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Abstract

Beef is a commercially important and widely consumed muscle food and central to the protein intake of many societies. In the food industry
no technology exists for the rapid and accurate detection of microbiologically spoiled or contaminated beef. Fourier transform infrared
(FT-IR) spectroscopy is a rapid, reagentless and non-destructive analytical technique whose continued development is resulting in manifold
applications across a wide range of biosciences. FT-IR was exploited to measure biochemical changes within the fresh beef substrate, enhancing
and accelerating the detection of microbial spoilage. Separately packaged fresh beef rump steaks were purchased from a national retailer,
comminuted for 15 s and left to spoil at ambient room temperature for 24 h. Every hour, FT-IR measurements were collected directly from the
sample surface using attenuated total reflectance, in parallel the total viable counts of bacteria were obtained by classical microbiological plating
methods. Quantitative interpretation of FT-IR spectra was undertaken using partial least squares regression and allowed for accurate estimates
of bacterial loads to be calculated directly from the meat surface in 60 s. Machine learning methods in the form of genetic algorithms and genetic
programming were used to elucidate the wavenumbers of interest related to the spoilage process. The results obtained demonstrated that using
FT-IR and machine learning it was possible to detect bacterial spoilage rapidly in beef and that the most significant functional groups selected
could be directly correlated to the spoilage process which arose from proteolysis, resulting in changes in the levels of amides and amines.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Beef is a commercially important and widely consumed
muscle food. Some changes in patterns of consumption of
beef may have occurred in recent years due to events such
as the UK centred BSE outbreak[1–3] and more recent con-
cerns regarding possible links to colorectal cancer[4–6].
However, beef still is, and will remain, part of the staple
diet and central to the protein intake of many societies[7].
Within the food industry at present, no technology exists for
a rapid (minutes as opposed to hours) and accurate detec-
tion system for microbiologically spoiled or contaminated
meat or poultry[8]. Current methods proposed to detect bac-
terial spoilage in meats number in excess of 40 and have
been described in-depth elsewhere[8–11], as have the pro-
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cesses leading to the microbial spoilage of muscle foods
[8,12–15]. Whilst some of the more recently proposed tech-
nologies have seen some improvement in terms of rapidity
[16–18], the methods in use in the food industry at present
are time-consuming, labour-intensive and give retrospective
information[19].

Fourier transform infrared (FT-IR) spectroscopy is a
rapid, reagentless, non-destructive analytical technique
whose continuing development is resulting in manifold
applications across a wide range of biosciences, be they
molecular or organismal[20]. FT-IR involves the ob-
servation of molecules that are excited by an infrared
beam, were an infrared absorbance spectrum represents
a “fingerprint” characteristic of any (bio)chemical sub-
stance[21,22]. This technique has been shown to be a
useful tool for the characterisation of bacteria[23–25],
fungi [26–28], metabolic footprinting[29] and fingerprint-
ing [20], as well as a number of food-based analyses
[30–32].
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Several spectroscopic analyses have been undertaken on
beef and these have included analysis of quality attributes
such as physical and chemical characteristics, including de-
termination of fat, protein, moisture and connective tissue
content, as well as prediction of toughness[33,34]. Whilst
a number of the studies have used near-infrared (NIR) spec-
troscopy to study beef, other recent studies have applied
FT-IR spectroscopy in the mid-infrared (MIR). These have
included investigations into authenticity and adulteration
[32,35], and a very recent study into the detection of central
nervous system tissue in beef[36]. However, there are no
studies to date using infrared spectroscopy to detect bacte-
rial spoilage in, or on, beef.

The aim of this study was to build upon previous exper-
iments undertaken in our laboratory on poultry[19] where
we were able to quantify accurately the bacterial contami-
nation of chicken breast tissue from 2× 106 to 2× 109 to-
tal viable count (TVC) per square centimetre. In the present
study, we investigate the microbial contamination of beef at
lower spoilage levels between 5×104 and 4×107 TVC cm−2

using FT-IR spectroscopy and chemometrics.

