Skip to main content

Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

Genetic programming is an often-used technique for symbolic regression: finding symbolic expressions that match data from an unknown function. To make the symbolic regression more efficient, one can also use dimensionally-aware genetic programming that constrains the physical units of the equation. Nevertheless, there is no formal analysis of how much dimensionality awareness helps in the regression process. In this paper, we conduct a fitness landscape analysis of dimensionally-aware genetic programming search spaces on a subset of equations from Richard Feynman’s well-known lectures. We define an initialisation procedure and an accompanying set of neighbourhood operators for conducting the local search within the physical unit constraints. Our experiments show that the added information about the variable dimensionality can efficiently guide the search algorithm. Still, further analysis of the differences between the dimensionally-aware and standard genetic programming landscapes is needed to help in the design of efficient evolutionary operators to be used in a dimensionally-aware regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have experimented with a range of more open-ended bloat-control mechanism, e.g., lexicographic optimisation for fitness and size. However, we observed that even in our rather discrete setting, optimising I.8.14 or I.27.6 would result in trees of a size of over 256 nodes.

References

  1. Evolutionary computation framework (2019). http://ecf.zemris.fer.hr/

  2. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 369–376. ACM (2012)

    Google Scholar 

  3. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, New millennium edn. Basic Books, New York (2010). https://cds.cern.ch/record/1494701. Originally published 1963–1965

  4. Fitzsimmons, J., Moscato, P.: Symbolic regression modelling of drug responses. In: First IEEE Conference on Artificial Intelligence for Industries (2018)

    Google Scholar 

  5. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain programming: the evolution of terrain generators. Comput. Games Technol. 2009, 125714:1–125714:13 (2009)

    Google Scholar 

  6. Graham, M.J., Djorgovski, S.G., Mahabal, A., Donalek, C., Drake, A., Longo, G.: Data challenges of time domain astronomy. Distrib. Parallel Databases 30(5), 371–384 (2012)

    Article  Google Scholar 

  7. Graham, M., Djorgovski, S., Mahabal, A., Donalek, C., Drake, A.: Machine-assisted discovery of relationships in astronomy. Mon. Not. R. Astron. Soc. 431(3), 2371–2384 (2013)

    Article  Google Scholar 

  8. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7

    Chapter  Google Scholar 

  9. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: 1st Annual Conference on Genetic and Evolutionary Computation (GECCO), vol. 2, pp. 1069–1076. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  11. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J. (eds.) Genetic Programming Theory and Practice IX. GEVO, pp. 235–260. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1770-5_13

    Chapter  Google Scholar 

  12. Moscato, P.: An introduction to population approaches for optimization and hierarchical objective functions: a discussion on the role of tabu search. Ann. Oper. Res. 41(2), 85–121 (1993)

    Article  Google Scholar 

  13. Moscato, P., Fontanari, J.: Stochastic versus deterministic update in simulated annealing. Phys. Lett. A 146(4), 204–208 (1990)

    Article  Google Scholar 

  14. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 555–562. ACM (2008)

    Google Scholar 

  15. Richter, H., Engelbrecht, A.: Recent Advances in the Theory and Application of Fitness Landscapes. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4

    Book  Google Scholar 

  16. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  17. Udrescu, S.M., Tegmark, M.: Ai Feynman: a physics-inspired method for symbolic regression (2019)

    Google Scholar 

  18. Udrescu, S.M., Tegmark, M.: The Feynman database for symbolic regression (2020). https://space.mit.edu/home/tegmark/aifeynman.html. Accessed 31 Jan 2020

  19. Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Sampling local optima networks of large combinatorial search spaces: the QAP case. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 257–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_21

    Chapter  Google Scholar 

  20. Vladislavleva, E., Friedrich, T., Neumann, F., Wagner, M.: Predicting the energy output of wind farms based on weather data: important variables and their correlation. Renew. Energy 50, 236–243 (2013)

    Article  Google Scholar 

  21. Worm, T., Chiu, K.: Prioritized grammar enumeration: symbolic regression by dynamic programming, pp. 1021–1028, July 2013. https://doi.org/10.1145/2463372.2463486

  22. Yafrani, M.E., et al.: A fitness landscape analysis of the travelling thief problem. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 277–284 (2018)

    Google Scholar 

Download references

Acknowledgements

We’d like to thank Prof. Pablo Moscato for introducing us to  [17]. We’d also like to acknowledge support by the Australian Research Council, project DP200102364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domagoj Jakobovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durasevic, M., Jakobovic, D., Scoczynski Ribeiro Martins, M., Picek, S., Wagner, M. (2020). Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics