either 1’s or 0’s in one of the input arguments. In

the example given in Fig. C.3, two # values in node c.outputs are swapped with 1’s in

node b.outputs.

Step 5

In this step, the algorithm checks that the generated

node b.outputs and node c.outputs arrays do not exactly equal either the parent node

node a or the grand parent node node p (if it exists). If this check fails, the algorithm

reverts back to step 3 and chooses the next best error table.

Step 6

The final step of the algorithm is to appropriately set the operator type of node a given

the final reverse operator that was used. In this step the algorithm also checks whether

either (or both) of the child nodes can represent input arguments given their generated

output arrays.

C.6 Experiments

The Boolean function synthesis benchmarks solved in this paper are standard bench-

marks within GP research [1, 3, 7, 31]. They are namely: the comparator 6bits and 8bits

(CmpXX), majority 6bits and 8bits (MajXX), multiplexer 6bits and 11bits (MuxXX),

and even-parity 6bits, 8bit, 9bits, and 10bits (ParXX).

Their definitions are succinctly given in [1]:

“For an v-bit comparator Cmp v, a program is required to return true if the v/2 least

significant input bits encode a number that is smaller than the number represented by

the v/2 most significant bits. In case of the majority Maj v problems, true should be

returned if more that half of the input variables are true. For the multiplexer Mul v,

the state of the addressed input should be returned (6-bit multiplexer uses two inputs

Appendix C. Retaining Experience and Growing Solutions 49

Table C.1: Results for the NNGS algorithm when tested on the Boolean benchmarks,
perfect solution were obtained for each run. BP4A columns are the results of the best
performing algorithm from [1] (* indicates that not all runs found perfect solution).
The RDOp column is taken from the best performing (in terms of fitness) scheme in [3]
(note that in this case, average success rates and average run times were not given).

Run time [seconds] Program size [nodes]
NNGS BP4A ILTI NNGS BP4A ILTI RDO

Cmp06 0.06 15 9 99 156 59 185
Cmp08 0.86 220 20 465 242 140 538
Maj06 0.19 36 10 271 280 71 123
Maj08 3.09 2019* 27 1391 563* 236 -
Mux06 0.21 10 9 333 117 47 215
Mux11 226.98 9780 100 12373 303 153 3063
Par06 0.35 233 17 515 356 435 1601
Par08 5.73 3792* 622 2593 581* 1972 -
Par09 25.11 - 5850 5709 - 4066 -
Par10 120.56 - - 12447 - - -

to address the remaining four inputs, 11-bit multiplexer uses three inputs to address the

remaining eight inputs). In the parity Par v problems, true should be returned only for

an odd number of true inputs.”

The even-parity benchmark is often reported as the most difficult benchmark [31].

C.7 Results and Discussion

The results are given in Table C.1 and show that the NNGS algorithm finds solutions

quicker than all other algorithms on all benchmarks with the exception of the ILTI

algorithm on the Mux11 benchmark. A significant improvement in run time was found

for the Par08 benchmark.

The solution sizes produced by the NNGS algorithm are always larger than those found

by the BP4A and ILTI algorithms with the exception of the Cmp06 results. The RDO

scheme and ILTI algorithm both relay on traversing large tree libraries which make

dealing with large bit problems very computationally intensive. As such, these methods

do not scale well in comparison to the NNGS algorithm.

It is a clear that NNGS is weakest on the Mux11 benchmark. In this case a very large

solution tree was found which consisted of 12,373 nodes. The multiplexer benchmark

is significantly different from the other benchmarks by the fact that only four input

arguments are significant to any single fitness case: the three addressing bits and the

addressed bit. Perhaps this was the reason why the chosen methodology implemented

in the controller resulted with poor results in this case.

Appendix C. Retaining Experience and Growing Solutions 50

C.8 Further Work

There are two possible branches of future research which stem from this work, the first

centres around meta-GP. As a deterministic set of rules, the proof-of-concept controller is

eminently suited to be encoded and evolved as part of a meta-GP system. The difficulty

in this case will be in appropriately choosing the set of operators which would be made

available to the population of controller programs.