2. Materials and methods

2.1. Sample preparation

Individually packaged beef rump steaks with an average
weight of 270 g were purchased from a national retail out-
let on the morning of each experiment. As with previous
spoilage experiments[19], no pre-preparation of the meat,
such as removal of fat or connective tissue, washing, or in-
oculation with bacteria was undertaken. To accelerate the
spoilage process the meat was weighed aseptically into 30 g
sub-samples and comminuted for 15 s in a Moulinex type
505, 180 W coffee mill (Moulinex UK Ltd., Birmingham,
UK). The bowl of the coffee mill was washed and dried with
a paper towel between each sample. Following comminution
the samples were removed from the coffee mill and placed
into the upturned lid of a 90 mm Petri dish and pressed man-
ually to a thickness of∼5 mm using the inverted base of a
Petri dish as the press. A sterile upturned Petri dish base was
used to cover each prepared sample and once 25 samples
had been obtained, they were then randomised, numbered
and stored on the bench top at ambient room temperature.

2.2. HATR FT-IR spectroscopy

FT-IR analysis was undertaken using a ZnSe HATR ac-
cessory (Spectroscopy Central Ltd., Green Lane, Warring-
ton, UK) on a Bruker IFS28 infrared spectrometer (Bruker
Optics Ltd., Banner Lane, Coventry, UK) equipped with a
deuterated-triglycine-sulphate (DTGS) detector. The ZnSe
HATR crystal was capable of 10 external reflections with
the evanescent field[37] effecting a depth of 1.01�m (Spec-
troscopy Central Ltd.). At 1 h intervals six replicates were

individually excised using a scalpel from a prepared Petri
dish sample and placed in intimate contact with the ZnSe
crystal and a spectrum collected. The sample replicates mea-
sured approximately 60 mm× 10 mm× 5 mm and were in-
verted to ensure that the aerobic upper surface of the sample
was placed in intimate contact with the ZnSe crystal.

The surface of the ZnSe crystal was cleaned with distilled
water and dried with lint-free tissue following collection of
each spectrum and washed thoroughly with acetone, rinsed
with distilled water and dried with lint-free tissue at the end
of each sampling interval. The IBM-compatible PC used
to control the IFS28 spectrometer was also programmed to
collect spectra over the wavenumber range 4000–600 cm−1.
Reference spectra were acquired by collecting a spectrum
from the cleaned blank crystal prior to the presentation
of each sample replicate. All spectra were collected in re-
flectance mode with a resolution of 16 cm−1, and to improve
the signal-to-noise ratio 256 scans were co-added and av-
eraged. Collection time for each sample spectrum was 60 s
and a total of 450 spectra were collected over the series of
three separate experiments. At each 1 h sampling interval a
1 g (which equates to approximately 1 cm2) sub-sample of
comminuted beef was taken and vortexed for 60 s in 9 ml of
physiological saline and the pH recorded. A dilution series
was undertaken and plates of Lab M blood agar base (IDG
plc, Lancashire, UK) lawned in triplicate with 50�l of ho-
mogenate, incubated aerobically for 48 h at 25◦C and the
total viable counts recorded as colony forming units (CFUs).

2.3. Supervised analysis

ASCII data were exported from the Opus software used
to control the FT-IR instrument and imported into Matlab
Version 6.1 (The MathWorks, Inc., Natick, Mass) which runs
under Microsoft Windows NT on an IBM-compatible PC. To
minimise problems arising from unavoidable baseline shifts
the spectra were scaled so that the smallest absorbance was
set to 0 and the highest to+1 [27].

When the desired responses (targets) associated with each
of the inputs (spectra) are known, then the system may be
supervised. The goal of supervised learning is to find a model
that correctly associates the inputs with the targets; this is
usually achieved by minimising the error between the target
and the model’s response (output)[38–40]. For quantitative
interpretation of the FT-IR spectra the multivariate linear
regression method of PLS was applied and the pseudocode
given in [38] followed by Jones et al.[41].

2.4. Evolutionary computation

2.4.1. Genetic algorithms
In this study genetic algorithms (GAs)[42,43]were used

to determine the optimal subset of variables to give the best
root-mean-square error of prediction (RMSEP) in a multi-
ple linear regression (MLR) model. All calculations were
performed using in-house software written in C++ running
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Fig. 1. (A) A typical GP parse tree. The leaves of the tree, orterminals, represent input variables or numerical constants (in this case FT-IR wavenumbers).
In this ‘orientation’ these values are passed ‘vertically’ tonodes, which perform a numerical programme or operation before passing on the result toward
the ‘top’ of the tree (e.g. total viable count). (B) Cartoon of the evolution approach showing the population of trees and how these undergo mutation
and crossover. During the evolutionary process the most-fit individuals are allowed to survive to subsequent populations based on their fitness function
which is a measure of the predictive power of a GP parse tree (e.g., TVC).

under Microsoft Windows NT on an IBM-compatible PC,
and full details of GA-MLR are given in[44].

