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Abstract 

An artificial intelligence (AI) control system is developed to 

manipulate a turbulent jet with a view to maximizing its mixing. 

The system consists of sensors (two hot-wires), genetic 

programming for learning/ evolving and execution mechanism 

(6 unsteady radial minijets). Mixing performance is quantified 

by the jet centerline mean velocity. AI control discovers a 

hitherto unexplored combination of flapping and helical 

forcings. Such a combination of several actuation 

mechanisms—if not creating new ones—is practically 

inaccessible to conventional methods like a systematic 

parametric analysis and gradient search, and vastly outperforms 

the optimized periodic axisymmetric, helical or flapping 

forcing produced from conventional open- or closed-loop 

controls. Intriguingly, the learning process of AI control 

discovers all these forcings in the order of increased 

performance. The AI control has dismissed sensor feedback and 

multi-frequency components for optimization. Our study is the 

first highly successful AI control experiment for a non-trivial 

spatially distributed actuation of a turbulent flow. The results 

show the great potential of AI in conquering the vast 

opportunity space of control laws for many actuators and 

sensors and manipulating turbulence.  

Introduction  

Our experimental study builds on the pioneering numerical jet 

mixing studies ([5, 6]). The former deployed an evolutionary 

strategy to optimize a combination of axisymmetric and helical 

forcing characterized by four parameters, while the latter 

optimized a flapping mode [10]. The present optimization 

method, based on linear genetic programming (LGP), may 

work on a much larger search space of spatio-temporal forcing 

including all known three-dimensional actuations, multi-

frequency forcing and sensor feedback. 

In general, active control of jets is divided into open-loop and 

closed-loop control. Note that closed-loop control shows the 

potential to significantly reduce power requirements in 

comparison to open-loop control strategies, since the random 

aspect of these structures reduces the effectiveness of an open-

loop configuration [7]. Most literature on closed-loop turbulent 

flow control falls in two categories, i.e. model-based and model 

free tuning of the control laws. For model-based control, the 

discretised Navier-Stokes equations and linear stochastic 

estimation are used to resolve all flow physics and 

nonlinearities [11]. In the previous work [1], reduced-order 

models were applied to a few non-normal global eigenmodes of 

the linearized Navier- Stokes equations as a basis for Galerkin 

projection. Yet, these approaches have limited applicability to 

unstable advection dominated flows [8]. The control logic 

based on models is the most accurate. However, the accurate 

control consumes too much time. Therefore, model-free control 

is most widely applied in the turbulent flow control. The 

adaptive control PID was used to suppress cylinder vibration 

[16]. Extremum seeking control (ESC) was used for separation 

control on a high lift configuration [2]. Yet, in all reported cases 

the resulting control law was simple, e.g. based on a single 

actuator characterizable by one or two parameters. The 

optimization of such control laws is achievable with 

conventional techniques [13]. The nonlinear control 

optimization involving many independent actuators can be 

unimaginably complex. Take the manipulation of a turbulent jet 

based on unsteady radial minijets for example. One single 

periodically operated minijet of a given exit diameter may be 

associated with three control parameters, namely, the excitation 

frequency fe, mass flow rate mmini and duty cycle α [9]; however, 

multiple, say six, equally separated independent minijets 

introduce the complexity of distributed actuation or additional 

dimensions. The minijets can be active or off and six minijets 

may occur alternately from one configuration to the other. As a 

result, the complexity of the problem grows tremendously. The 

optimization of nonlinear control laws for such high dimension 

problems is largely terra incognita, which is extremely too time 

consuming, if not impossible, for conventional techniques. This 

is a great challenge for turbulence control. Then could artificial 

intelligence method conquer the vast opportunity space of 

control laws and, in doing so, generate an outcome or alter the 

turbulence to a desired state that has been so far prohibitive 

from conventional methods? 

This work aims to answer the above question. An AI control 

system is developed to manipulate a turbulent jet, one of the 

few best investigated and highly complicated classical flows, 

for maximized mixing. Six unsteady minijets are deployed as 

actuators. Following [3], genetic programming is chosen as a 

very powerful regression solver for the control law. 