The second avenue of research which stems from this work involves encoding the current

proof-of-concept controller within the weights of a neural network (NN). This can be

achieved through supervised learning in the first instance by producing training sets in

the form of node triplets using the current controller. A training set would consist of

randomly generated output arrays and the proof-of-concept controller generated child

output arrays. In this way, the actual Boolean problem solutions do not need to be

found before training.

As part of the task of find a better controller, the weights of the NN could be evolved

using genetic algorithms (GA), similar to the method employed by [32]. The fitness of a

NN weight set would correspond to the solution sizes obtained by the NNGS algorithm

when employing the NN as a controller: the smaller the solutions, the better the weight

set fitness. Using the proof-of-concept controller in this way would ensure that the GA

population would have a reasonably working individual within the initial population.

A NN may also serve as a reasonable candidate controller for extending the NNGS

algorithm to continuous symbolic regression problems. In this case, the input arguments

of the problem would also form part of the NN’s input pattern.

Bibliography

[1] Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: a broader

and more detailed take on semantic gp. In Proceedings of the 2014 conference on

Genetic and evolutionary computation, pages 935–942. ACM, 2014.

[2] Bartosz Wieloch and Krzysztof Krawiec. Running programs backwards: instruction

inversion for effective search in semantic spaces. In Proceedings of the 15th annual

conference on Genetic and evolutionary computation, pages 1013–1020. ACM, 2013.

[3] T Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Semantic backpropagation for

designing search operators in genetic programming. 2014.

[4] John R Koza. Genetic programming: on the programming of computers by means

of natural selection, volume 1. MIT press, 1992.

[5] Howard Barnum, Herbert J Bernstein, and Lee Spector. Quantum circuits for or

and and of ors. Journal of Physics A: Mathematical and General, 33(45):8047, 2000.

[6] Shu-Heng Chen. Genetic algorithms and genetic programming in computational

finance. Springer Science & Business Media, 2012.

[7] Robyn Ffrancon and Marc Schoenauer. Memetic semantic genetic programming.

In S. Silva and A. Esparcia, editors, Proc. GECCO. ACM, 2015. To appear.

[8] Genetic and evolutionary computation conference 2015. http://www.sigevo.org/

gecco-2015/. Accessed: 2015-06-24.

[9] Robyn Ffrancon and Marc Schoenauer. Greedy semantic local search for small

solutions. In S. Silva and A. Esparcia, editors, Companion Proceedings GECCO.

ACM, 2015. To appear.

[10] Artificial evolution 2015. https://ea2015.inria.fr/. Accessed: 2015-06-24.

[11] Robyn Ffrancon. Retaining experience and growing solutions. arXiv preprint

arXiv:1505.01474, 2015.

51

http://www.sigevo.org/gecco-2015/
http://www.sigevo.org/gecco-2015/
https://ea2015.inria.fr/

Bibliography 52

[12] John R Koza, Forrest H Bennett, David Andre, Martin A Keane, and Frank Dunlap.

Automated synthesis of analog electrical circuits by means of genetic programming.

Evolutionary Computation, IEEE Transactions on, 1(2):109–128, 1997.

[13] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli,

Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Ken-

neth De Jong, et al. Genetic programming needs better benchmarks. In Proceedings

of the 14th annual conference on Genetic and evolutionary computation, pages 791–

798. ACM, 2012.

[14] Lee Spector, David M Clark, Ian Lindsay, Bradford Barr, and Jon Klein. Genetic

programming for finite algebras. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation, pages 1291–1298. ACM, 2008.

[15] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. A survey of semantic methods

in genetic programming. Genetic Programming and Evolvable Machines, 15(2):195–

214, 2014.

[16] Pablo Moscato et al. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech concurrent computation pro-

gram, C3P Report, 826:1989, 1989.

[17] Ferrante Neri, Carlos Cotta, and Pablo Moscato. Handbook of memetic algorithms,

volume 379. Springer, 2012.

[18] Yuichi Nagata. New eax crossover for large tsp instances. In Parallel Problem

Solving from Nature-PPSN IX, pages 372–381. Springer, 2006.

[19] Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic building

blocks in genetic programming. In Genetic Programming, pages 134–145. Springer,

2008.