The GA used proportional selection, and two-point
crossover recombination with mutation, operating on a pop-
ulation of binary-encoded chromosomes, each chromosome
representingv candidate wavelengths. The parameterv can
be set to any integer value, between 2 and the total number
of wavelengths used, prior to the execution of any single
GA run. In order to select the optimal value ofv a set of
GA experiments are performed wherev is varied between
2 andvmax (vmax being the minimum number of wavenum-
bers allowed before overtraining in the regression model
occurs). In this instance 8 GA experiments were performed
such that:v = 3, 4, 5, 6, 8, 10, 15, and 20. Each experiment
consisted of 100 randomly initialised independent GA runs.

The probability of mutating a given chromosome after re-
combination was set to 0.2 and the probability of changing
a bit from a 0 to 1 (orvice versa) once a chromosome is
selected for mutation was set to 0.01. No two identical can-
didates were allowed in a given population and the top 10%
of each generation are automatically transferred unmolested
to the next generation.

2.4.2. Genetic programming
A GP is an extension of the GA approach to derive math-

ematical equations, logical rules or program functions auto-
matically [45–50]. Rather than representing the solution to
the problem as a string of parameters, as in a conventional
GA, a GP usually (as here) uses a tree structure (Fig. 1).
The leaves of the tree, orterminals, represent input variables
or numerical constants. Their values are passed tonodes, at
the junctions of branches in the tree, which perform some
numerical or program operation before passing on the result
further towards the root of the tree. Mutations are performed
by selecting a parent and modifying the value or variable re-
turned by a terminal, or changing the operation performed by

a node. Crossovers are performed by selecting two parents
and swapping sub-trees at randomly selected nodes within
their trees. The new individuals so generated replace less-fit
members of the population chosen probabilistically on the
basis of their unfitness (Fig. 1).

The GP[45,51] employed the Genomic Computing soft-
ware Gmax-bioTM (Aber Genomic Computing, Aberyst-
wyth, UK; http://www.abergc.com) which runs under Mi-
crosoft Windows NT on an IBM-compatible PC. The default
parameter settings for population size (1000), mutation and
recombination rates were used throughout. The operators
that were used were+, −, /,∗, log10(x), 10x and tanh(x). The
fitness calculation used isF = 1/(0.01+ S/B) where the
values ofS andB are determined by the FITNESS setting.
In this expressionS is a statistic derived from the model,
which ranges between 0 and infinity andB is a normalising
quantity. The value ofB is chosen such that a perfect model
yieldsF = 100, and a model which performs no better than
random chance yieldsF = 1.

3. Results and discussion

3.1. TVC, pH and sensory characteristics

Comminution of samples in order to accelerate the
spoilage process and growth of bacteria was successful
in that the final mean log10(TVC) of 7.38 was approxi-
mately two orders above the initial mean log10(TVC) of
5.45 (Table 1and Fig. 2A). In previous experiments into
the spoilage process in poultry[19], the indicator used for
the detection of organoleptic spoilage was 108 CFU cm−2.
However, the results from previous experiments, and in par-
ticular those undertaken in Ellis et al.[19], demonstrated
that spoilage could be accurately detected at 107 CFU cm−2.
Moreover, on further appraisal of the literature[10,52–54]it

http://www.abergc.com
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Table 1
Data matrix of the results from the three beef spoilage experiments

Experiment Initial pH Final pH Initial TVC (log10) Final TVC (log10) Room temperature (◦C) Spoilage (h)a

1 5.33 5.33 5.18 6.94 21.6 N/Ab

2 5.50 5.53 5.34 7.58 24.7 20
3 5.41 5.41 5.68 7.39 20.9 20

Mean 5.42 5.43 5.45 7.38 22.4 20

a The onset of spoilage is taken as the point when total colony counts 107 cm−2.
b Did not reach the point of spoilage of 107 cm−2.

was apparent that bacterial spoilage was detectable at differ-
ent levels according to the type of meat under investigation.

