
Dias et al.

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

29

On Optimizing Deep Convolutional Neural

Networks by Evolutionary Computing
M. U. B. Dias1, D. D. N. De Silva2, S. Fernando3

1,2,3Department of Computational Mathematics, University of Moratuwa, Sri Lanka

Abstract

Optimization for deep networks is currently a

very active area of research. As neural networks

become deeper, the ability in manually optimizing

the network becomes harder. Mini-batch

normalization, identification of effective respective

fields, momentum updates, introduction of residual

blocks, learning rate adoption, etc. have been

proposed to speed up the rate of convergent in

manual training process while keeping the higher

accuracy level. However, the problem of finding

optimal topological structure for a given problem is

becoming a challenging task need to be addressed

immediately. Few researchers have attempted to

optimize the network structure using evolutionary

computing approaches. Among them, few have

successfully evolved networks with reinforcement

learning and long-short-term memory. A very few

has applied evolutionary programming into deep

convolution neural networks. These attempts are

mainly evolved the network structure and then

subsequently optimized the hyper-parameters of the

network. However, a mechanism to evolve the deep

network structure under the techniques currently

being practiced in manual process is still absent.

Incorporation of such techniques into chromosomes

level of evolutionary computing, certainly can take

us to better topological deep structures. The paper

concludes by identifying the gap between

evolutionary based deep neural networks and deep

neural networks. Further, it proposes some insights

for optimizing deep neural networks using

evolutionary computing techniques.

Keywords: Deep Networks, Optimization,

Evolutionary Computing, Speeding Up Rate of

Convergent, Normalization.

1. Introduction

Training an Artificial Neural Network (ANN)

for a given task is a still a demanding research

topic in the field of Artificial Intelligence. In

order to obtain the highest performance of the

network, multi-dimensional optimization is

essential which increase the complexity of the

problem. The performance of ANN is

determined by an aggregation of learning rate,

accuracy and generalization. Learning rate is

very important as providing an enormous

labeled dataset for training. On other hand, the

time taken to achieve a given benchmark of

accuracy should be reduced as much as possible.

Therefore, the learning rate should be

maintained properly in order to enhance the

performance of ANN. The overall learning rate

can be measured by number of epochs and time

taken for learning. The accuracy of the ANN is

another key component of the performance

since the output should be with minimum error

after a certain number of epochs. If the final

error is beyond the desired margin of error, then

the ANN is with poor performance. The error of

an ANN is measured by mean squared error,

mean absolute error, exponential error method,

etc. After all, the designed ANN should be able

to generalize well. Generalization means the

characteristic of applicability to any problem

within a given scenario. In a nutshell, how well

it will be able to give the desired output when a

new input is given. This generalization is related

with the problem of over fitting of ANN. If the

ANN is trained more for a particular type of

uniform dataset, the accuracy will be

substantially increasing for that particular type

of input data points. But, when future data point

is given, the output will be worst. This incident

is called as, over fitting of a network. Therefore,

generalization of ANN should be protected

throughout the designing and training process.

Ultimately, ANN performance can be defined as

follows; any well-generalized ANN should be

attained for a given subset of problems with

high accuracy in less number of epochs.