Experimental set-up 

The round jet facility is schematically shown in figure 1, along 

with the assembly that produces up to 6 minijets. Details on the 

jet facility are given in [12]. The Reynolds number ReD = UjD/ν 

of the main jet is fixed at 8000, where Uj is the time-averaged 

centerline velocity measured at the nozzle exit, ν is the 

kinematic viscosity of air and D = 20 mm is the diameter of the 

nozzle, which is extended by a 47 mm long smooth tube of the 

same diameter. The coordinate system (x, y, z) is defined in 

figure 1(a, b), with its origin at the centre of the jet exit. The 6 

unsteady radial minijets issued from orifices with a diameter of 

1 mm are equidistantly placed at xi = -0.85D, yi = (D/2) cosi, 

zi = (D/2) sini, where i = (i - 1)2/6, i = 1,2, . . . ,6 (figure 1b, 

c). Their mass flow rate is determined by a flow-limiting valve 

and monitored by a mass flow meter, and the frequencies and 

duty cycles are independently controlled by individual 

electromagnetic valves that are operated in an ON/OFF mode. 

Figure 1(d) shows the arrangement of two hot-wire probes. The  



 

 

Figure 1: Sketch of the experimental setup: (a) main jet facility; (b) 

minijet arrangement; (c) minijet assembly; (d) hot-wire sensors. 

jet exit velocity at (x, y, z) = (0, D/4,0) is measured with a 

tungsten wire of 5 μm in diameter, operated on a constant 

temperature circuit (Dantec Streamline) at an overheat ratio of 

0.6. The centreline jet velocity at x = 5D is monitored with a 

second hot-wire placed at (x, y, z) = (5D,0,0) and the time-

averaged velocity at this position is denoted by U5D. Both hot-

wires are calibrated at the jet exit using a pitot static tube 

connected to a micromanometer (Furness Controls FCO510). 

The cutoff and sampling frequencies are 500 Hz and 1 kHz, 

respectively. A planar high-speed particle image velocimetry 

(PIV) system, including a high speed camera (Dantec Speed 

Sence90C10, 2056×2056 pixels resolution) and a pulsed laser 

source (Litron LDY304-PIV, Nd:YLF, 120 mJ/pulse), is 

deployed for flow visualization in the xz, xy and yz planes. An 

oil droplet generator (TSI MCM-30) is used to generate, from 

olive oil, a fog with an average particle size of 1μm for seeding 

the flow. 

Artificial intelligence control system 

The AI control system is sketched in figure 2. Generally, a 

control system (solid line inside) facilitates a control goal for a 

plant (yellow) by control hardware and a control logic/ 

controller (red). The control hardware includes sensors (green) 

and actuators (blue), discussed above, which monitor the plant 

output (velocity signals) and execute instructions from the 

controller, respectively. The open-loop arrangement is shown 

in figure 1(d) for computing the cost value J =U5D/Uj. The 

minimized J corresponds to the maximized decay rate K = 1-J 

of jet centreline mean velocity, which is an indicator of the 

mixing efficacy of the jet [9]. 

The six-dimensional vector b = [b1, b2, . . . , b6]† comprises all 

actuation commands: The ith minijet blows if the actuation 

command bi is positive and is closed otherwise. Following [12], 

we search for a control law including multi-frequency forcing 

contained in h = [h1, h2 . . . , h6]† (hi = sin (ωet -ϕi), i = 1,2, . . . , 

6, where t is time, ωe is a reference frequency and ϕi is an initial 

phase). Then, 

b = K(h).                                            (1) 

The non-linear function K can create arbitrary phase, higher 

harmonics, e.g. 1-2h1
2 = cos(2ωet) as well as arbitrary sum and 

different frequencies. The control optimization searches for a 

law of form “equation (1)” which minimizes the cost, K⋆ = 

argmin J [K]. 

The regression problem implies the search for a mapping from 

a multiple input to a multiple output signal. Even in case of a 

linear function this implies the optimization of a great number 

of parameters, as exemplified above. We employ the powerful 

linear genetic programming as a regression solver and take the 

same parameters for the genetic operations as previous work 

[12]. The first generation of LGP, n = 1, contains Ni = 100 

random control laws, also called individuals. Each individual is 

tested for 5 seconds in the experiment to yield the measured cost 

Ji
1. Subsequent generations are generated from the previous 

ones with genetic operations (elitism, crossover, mutation and 

replication) and tested analogously. After the in situ 

performance measurements, the individuals are re-numbered in 

order of performance, J1
n≤J2

n≤. . . ≤JNi
n, where the superscript 

‘n’ represents the generation number. As a plant specific rule, 

we discard and replace any individual for testing if one or more 

actuators are not active. 