The levels at which bacterial spoilage takes place in meats
are related to the muscle type and pH. It is known for exam-
ple that these levels can be as low as 106 CFU cm−2 in meats
of high pH (>6)[53] and vary from 107 to 108 CFU cm−2 in
the majority of meats according to muscle composition and
levels of glycogen stores[53,54]. Beef is not considered a
high pH meat but has lower glycogen stores and differences
in muscle composition, such as denser capillarisation and
higher levels of myoglobin and mitochondria[54]. There-
fore for experiments on beef, the indicator level used for
bacterial spoilage was 107 CFU cm−2. It was interesting to
note that whilst two of the three experiments on beef attained
final TVC levels above the predetermined spoilage indica-
tor of 107 CFU cm−2, the first experiment fell very slightly
short of this with a final mean log10(TVC) of 6.94 (Table 1).

As indicated in previous spoilage experiments with poul-
try [19], the use of pH as an indicator of spoilage or re-
maining shelf life in meats would be insufficient. In the
case of earlier experiments on poultry, pH fluctuated prior
to spoilage and only rose significantly once bacterial lev-

Fig. 2. (A) Bacterial growth curves and (B) pH levels observed through
the series of three experiments[1–3]. Total viable counts of spoilage
bacteria were measured in triplicate after 48 h at 25◦C.

els reached 108 CFU cm−2. Fig. 2 illustrates the bacterial
growth curves and pH levels throughout the series of three
experiments. In the case of the experiments on rump beef, the
initial mean pH was 5.42 and the final mean pH 5.43. More-
over, over the three experiments the pH fluctuated between
a narrow range and never fell below 5.32 or above 5.53,
demonstrating the strong buffering capacity of beef[55,56].

Whilst the mean level of bacteria for the three experi-
ments was in excess of 107 CFU cm−2, the olfactory char-
acteristics, in comparison to spoiled poultry breast meat at
the same level of bacterial spoilage, where very different.
Whilst spoiled poultry at 107 CFU cm−2 began to develop a
sweet ‘dairy’ type aroma due to production of esters by the
dominant spoilage bacteria[53], the spoilage of beef at this
level was much less offensive in terms of the production of
malodours. This difference in sensory characteristics could
be a result of several factors, such as the genera of the domi-
nant spoilage microflora, meat type, storage conditions prior
to the experiments or the strong buffering capacity demon-
strated in the case of the beef experiments[52].

The mean FT-IR spectra collected from pre- and
post-spoiled beef from 1850 to 850 cm−1 are shown in
Fig. 3, these have been calculated from the mean of the
spectra at the start of the three experiments and the mean
of the spectra from end of the experiments at 24 h. These
spectra are from beef rump steak carrying∼2 × 105 and
∼2 × 107 CFU cm−2, respectively, and are both data-rich
and not biased to any groups of chemicals associated with
any particular group of metabolites. Whilst the spectra il-
lustrated inFig. 3 are mean spectra, the entire set consisted
of 450 spectra from all three experiments, each consisting
of 441 wavenumbers, and these are the data that will be
analysed by chemometric methods.

FT-IR spectra are complex and multidimensional in na-
ture, which does not lend them to simple visual interpre-
tation. Therefore, linear regression methods and machine
learning approaches were employed to analyse these com-
plex high dimensional spectral patterns[44,57,58]in order
to extract pertinent biological information and attempt to
correlate known bacterial numbers with the FT-IR spectra
collected from the surface of the spoiling beef.

3.2. Supervised analysis using PLS

The supervised learning method of PLS regression was
calibrated and cross-validated with both the FT-IR spectral
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Fig. 3. Mean FT-IR spectra from the initial and final measurements from the three beef spoilage experiments. Also shown is the number of times that a
set of four optimum wavenumbers were selected, from each of 100 GA runs that are related to the spoilage process.

data and the known log10(TVC) values from experiments 1
and 2, respectively (seeTable 2for details and TVC levels),
before being challenged by the independent and previously
‘unseen’ test set data from experiment 3. The plots of the
estimates versus the known log10(TVC) shown inFig. 4 il-
lustrate that FT-IR/PLS predictions are within∼0.5 logs of
the ideal fit. These predictions are close to the ideal log
proportional fit (i.e. log(y) = log(x)) and so show that this
method can be used to assess the spoilage status of the
beef.

This demonstrated that PLS gave accurate results at
2 × 105 CFU cm−2 for microbial spoilage on beef, which
is an order lower than those obtained on previous ex-
periments on poultry where the limit of detection was
2×106 CFU cm−2. Whilst this is a significant improvement
in the limit of detection using this approach, it must be
stated that this is dictated by the bacterial numbers on the
meat surface at the point of purchase. It is likely that if it
were possible to conduct experiments on meat immediately
post-mortem that are not already contaminated with signifi-
cant bacterial loads that the detection limit could be pushed
lower.