In order to maximize the performance of

ANN, the determination of the optimal network

structure and weights for the given task, is a

multi-dimensional problem with a vast space of

solutions. The process of determining the most

appropriate topology of network for the given

task is called as structural optimization. The

number of hidden neurons and the connectivity

between these neurons construct the topology of

the network. Some neurons have to be dropped

because of their less effectiveness for the

network and some neurons have to be added due

to their usefulness. Then the feed forward and

On Optimizing Deep Convolutional Neural Networks by Evolutionary Computing

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

30

recurrent connectivity between these neurons

have to be determined in order to construct the

complete structure. This connectivity is not

about the weight of the connection, but the

existence of the particular connection. The

structure is usually decided using an ad-hoc

choice or some trial and error method. The ad-

hoc choice is done by a priori analysis of the

task. This is much complicated and non-

deterministic due to the lack of a proper model

of the task. Furthermore, a conventional ad-hoc

structure does not provide the optimum solution

for a given task. Apparently, shoehorning the

given task to a pre-defined structure is

inappropriate; rather the structure should be

shoehorned to the given task. The trial and error

methods can be categorized as constructive and

destructive methods. Constructive methods are

initiated with a simple and small structure and

later more neurons and connections are added to

improve the performance. In contrast,

destructive methods initiated with complex and

massive network and gradually delete the

connections and neurons to make the structure

simple and small. These time and error methods

are computationally prohibitive and more likely

to be trapped in structural local optima because

of the stochastic search methods used.

Moreover, these search methods are limited for

some predefined topologies; hence search

through a narrow solution space only. The

evolutionary computing comes on stage in this

context. Evolutionary computing methods have

become successful alternative for topological

optimization, due to larger search space, higher

speed and more probability to achieve global

optima. By using the genetic algorithms and

evolutionary programming, some algorithms

have outperformed the conventional structural

learning methods.

The process of determining the weights of

the connections is called as parametric

optimization. The weights represent the strength

of the connections. These weights are usually

found by Stochastic Gradient Descent (SGD)

algorithm. The convergent rate and the

likelihood to trap in local optima are drawbacks

of this method. As per the literature, few

researches have been done to apply evolutionary

computing methods in parametric optimization.

2. Evolutionary Computing on ANN
Training

The research into applying Evolutionary

Computing to improve the performance of ANN

can be mainly explained under the strategies as

representing network in terms of individuals of

the population, initialization of population by

initial network structure, adoption of proper

fitness functions to find optimum network

structure, development of parent selection

criteria to produce better structure, and

reproduction operators. The next couple of

sections describe those strategies in detail.

A. Representation of Individuals

In [1], an individual chromosome is

interpreted with a bit string which is a

combination of several sub strings. The number

of bits of a sub string is decided by the

granularity. A coarse granularity has a very

narrow search space, hence less computational

cost. A fine granularity has a large search space,

but computationally expensive. Therefore, the

number of bits in a sub string is a critical

parameter that should be decided corresponding

to the given task and network. The first

substring of the chromosome indicates the

granularity of the string, in binary numbers.

Then all other substrings represent the

connection links between the neurons. First bit

of a substring represents the connectivity. If the

connection exists it has value ‘1’ and if the

connection does not exist it has value ‘0’. The

rest of the bits of a substring interpret the weight

using a binary encoding. Particularly, if the

granularity is n, the different number of weight

values that can be represented is 2n-1. For

example, if the number of bits is 4, it can

represent 8 different weight values, such as -2 to

5 with binary encoding 000 ~111 (i.e. -2=000, -

1=001, 0=010… 5=111). These weight values

are included only when connection are existing.

That means, if the connectivity bit is 0 the rest

of the sub string will be disappeared. Therefore,

the different individuals may have different

length of strings. Finally, these substrings are

arranged in an order, such a way to keep the

substrings, which represent the connections

coming to the same neuron, at nearby.

Dias et al.

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

31

Figure 1: Representation of chromosome in [1]

There are some drawbacks with this

representation. As mentioned above the

individuals may have different bit lengths and so

that difficult to mate two of them straight away.

Besides that, this is limited for some range of

weight values; consequently, a small search

space is utilized. Furthermore, this encoding

scheme is not applicable to recurrent networks.

Moreover, this representation does not allow

add/delete neurons, hence the number of

neurons is constant throughout the process.

However, the other researches have

demonstrated the importance of changing this

parameter (i.e. number of hidden neurons). [19]

is also use a similar type of genotype, which

consist two types of genes. Neuron genes

represent the input, output and hidden neurons

while connection genes represent the

connectivity. Each and every neuron has a

particular number that want change throughout

the process. The connection genes carry the

information of connection input and output

neuron number, weight, the availability of

connection (connectivity bit), and innovation

number (this is explained later).