 

Figure 2: Principle sketch of the artificial intelligence control system 

Results and discussion 

Mass flow ratio and frequency 

Our earlier studies to optimize the turbulent jet mixing for the 

same cost function and under the same conditions have 

identified the optimal fe = 67 Hz for single-minijet forcing [12] 

and the optimal mass flow ratio Cm = mmini/mj = 1.2% [13], 

where mj is the mass flow rate of the main jet.  

Benchmarks from conventional open-loop control  

The cost Ju of the unforced jet is 0.947 (figure 3), that is, K ≈ 

0.05; the typical flow visualization photograph shows the 

familiar jet flow structure in the xy-plane (figure 3a), as 

presented in [14]. Consider three actuations: 

axisymmetric forcing bi = h1-αa, i = 1, . . . , 6;                     (2a) 

helical forcing            bi = hi-αh, i = 1, . . . , 6;                     (2b) 

flapping forcing          bi = hi-αf, i = 1, . . . , 6.                     (2c) 



 

Constants αa, αh and αf characterize the duty cycles and have 

been optimized with respect to the cost. The costs Ja = 0.665, Jh 

= 0.568, Jf = 0.423 of the optimized axisymmetric, helical and 

flapping forcings, achieved from conventional open-loop 

control, provide the benchmarks for the AI control performance 

and are discussed in the next subsection. 

AI control 

The optimal AI control laws can always be cast in form of 

“equation (1)”. Hence, we restrict the discussion to this periodic 

actuation. In figure 3, the square symbol marks the first and best 

individual, out of Ni = 100, of each generation. The remaining 

costs of each generation grow monotonously with the index. 

Every curve has a unique colour. The learning curve of AI 

control exhibits remarkable results, presented below, from 

generation n =1 to 30. 

The best individual of the first generation or stage 1 has an 

axisymmetric control law b1 = b2 = b3 = b4 = b5 = b6 = -

0.832+sin (ωt +4/6) which determines excitation frequency fe 

and duty cycle α of each minijet is 0.5f0 and 13.3%, respectively. 

This law is equivalent to “equation (2a)” except a time shift. 

Figure 3(b) and figure 4(a1-a6) illustrate the typical flow 

structures in the xy-plane and yz-plane of x/D = 0.25, 

respectively. The flow structure in the xy-plane exhibits an 

appreciably larger lateral spread than the unforced jet. The flow 

images in the cross-sectional plane are captured at a sampling 

rate of 405 Hz, corresponding to 3 f0 and 6 fe. The six 

consecutive times in figure 4(a1-a6) represent one actuation 

period. Figure 4(a1, a2) displays largely the full-moon-like 

structure, corresponding to the braid region and the ring vortex, 

respectively. Each injecting unsteady minijet induces one pair 

of streamwise vortices, which interact with the mushroom-like 

structures generated due to the perturbed braid instability, 

resulting in greatly accelerated jet entrainment and spread [14]. 

Obviously, mushroom-like structures remain axisymmetric for 

different phases. The performance J1
1 = 0.626 (see figure 3) is 

slightly better than the benchmark of axisymmetric forcing. The 

reason may be attributed to the converged 60-sec. velocity data 

acquisition to calculate Ja as compared to the 5-sec. and less 

accurate measurement of AI control. 

 

Figure 3: The learning curve of AI control and representative flow 

structures. Ju, Ja, Jh and Jf are costs corresponding to the benchmarks of 

unforced, open-loop axisymmetric, helical and flapping forcings, 

respectively. 