From Fig. 3 it was evident that FT-IR spectra collected
directly from the surface of beef, contained biochemical in-
formation that could be correlated with the spoilage sta-
tus of the samples. This was the case for the data used to
produce the PLS model (experiments 1 and 2) and more
significantly for data from an independent and ‘unseen’
experiment (experiment 3). As with the previous analy-
sis undertaken on poultry[19], the next step would be to
elucidate which biochemical species were being measured
by FT-IR that were related to the spoilage status of the
beef.

Table 2
The log10(TVC) of bacteria acquired from comminuted beef samples from
the three experiments

Time (h) Experiment Arithmetic mean

1 2 3

0 5.18c 5.34c 5.68t 5.45
1 4.87v 5.00v 5.52t 5.23
2 5.29c 5.21c 5.62t 5.41
3 5.10v 5.03v 5.42t 5.22
4 5.08c 5.05c 5.52t 5.27
5 5.12c 5.01c 5.37t 5.20
6 4.73v 5.02v 5.38t 5.12
7 5.05v 4.95v 5.48t 5.22
8 4.67c 4.95c 5.52t 5.19
9 5.08c 4.90c 5.38t 5.17

10 5.27v 5.20v 5.84t 5.54
11 5.75v 4.99v 5.50t 5.52
12 5.81v 4.98v 5.41t 5.52
13 5.63v 5.39v 6.02t 5.76
14 5.82c 5.46c 6.06t 5.84
15 5.84c 5.97c 6.10t 5.98
16 6.10v 6.17v 6.31t 6.20
17 6.19v 6.23v 6.48t 6.32
18 6.23c 6.28c 6.88t 6.57
19 6.47c 6.95c 6.76t 6.77
20 6.49c 7.06c 7.07t 6.94
21 6.95v 7.00v 7.06t 7.00
22 6.92c 7.20c 7.10t 7.09
23 6.48v 7.21v 7.18t 7.06
24 6.94c 7.58c 7.39t 7.38

All measurements were taken in triplicate after incubation at 25◦C for
48 h and these were used, in conjunction with FT-IR spectra, to calibrate
(c), cross-validate (v), and test (t) the PLS model.
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Fig. 4. The estimates from PLS vs. the true log10(TVC). The data points are the averages of the six measurements. The RMS error in these measurements
is 0.43, 0.56 and 0.44 logs for the calibration, cross-validation and independent test sets, respectively.

3.3. Evolutionary computation

3.3.1. Genetic algorithms
As stated previously, GA-MLR was applied so as to ex-

tract subsets of 3, 4, 5, 6, 8, 10, 15 and 20 wavenumbers
that were related to the bacterial numbers over the series
of three experiments (Fig. 5). As the starting population for
each GA run was random, 100 GA-MLR runs were per-
formed and the following subsets were found to be optimal

Fig. 5. Combination of all the results from the 8 GA configurations and shows the wavenumbers selected for >50% of the time for each of the runs.
The wavenumbers selected are shaded. The ‘optimum’ wavenumber configuration was four.

for selecting just four wavenumbers which were consistently
chosen and these were 1513, 1413, 1382 and 1112 cm−1.
When the GA was used to look for the other predetermined
subsets of wavenumbers greater than four it was found that
the above four wavenumbers were always chosen and the
degree of discrimination did not improve compared with
selecting a subset of four, thus a GA that selected four
wavenumbers would be considered the most parsimonious.
When a GA was used to selected only three input vari-
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ables, only the wavenumber at 1413 cm−1 was consistently
chosen.

3.3.2. Genetic programming
GP analyses were evolved to determine the wavenumbers

associated with the bacterial spoilage of fresh beef over 24 h.
By contrast to previous experiments with poultry[19] where
the analysis was a threshold of 107, these analyses were
trained in a quantitative fashion to predict the log10(TVC).
As with the GAs the initial populations were produced ran-
domly and so 20 separate GPs were evolved. For the GP
analysis the frequency of the number of times each input
(wavenumber) was used for the 20 evolved populations was
calculated and plotted against the wavenumber of the in-
frared light (Fig. 6). This figure shows that the dominant
area of the spectra associated with the bacterial spoilage of
fresh beef was 1413 and 1405 cm−1. For comparison we
have also included the PLS first latent variable loadings in
Fig. 6, where it is clear that PLS also selects the area around
1413 and 1405 cm−1 but has additional areas with higher
weighting, particularly in the vicinity of the amide I and II
bands from 1700 to 1500 cm−1, that are not selected by the
GP or indeed GA. The wavenumber selected at 1413 cm−1

was also selected by the GA-MLR method and further to this
the wavenumber at 1405 cm−1 is also within the same func-
tional group region (1420–1400 cm−1) ascribable to C–N
stretching from amides[59,60]. Table 3shows the top 10
wavenumbers and their frequencies selected by GP.