Since evolutionary programming usually

does not use an encoding scheme, [2] and [3]

have used real number values to represent the

individuals. If the number of input and output

neurons are m and n respectively, and maximum

number of hidden neurons is N, then size of

(m+N+n) x (m+N+n) two matrices are used.

One is a binary matrix, which represents the

connectivity between the neurons, and other one

is weight matrix, which represents the values of

particular connections. In [3] these two matrices

are upper triangular matrices, because the

presented algorithm doesn’t applicable for

recurrent neural networks. Then, another N

dimension vector is used to denote the existence

of the hidden neurons. The components of the

vector can be either value 1 or 0. If a particular

neuron exists it indicates as value ‘1’ and if it

doesn’t exist it indicates as ‘0’. Since

evolutionary programming uses asexual

reproduction, only (no crossover operations) this

notation suits well.

B. Initialization of the Population

Maniezzo [1] generates an initial population

randomly, constrained to the given range of

granularity and the given number of neurons.

The other researchers [2] and [3] randomly

select the number of hidden neurons and the

number of connection links, from uniform

distributions over user defined ranges. Then, the

weight values are also generated from a uniform

distribution over a small range. [3] does a

further modification after generating the initial

population. It trains the population partially

using BP and then if the error is reduced in a

particular individual then it is marked as

“success” or otherwise as “failure”. [19]

initialize the networks without hidden neurons.

The population begins with the simplest

network and the hidden neuron are added

according to the performance.

C. Fitness Function

For supervised learning there are three

possible ways to measure the fitness [2].

Summation of square error (1), Summation of

absolute error (2), or Summation of exponential

error (3) of the nth individual can be used to

measure the fitness of the particular individual.

ti is the targeted output of ith labeled data point

used for training, and is the actual output for

the particular input. The superscript  denotes

an individual of the population.

Yao and et al [3] uses a more advance

method to evaluate the individuals. It calculates

the mean square error percentage and

normalizes by the factors of number of output

neurons and the range of the output values. This

method is adopted from [4]. If the number of

output neurons is n the number of data points

used for validation is T, and the maximum and

minimum values of the outputs are maxO

and minO , the error for individual  can be

calculated as follows (4);

On Optimizing Deep Convolutional Neural Networks by Evolutionary Computing

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

32

D. Parent Selection

Maniezzo [1] has used a very primary

parent selection method; i.e. randomly pair the

individuals of the existing population. Then,

each and every pair will undergo a crossover

operation. The mutation operations are

implemented on each individual with a pre-

defined probability. However, [3] uses a rank

based method to select a parent. Every

individual of the population is given a rank from

0 to (M-1) from the descending order of the

fitness, i.e. the ascending order of the calculated

error. It has reduced the computational load by

avoiding taking the reciprocal of the error to

calculate the fitness value. The probability of

the  th individual to be selected is (5);

The main drawback of this method is; it

assumes a uniform distribution of error values,

even though it is not. The others [2] use a very

simple method to select the parents. The fittest

half of the existing population is used to

produce the offspring of the next generation.

E. Reproduction Operators

Each and every parent undergoes for 3 type

of mutations in [1]. Granularity bit mutations,

connectivity bit mutations, and weight bit

mutations are executed with three user defined

mutation probabilities. The n point crossover

operator is used for sexual reproduction.

Although individuals may have different lengths

of bit strings to represent them, all of them are

stored in maximum possible fixed length

memories. That is the string length of an

individual with maximum possible granularity

and maximum connectivity. For example, if the

maximum possible connections are 5 and

maximum granularity is 3 then, then the

maximum possible length will be 22, with two

bits to represent the granularity. The individuals

with less number of bits just don’t use the rest of

bits to represent their network. The crossover

operator is implemented using these fixed length

bit strings, so that no problem of mating

different size of individuals. However, one

drawback of this operator is the lacking of

compositionality property. Compositionality is

the meaningfulness of a portion of a string.