[20] Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover by

semantic backpropagation. In Proceedings of the 15th annual conference on Genetic

and evolutionary computation, pages 941–948. ACM, 2013.

[21] David E Goldberg. Zen and the art of genetic algorithms. In International Confer-

ence on {G} enetic {A} lgorithms\’89, pages 80–85, 1989.

[22] Arpit Bhardwaj and Aruna Tiwari. A novel genetic programming based classifier

design using a new constructive crossover operator with a local search technique.

In Intelligent Computing Theories, pages 86–95. Springer, 2013.

Bibliography 53

[23] Khaled Rasheed and Haym Hirsh. Informed operators: Speeding up genetic-

algorithm-based design optimization using reduced models. In GECCO, pages 628–

635, 2000.

[24] Pu Wang, Ke Tang, Edward PK Tsang, and Xin Yao. A memetic genetic program-

ming with decision tree-based local search for classification problems. In Evolution-

ary Computation (CEC), 2011 IEEE Congress on, pages 917–924. IEEE, 2011.

[25] Brent E Eskridge and Dean F Hougen. Memetic crossover for genetic programming:

Evolution through imitation. In Genetic and Evolutionary Computation–GECCO

2004, pages 459–470. Springer, 2004.

[26] Masayuki Yanagiya. Efficient genetic programming based on binary decision dia-

grams. In Evolutionary Computation, 1995., IEEE International Conference on,

volume 1, page 234. IEEE, 1995.

[27] Richard M Downing. Evolving binary decision diagrams using implicit neutrality.

In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages

2107–2113. IEEE, 2005.

[28] Hidenori Sakanashi, Tetsuya Higuchi, Hitoshi Iba, and Yukinori Kakazu. Evolution

of binary decision diagrams for digital circuit design using genetic programming. In

Evolvable Systems: From Biology to Hardware, pages 470–481. Springer, 1997.

[29] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations & appli-

cations. Elsevier, 2004.

[30] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric semantic

genetic programming. In Parallel Problem Solving from Nature-PPSN XII, pages

21–31. Springer, 2012.

[31] John R Koza. Hierarchical automatic function definition in genetic programming.

In FOGA, pages 297–318, 1992.

[32] Jan Koutńık, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. Evolv-

ing large-scale neural networks for vision-based reinforcement learning. In Proceed-

ings of the 15th annual conference on Genetic and evolutionary computation, pages

1061–1068. ACM, 2013.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Thesis Overview
	1.1 General Introduction
	1.1.1 Motivation and Problem Domains
	1.1.2 Semantic Backpropagation
	1.1.3 Algorithm Outline and Comparisons

	1.2 Results Overview
	1.3 Discussion and Conclusion

	A Memetic Semantic Genetic Programming
	A.1 Introduction
	A.2 Semantic Backpropagation
	A.2.1 Hypotheses and notations
	A.2.2 Tree Analysis
	A.2.3 Local Error
	A.2.4 Subtree Library

	A.3 Tree Improvement Procedures
	A.3.1 Local Tree Improvement
	A.3.2 Iterated LTI

	A.4 Experimental Conditions
	A.5 Experimental results
	A.6 Related Memetic Work
	A.7 Discussion and Further Work

	B Greedy Semantic Local Search for Small Solutions
	B.1 Introduction
	B.2 Semantic Backpropagation
	B.2.1 Hypotheses and notations
	B.2.2 Rationale
	B.2.3 Tree Analysis
	B.2.4 Local Error
	B.2.5 Subtree Library

	B.3 Tree Improvement Procedures
	B.3.1 Greedy Local Tree Improvement
	B.3.2 Iterated GLTI
	B.3.3 Modified ILTI

	B.4 Experimental Conditions
	B.5 Experimental results
	B.6 Discussion and Further Work

	C Retaining Experience and Growing Solutions
	C.1 Motivation
	C.2 Related Work
	C.3 Semantic Backpropagation (SB)
	C.4 Node-by-Node Growth Solver (NNGS)
	C.5 Proof-Of-Concept Controller
	C.5.1 Step-by-step

	C.6 Experiments
	C.7 Results and Discussion
	C.8 Further Work

	Bibliography