Stage 2 starts with the second generation when AI control 

discovers a better performing helical forcing which clearly 

shows a uniformly traveling wave in the azimuthal direction, its 

cost being slightly lower than Jh. The flow appears rotating, as 

indicated by the crooked arrows in figure 3(c). This rotational 

motion is evident in the flow images captured in the cross-

sectional plane of x/D = 0.25 (figure 4b1-b6), which show the 

clockwise rotating ring structure generated from the minijet-

induced early rollup [9]. Helical forcing reduces J further as 

expected from the numerical simulation study of a similar jet 

mixing optimization [5]. Local spatial stability analysis 

indicates that helical perturbations, unlike axisymmetric 

forcing, are spatially amplified downstream of the potential 

core [4]. 

Stage 3 is characterized by flapping forcing b1 = b2 = b3 = -

0.811 + sin (ωt + 2/6 ) and, b4 = b5 = b6 = -0.782 - sin(ωt + 

2/6π), which occurs from the fifth generation. An optimized 

anti-phase yields a reproducibly better mixing. As shown in 

figure 3(d1) the jet column wobbles up and down in the flapping 

plane but not in the orthogonal plane (figure 3d2); as a result, 

the flow images in the yz-plane (figure 4c1-c6) shows either part 

of the ring vortex (c3, c6) or counter-rotating mushroom-like 

structures (c1-c2, c4-c5) generated in the braid region, as [15] 

observed. The incomplete ring structure on the left (c3) or right 

(c6) side of the core occurs every half period due to anti-phase 

flapping forcing. 

 

Figure 4: Sequential photographs of the cross-sectional flow structure 

at x/D = 0.25 for the four stages: (b1-b6) axisymmetric forcing, (c1-c6) 

helical forcing, (d1-d6) flapping forcing, and (e1-e6) combined forcing. 

The eleventh generation marks the emergence of stage 4; AI 

control discovered a surprising combination of asymmetric 

flapping forcing and helical forcings along with the generation 

of longitudinal mushroom structures, where the flow structure 

is characterized by the asymmetry (the footprint of flapping 

motion), rotating satellite structure and mushroom-like 

structures at all phases. The combined forcing significantly 



 

outperforms the flapping forcing found in generation 5 with 

appreciably more lateral spread in all directions and the 

corresponding J plunging to less than 1/3 of the unforced jet. 

The flow structure (figure 3e) exhibits the features of not only 

flapping jet column, similar to figure 3(d), but also rotational 

motion, as is evident in figure 4(d1-d6). The cost and actuation 

mechanism hardly change in following generations, pointing to 

the convergence of the AI learning process. This actuation 

mechanism is reproducible, that is, the combined flapping and 

helical forcings and approximately the same converged cost 

have been observed in all experiments, notwithstanding a 

change in the initial parameters of the first generation. 

Conclusions 

An AI control system has been developed, which learns 

automatically how to manipulate a spatially distributed 

actuation and thus a turbulent jet for the targeted cost. Like 

virtually all control strategies of nonlinear dynamics, AI control 

solutions do not come with a proof of global optimality. Yet, 

the results for jet mixing optimization demonstrate a number of 

highly desirable features. First, AI control has unveiled a few 

typical control laws or forcings, i.e., axisymmetric, helical and 

flapping, in its learning process and eventually converged to a 

sophisticated spatio-temporal actuation which is the 

combination of the individual forcings. This combination has 

produced a fascinating turbulent flow structure characterized by 

rotating and flapping jet column, along with the generation of 

mushroom like structures, all acting to enhance jet mixing and 

thus vastly outperforming several known optimal benchmark 

forcings. Note that the learning time of 3000 individuals or 6 

hours wind-tunnel testing is remarkably short for such a 

complicated solution. Second, unlike other simple conventional 

open or closed-loop control methods, AI control could find 

optimal control laws without too much prior flow physics. 

Third, the cost J corresponding to AI-learned combination is 

reproducible with other initial generations. The control laws 

may analytically differ but produce almost identical actuation 

commands. Fourth, the parameters of the underlying genetic 

programming are taken verbatim from [3] and were already 

proven useful in many other experiments. No sensitive 

dependence on the parameters has been observed so far and AI 

control can be expected to yield near-optimal results in its first 

application to a new plant. Finally, the search space for a control 

law is extremely large and of very high dimensions, including 

multiple frequencies, minijet configurations, temporal and 

spatial phase differences between the configurations, and duty 

cycles of minijets, along with sensor feedback. 
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