Some researchers [2], [3] use asexual

reproduction only. Two types of mutations are

performed in order to obtain a valued offspring;

i.e. parametric mutations and structural

mutations. Rather using fixed probabilities like

[1], [2] yield the probabilities by uniform

distributions. First it calculates a ‘temperature

value’ (T) for particular parent using its fitness

value. If the maximum attainable fitness value is

 and fitness of the individual is then,

gives the temperature value for that parent.

Then it calculates an instantaneous temperature

value (for every mutation operator

implementation.

where is a random variable chosen

from a uniform distribution over the interval

[0,1]. The weights are updated choosing a

random variable from a normal distribution;

where, is a user-defined proportion.

There are four kinds of structural mutations used

in [2] and [3], those are; adding a hidden

neuron, deleting a hidden neuron, adding a

connection link and deleting a connection link.

[2] apply these mutations on parents with

particular number calculated using pre-defined

interval of for each four structural

mutation type. This particular number for each

individual is given in eq.(9).

The researcher [3] uses a hybrid training

method of back propagation(BP) and simulated

annealing(SA), for parametric mutation. When a

parent is selected, if it is marked as “success”

then it undergoes for further BP training and no

further any mutation is done. Else if it is marked

as “failure” then it is trained using SA and

update whether success or failure. If it’s success

then no further mutations are performed, but if

it’s still “failure” structural mutations are

performed followed by partial BP training in the

Dias et al.

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

33

sequence of hidden neurons deletion, connection

links deletion, connection links addition and

hidden neuron addition. These structural

mutations are executed according to the survivor

selection method described in the next subtopic.

The number of hidden neurons and connection

links to be deleted is random values chosen

from small uniform distributions defined by the

practitioner. These generated numbers of

neurons are deleted uniformly at random. The

connection links are deleted according to the

importance of a connection. The importance of a

connection is evaluated by a variable called

‘test’ of that particular connection. When T

number of validation patterns is used, if the

particular connection has a weight of then;

where and .

 is the average value of over T number of

validation patterns. According to this test value,

the connections are deleted. Same value is used

for addition of connection links and these

adding connections are selected from the

connections, which are currently with zero

weights. In neuron addition, a process called

“cell division” is used. An existing neuron is

spitted into two parts and following weight

vector updating is carried out.

 (10)

Where and are weight vectors of

new neurons and is a mutation parameter

which may be either fixed value or random

value.

One of the main disadvantages of these

structural mutations is the generational gap.

That means the huge behavioural differences

between the parents and the offspring. [2]

introduces the new hidden neurons without any

connections and connections with zero weights

preventing radical jumps in fitness values in

these two types of mutations. But, it claims that

in addition of connection links/neurons these

sudden changes are inevitable. After all four

types of structural mutations, [3] use a partial

training with BP to avoid these sudden

behavioural changes. Additionally, the added

connection links are initialized with small

weight values in [3], in contrast to zero initial

weights in [2], because of the partial training

with BP.

[19] uses two structural mutations only; i.e.

addition of connection and addition of hidden

neuron. Connections are added with random

weight values. The new hidden neurons are

added by splitting the existing connections. The

new neuron will get an input connection with a

weight of 1 and output connection with weight

of old connection weight. Preserving the old

weight value will reduce the generational gap

between the parents and the offspring.

Whenever one of these mutations are occurred,

a new gene is added to the chromosome, which

leads to vary the size among the individuals.

Every new gene is given a number called

“innovation number” which is incremented in

every single mutation. This number of a

particular gene, want change in the entire

process. Hence, the historical data will be

preserved and can be utilized whenever needed.

This feature is not available in any other

method. These data is used to line up the

individuals with different sizes in order to

implement the crossover operation.

3. Optimization Techniques in Deep
Convolution Networks

The techniques that have been used in shallow

neural networks have been further advanced and

applied in deep neural networks. Especially,

normalization techniques which were used to

normalize the inputs in conventional neural

networks, has been extended to weight

normalization as well as intermediate output

normalization. Further, different momentum

algorithms have been derived to speed up the

convergence of deep networks, the next couple

of sections sum up the common approaches that

have been practiced to smooth and speed up the

learning process of deep networks. Here, the

paper focuses only on convolutional neural

networks (CNN) because it has been recognized

as a key approach for object recognition.

A. Normalization Techniques

In deep networks, input to each layer is

affected by parameters of previous layers, as

network parameters changes (by training), even

small changes to the network get amplified

down the network. This leads to change in the

On Optimizing Deep Convolutional Neural Networks by Evolutionary Computing

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

34

statistical distribution of inputs to following

layers from previous layers, therefore hidden

layers will keep trying to adapt to that new

distribution, hence slows down the convergence

and make it difficult for training. This may lead

to requirement of low learning rates and careful

parameter initialization. This is known as

internal covariant shift. As a general solution, it

introduced to normalize the data (by mean and

variance) and several normalization techniques

have been tried out.

1) Normalization

Normalize data by both mean and variance

is a major technique, which simply is to

transform to make data with zero mean and unit

variance hence de-correlated, through a series of

linear transformations. The process centers, the

data around value zero by subtracting the mean

and then divide by the standard deviation for

scaling. In general, subtracting the mean across

every individual feature in the data, and make

geometric interpretation of centering the cloud

of data, around the origin along every dimension

(k). To normalize the data dimensions so that

they are of approximately the same scale, divide

each dimension (k) by its standard deviation

after they have been zero centered. This is also

known as simplified whitening process. This

simplified whitening only removes mostly the

first order covariant shift, but for removing

higher order shift requires complex techniques

have been introduced.

2) Local contrastive normalization

Local contrastive normalization (LCN)

performs a local competition among adjacent

features (like pixels) in feature maps and

between features at the same spatial location on

different feature maps. LCN applies after

introducing the non-linearity (ReLu) for

whitened data.

For example, let us consider a local field of

3x3-area portion (9 pixels) to clarify the

process. First, for each pixel in a feature map,

find its adjacent pixels (radius is 1 in this case),

so there are 8 pixels around the target pixel in

the middle (do the zero padding if the target is at

the edge of the feature map). Then, compute the

mean of these 9 pixels (8 neighbor pixels and

the target pixel itself), subtract the mean for

each one of the 9 pixels. Next, compute the

standard deviation of these 9 pixels. In addition,

judge whether the standard deviation is larger

than 1. If larger than 1, divide the target pixel’s

value by the standard deviation. Otherwise, keep

the target value as what they are (after mean

subtraction). At last, save the target pixel value

to the same spatial position of a blank feature

map as the input of the next layer of the deep

CNN.

LCN introduces a competition among the

output of adjacent convolution kernel. This

normalization technique is useful when it deals

with ReLU neurons because ReLU neurons

have unbounded activations and needs local

responsive normalization to normalize that. For

detecting high frequency features with a large

response, normalizing around the local

neighborhood of the excited neuron, it becomes

even more sensitive as compared to its

neighbors [12].

3) Batch Normalization

Batch normalization (BN) is a learnable

whitening process that normalizes the inputs to

each following hidden layer so that their

distribution kept fairly constant as training

proceeds, hence improves training and allows

faster convergence. About input distributions,

BN algorithm addresses the changing

distributions issue which known as internal

covariant shift and allows using higher learning

rates. These learnable hyper parameters in BN

transformation are learned through back

propagation during online or mini-batch

training. Furthermore, Batch normalization

reduces effects of exploding and vanishing

gradients while regularize the model. Without

BN, low activations of one layer can lead to

lower activations in the next layer, and then

even lower ones in the next layer and so on [11].

At the beginning batch normalization

initialize (with mini batches) by normalizing the

data using calculated mini batch mean and

variance hence standard deviation Not just

normalizing each input of a layer may change

what the layer can represent. To address this, it

introduced a transformation, for each

normalization, a pair of parameters, which scale

and shift the normalized value. These

parameters are learnable during the training

using back propagation and by setting them

equal to standard deviation and mean

respectively it could even recover original

activations. These learned parameters in

transformation depend on all the training

examples in the mini batch. Also, learning

Dias et al.

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

35

ensures that as the model trains, layers can

continue learning on input distributions that

exhibit less internal covariate shift, thus

accelerating the training.

B. Momentum Updates

1) Vanilla momentum update

Momentum is one of the key approaches
that have been applied to faster the convergence
of deep networks getting out of local minima.
With momentum m, the weight update at a
given time t, m adds a fraction of the previous
weight update to the current one as shown in
eq.20. When the gradient keeps moving into the
same direction, m increases the size of the steps
toward the minima. On contrast, when the
gradient changes the direction compared to
previous few steps, momentum help to smooth
out variation.

)20()1(..)(



 twm

w

E
tw 

2) Nesterov momentum update

Nesterov momentum is a derivative of

momentum updates, which performs well in

convex functions as in eq.21 and eq.22. The

basic idea of Nesterov momentum is to compute

the gradient of the future approximate position

than the current position of the parameter. This

accelerated momentum helps to rush the

network to its convergence [5, 9].

)22()1(.
*

.)(

)21()1(.)(*









twm
w

E
tw

twmtww



C. Effective Receptive Field

Particularly in CNN, behaviour of a unit

depends only on a region of the input, which is

called a receptive filed of the unit. Theoretically,

size of the receptive field of an output unit can

be increased by stacking more layers to make

much deeper network, or by sub-sampling,

which increases the size of receptive field.

Deeper analysis into receptive fields has shown

that pixels in a receptive field do not contribute

equally to response of the output unit. Indeed,

the central pixels in the receptive field make

much larger impact on the response rather than

the boundary pixels. These pixels, which make

larger impact on the output, is known as

effective receptive field (ERF) [6]. Further,

these effective receptive fields are Gaussian

distributed and growing bigger in size during the

training. Since ERF are smaller at initial stages,

and causes problems for the tasks that require a

larger receptive field, the weights are suggested

to initialize in lower scale at the center and in

higher scale at the outside. However, an

architectural change to CNN has also been

suggested in terms of defining convolution

window which emphasis the need of defining

window, which connect larger area with some

sparse connection, rather than defining small

local convolution window [10].

http://www.erogol.com/dilated-convolution/

D. Dropout training

Model combination always improves the
performance of neural networks. With large
neural networks, averaging the outputs of many
separately trained nets is expensive. Training
many different architectures is hard, because
finding optimal hyper-parameters requires a lot
of computation. Large networks normally
require large amounts of training data and there
may not be enough data available to train
different networks on different subsets of the
data. Dropout is a technique that prevents over-
fitting and provides a way of approximately
combining exponentially many different neural
network architectures efficiently. Dropout refers
to dropping out units (hidden and visible) in a
neural network. Training a network with
dropout and using the approximate averaging
method at test time has led to significantly lower
generalization error [15].

E. Annealing Learning Rate

In deep networks, many researchers have

tried to anneal the learning rate over time.

Knowing when to decay the learning rate is very

tricky. Decaying the learning rate slowly can

cost high computational time and on the other

hand decaying the learning rate aggressively

may not help the system to reach the global

minimum. Step decay, and exponential decay

are common types of implementing the decay.