3.4. Spectral interpretation

The optimal subset of four wavenumbers selected by GA
for correlating the infrared spectra with bacterial spoilage

Fig. 6. Summed frequency plot from GP analysis of the number of times each input (wavenumber), normalised to 100%, was used for the 20 evolved
populations. The dominant region is between 1413 and 1405 cm−1. Also shown is the PLS first latent variable loading.

Table 3
The top 10 wavenumbers evolved by the GP analyses most closely asso-
ciated with the bacterial spoilage of beef

Wavenumber
(cm−1)

Frequencya Vibration

1413 200.6 C–N from amides
1405 182.4 C–N from amides
1374 80.3 C–N from amines
1104 73.9 C–N from amines
1552 59.0 CNH from amides or N–H from amines
872 53.9 C–H from aromatic

1390 47.8 NO2 nitro group
1529 46.3 CNH from amides
973,1181 45.1 P–O from phosphorus
1181 44.1 C–N from amines

a The frequency of a wavenumber being selected was expressed as a
percentage of the total tree population for each GP. These 20 GPs were
then summed to give this frequency.

of fresh beef were ascribable to an amide II CNH com-
bination vibration (combination of C–N stretch and N–H
bend at 1513 cm−1), a second amide vibration (C–N stretch
at 1413 cm−1), a nitro group (NO2 symmetrical stretch at
1382 cm−1), and finally an amine vibration (C–N stretch
at 1112 cm−1). It was interesting to note that except for
one wavenumber selection at 1382 cm−1, the other three
wavenumbers were amide or amine bands; it is possible that
the nitro group could arise from the proteolytic degradation
of proteins, but there is no direct evidence of this.

Apart from this similarity in chemical terms, all the
wavenumbers selected were different from those selected
to determine the bacterial spoilage in poultry, where the
most important wavenumbers were found to be 1096 and
1683 cm−1 [19]. As beef is a different substrate than poultry,
in (bio)chemical terms (vide supra) and in particular the ratio
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of glycogen to type of muscle, it is therefore likely that these
two different meats will be colonised by different microflora.
This will lead to different biochemical spoilage processes
occurring. In addition, the lower level of glycogen in beef
will lead to earlier proteolysis with lower bacterial loads.

In the case of the wavenumbers selected by GP (Table 3),
the first two wavenumbers (1413 and 1405 cm−1) are
the most dominant and ascribable to C–N stretch from
amides. The next two most important vibrations (1374 and
1104 cm−1) can both be assigned to the C–N stretch from
free amines. The rest of the selected wavenumbers are shown
in Table 3are predominantly ascribable to amides, amines,
whilst nitro, aromatic ring and P–O vibrations also feature.

4. Conclusion

FT-IR spectroscopy, in combination with linear regression
using PLS and evolutionary computational-based machine
learning methods was able to correlate infrared spectra with
the bacterial spoilage process in beef. However, the model
used to achieve this was not as accurate as that used to
predict bacterial spoilage in poultry. It is possible that this
was due to the spoilage processes in beef being different
from those in poultry, however, the bacterial contamination
load in beef was significant lower than that observed in
chicken and ranged from 5× 104 to 4 × 107 CFU cm−2

compared to 2× 106 to 2× 109 CFU cm−2.
Analyses of the FT-IR spectra using genetic algorithms

and genetic programming selected wavenumber vibrations
from within the region 1420–1400 cm−1, with both evolu-
tionary computational methods selecting the specific vibra-
tion at 1413 cm−1 from C–N attributable to amides; whilst
other vibrations that were selected were from free amines
(e.g., 1112 and 1374 cm−1). This suggests that the most sig-
nificant functional groups selected which can be correlated
to bacterial spoilage are those from amides and amines. It
is likely that this is due to the onset of proteolysis, this hy-
pothesis is in agreement with the literature[61] and as ob-
served by our previous experiments using FT-IR to analyse
the metabolic spoilage process on chicken[19].
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