Step decay reduces the learning rate by some

factor every few epochs. Exponential decay

reduces the learning rate exponentially over the

number of iteration. Adaptive learning rates

such as Adagrad [13], RMSprop and Adam [14]

are some of the significant learning rates that

have been proposed to improve the performance

of Deep neural networks.

On Optimizing Deep Convolutional Neural Networks by Evolutionary Computing

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

36

4. Evolutionary Strategies in Deep
Convolution Networks

Optimizing topological structure of deep neural

networks has become more challenging task as

the increase of the depth of the network. No

longer it is feasible to find the optimum

structure for deep networks for a given problem

manually and has opened up new branch in deep

networks to look into the possibility of

automating the task. As we discuss in early

sections, many approaches have been proposed

to optimize the deep networks, however

Evolutionary Computing (EC) based approaches

are being called back to overcome the difficulty.

Application of EC into reinforcement learning

on Atari games [17], and EC into Long-Short-

Term-Memory (LSTM) on image capturing and

language modeling [16] are some of the

significant recent applications which could

confirm the possibility of improving efficiency

of deep networks using EC based techniques.

Among them, few researchers have

attempted to improve the topological structure

of deep CNN. Miikkulainen et al [16] has

evolved a CNN network which could reach the

convergence after 30 epochs and it is compared

to 4 times faster than the manually defined

approach for the same problem set (CIFAR-10).

In their approach, a convolution layer has been

defined as a node in chromosome in

evolutionary programming. Problem was solved

as multi-population problem that evolves

structure and then hyper-parameters for the

assembled network. However, in this approach

optimizing of hyper-parameters were done after

the network structure was assembled by genetic

programming. Suganuma et al[18] has applied

Cartesian genetic programming to evolve the

CNN in image classification task. In addition to

convolution blocks, batch normalization and

residual blocks have been considered in

evolving the topological structure. However, the

hyper-parameters of the network have been

optimized after assembling the network.

5. Discussion

As the performances of deep neural networks

increases, in general the number of layers in

deep neural networks is also increases. That is

the more the number of layers; the more

accuracy has been recorded. Optimizing the

deep neural network’s topological structure for a

given data set has become a challenging task for

neural network researchers. Therefore, many

researchers are now exploring the possibility of

applying genetic programming or evolutionary

algorithm to evolve deep neural networks.

In conventional neural networks, this has

been mainly achieved by applying evolutionary

algorithm. In there, the network hyper-

parameters are encoded into genes of

chromosomes, and then have tried to optimize

the parameters based on a defined fitness-

function. Or else, the network topological

structure has been tried to encode into

chromosomes of genetic algorithm and tried to

optimize the network topological structure.

However, these approaches are not good enough

to optimize the deep neural networks, because

compared to conventional neural networks, deep

neural networks has variety of architectures

combing many different modules or layers. For

example, residual layer, normalization layer,

inception module, etc. Therefore, new

approaches have been investigated to optimize

the deep neural networks’ topological structure

or hyper-parameters. Few researches have

encoded the modules of deep neural networks

into chromosomes and tried optimize the neural

network structure. However, those techniques

are required further researches to evaluate their

performances thoroughly.

Here the paper proposes to optimize the

deep neural network structures as a collective

intelligence of genetic programming:

representing deep neural networks in terms of

acyclic graph in detail (into neuronal level and

connection) using genetic programming. As per

the concept governed by swarm intelligence,

each module or layer in the network is identified

as a local genetic program. Hence the entire

network can be considered as multiple genetic

programs. Each entity is trying to optimize its

behaviour locally under the constraint of

optimizing overall behaviour of entire network.

In this way, we can approach the deep neural

network optimization problem, as emergent

feature of collective multi-genetic programs.

References

[1] V. Maniezzo, “Genetic evolution of the topology and

weight distribution of neural networks,” IEEE Trans.

Neural Netw., vol. 5, no. 1, pp. 39–53, Jan. 1994.

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An

evolutionary algorithm that constructs recurrent neural

networks,” IEEE Trans. Neural Netw., vol. 5, no. 1,

pp. 54–65, Jan. 1994.

[3] X. Yao and Y. Liu, “A new evolutionary system for

evolving artificial neural networks,” IEEE Trans.

Dias et al.

SLAAI - International Conference on Artificial Intelligence University of Moratuwa, Sri Lanka 31st October 2017

37

Neural Networks., vol. 8, no. 3, pp. 694–713, May

1997.

[4] “1994-21.pdf.”

[5] Yu Nesterov, “A method for unconstrained convex

 minimization problem with the rate of convergence,

vol. 269, pp. 543–547, 1983.

[6] W.Luo, Y. Li, R. Urtasun, and R. Zemel,

Understanding the Effective Receptive Field in Deep

Convolutional Neural Networks, 29th Conference on

Neural Information Processing Systems (NIPS 2016),

Barcelona,Spain.

[7] D.Mishkin, N.Sergievskiy, and J.Matas, Systematic

Evaluation of Convolution Neural Network advances

on the ImageNet, Computer Vision and Image

Understanding, 161 (2017) 11-19.

[8] E.A. Smirnov, D.M. Timoshenko, and S.N.

Andrianov, Comparison of Regularization Methods

for ImageNet Classification with Deep Convolutional

Neural Networks, Conference on Intelligence and

Biometrics, 6 (2014) 89-94.

[9] I.Sutskever, Martens, J,G.Dahl and G.Hinton, On the

importance of initialization and momentum in Deep

Learning, in proceeding of the 30th International

Conference on Machine Learning, 2013.

[10] F.Yu and V.Koltun, Multi-Scale context aggregation

by dilated convolutions, ICLR, 2016.

[11] S. Joffe and C. Szegedy, Batch Normalization:

Accelerating Deep Network Training by Reducing

Internal Covariate Shift, 2015.

[12] A Krizhevsky, I Sutskever, and G. Hinton, ImageNet

Classification with Deep Convolutional Neural

Networks, 2015.

[13] J. Duchi, E. Hazan, and E.Singer, Adaptive

Subgradient Methods for Online Learning and

Stochastic Optimization, JMLR, 12(Jul):2121−2159,

2011

[14] D.P. Kingma, and J. Ba, Adam: A Method for

Stochastic Optimization, International Conference for

Learning Representations, San Diego, 2015.

[15] H.Wu and X.Gu, Towards dropout training for

convolutional neural networks, Neural Networks, 71

(2015) 1-10.

[16] R.Miikkulainen, J.Liang, E.Meyerson, A.Rawal, et.

at., Evolving Deep Neural Networks, 2017.

[17] T. Salimans, J. Ho, Xi Chen, S. Sido and I. Sutskever,

Evolution Strategies as a Scalable Alternative to

Reinforcement Learning, 2017.

[18] M.Suganuma, S.Shirakawa, and T.Nagao, A Genetic

Programming Approach to Designing Convolutional

Neural Network Architectures, Neural and

Evolutionary Computing, August 2017.

[19] K. O. Stanley and R. Miikkulainen, “Evolving Neural

Networks through Augmenting.

	A. Representation of Individuals
	B. Initialization of the Population
	C. Fitness Function
	D. Parent Selection
	E. Reproduction Operators
	A. Normalization Techniques
	B. Momentum Updates
	1) Vanilla momentum update
	Momentum is one of the key approaches that have been applied to faster the convergence of deep networks getting out of local minima. With momentum m, the weight update at a given time t, m adds a fraction of the previous weight update to the current ...
	2) Nesterov momentum update
	C. Effective Receptive Field
	D. Dropout training
	Model combination always improves the performance of neural networks. With large neural networks, averaging the outputs of many separately trained nets is expensive. Training many different architectures is hard, because finding optimal hyper-paramet...
	E. Annealing Learning Rate

