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Abstract 

Optimization for deep networks is currently a 

very active area of research. As neural networks 

become deeper, the ability in manually optimizing 

the network becomes harder. Mini-batch 

normalization, identification of effective respective 

fields, momentum updates, introduction of residual 

blocks, learning rate adoption, etc. have been 

proposed to speed up the rate of convergent in 

manual training process while keeping the higher 

accuracy level. However, the problem of finding 

optimal topological structure for a given problem is 

becoming a challenging task need to be addressed 

immediately. Few researchers have attempted to 

optimize the network structure using evolutionary 

computing approaches. Among them, few have 

successfully evolved networks with reinforcement 

learning and long-short-term memory.  A very few 

has applied evolutionary programming into deep 

convolution neural networks. These attempts are 

mainly evolved the network structure and then 

subsequently optimized the hyper-parameters of the 

network. However, a mechanism to evolve the deep 

network structure under the techniques currently 

being practiced in manual process is still absent. 

Incorporation of such techniques into chromosomes 

level of evolutionary computing, certainly can take 

us to better topological deep structures. The paper 

concludes by identifying the gap between 

evolutionary based deep neural networks and deep 

neural networks. Further, it proposes some insights 

for optimizing deep neural networks using 

evolutionary computing techniques. 

Keywords: Deep Networks, Optimization, 

Evolutionary Computing, Speeding Up Rate of 

Convergent, Normalization. 

1. Introduction 

Training an Artificial Neural Network (ANN) 

for a given task is a still a demanding research 

topic in the field of Artificial Intelligence. In 

order to obtain the highest performance of the 

network, multi-dimensional optimization is 

essential which increase the complexity of the 

problem. The performance of ANN is 

determined by an aggregation of learning rate, 

accuracy and generalization. Learning rate is 

very important as providing an enormous 

labeled dataset for training. On other hand, the 

time taken to achieve a given benchmark of 

accuracy should be reduced as much as possible. 

Therefore, the learning rate should be 

maintained properly in order to enhance the 

performance of ANN. The overall learning rate 

can be measured by number of epochs and time 

taken for learning. The accuracy of the ANN is 

another key component of the performance 

since the output should be with minimum error 

after a certain number of epochs. If the final 

error is beyond the desired margin of error, then 

the ANN is with poor performance. The error of 

an ANN is measured by mean squared error, 

mean absolute error, exponential error method, 

etc. After all, the designed ANN should be able 

to generalize well. Generalization means the 

characteristic of applicability to any problem 

within a given scenario. In a nutshell, how well 

it will be able to give the desired output when a 

new input is given. This generalization is related 

with the problem of over fitting of ANN. If the 

ANN is trained more for a particular type of 

uniform dataset, the accuracy will be 

substantially increasing for that particular type 

of input data points. But, when future data point 

is given, the output will be worst. This incident 

is called as, over fitting of a network. Therefore, 

generalization of ANN should be protected 

throughout the designing and training process. 

Ultimately, ANN performance can be defined as 

follows; any well-generalized ANN should be 

attained for a given subset of problems with 

high accuracy in less number of epochs.  

In order to maximize the performance of 

ANN, the determination of the optimal network 

structure and weights for the given task, is a 

multi-dimensional problem with a vast space of 

solutions. The process of determining the most 

appropriate topology of network for the given 

task is called as structural optimization. The 

number of hidden neurons and the connectivity 

between these neurons construct the topology of 

the network. Some neurons have to be dropped 

because of their less effectiveness for the 

network and some neurons have to be added due 

to their usefulness. Then the feed forward and 
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recurrent connectivity between these neurons 

have to be determined in order to construct the 

complete structure. This connectivity is not 

about the weight of the connection, but the 

existence of the particular connection. The 

structure is usually decided using an ad-hoc 

choice or some trial and error method. The ad-

hoc choice is done by a priori analysis of the 

task. This is much complicated and non-

deterministic due to the lack of a proper model 

of the task.  Furthermore, a conventional ad-hoc 

structure does not provide the optimum solution 

for a given task. Apparently, shoehorning the 

given task to a pre-defined structure is 

inappropriate; rather the structure should be 

shoehorned to the given task. The trial and error 

methods can be categorized as constructive and 

destructive methods. Constructive methods are 

initiated with a simple and small structure and 

later more neurons and connections are added to 

improve the performance. In contrast, 

destructive methods initiated with complex and 

massive network and gradually delete the 

connections and neurons to make the structure 

simple and small.  These time and error methods 

are computationally prohibitive and more likely 

to be trapped in structural local optima because 

of the stochastic search methods used.  

Moreover, these search methods are limited for 

some predefined topologies; hence search 

through a narrow solution space only. The 

evolutionary computing comes on stage in this 

context. Evolutionary computing methods have 

become successful alternative for topological 

optimization, due to larger search space, higher 

speed and more probability to achieve global 

optima. By using the genetic algorithms and 

evolutionary programming, some algorithms 

have outperformed the conventional structural 

learning methods.  

The process of determining the weights of 

the connections is called as parametric 

optimization. The weights represent the strength 

of the connections. These weights are usually 

found by Stochastic Gradient Descent (SGD) 

algorithm. The convergent rate and the 

likelihood to trap in local optima are drawbacks 

of this method. As per the literature, few 

researches have been done to apply evolutionary 

computing methods in parametric optimization.  

 

 

2. Evolutionary Computing on ANN 
Training 

The research into applying Evolutionary 

Computing to improve the performance of ANN 

can be mainly explained under the strategies as 

representing network in terms of individuals of 

the population, initialization of population by 

initial network structure, adoption of proper 

fitness functions to find optimum network 

structure, development of parent selection 

criteria to produce better structure, and 

reproduction operators. The next couple of 

sections describe those strategies in detail. 

 
A. Representation of Individuals 

In [1],  an individual chromosome is 

interpreted with a bit string which is a 

combination of several sub strings. The number 

of bits of a sub string is decided by the 

granularity. A coarse granularity has a very 

narrow search space, hence less computational 

cost. A fine granularity has a large search space, 

but computationally expensive. Therefore, the 

number of bits in a sub string is a critical 

parameter that should be decided corresponding 

to the given task and network. The first 

substring of the chromosome indicates the 

granularity of the string, in binary numbers. 

Then all other substrings represent the 

connection links between the neurons. First bit 

of a substring represents the connectivity. If the 

connection exists it has value ‘1’ and if the 

connection does not exist it has value ‘0’. The 

rest of the bits of a substring interpret the weight 

using a binary encoding. Particularly, if the 

granularity is n, the different number of weight 

values that can be represented is 2n-1. For 

example, if the number of bits is 4, it can 

represent 8 different weight values, such as -2 to 

5 with binary encoding 000 ~111 (i.e. -2=000, -

1=001, 0=010… 5=111). These weight values 

are included only when connection are existing. 

That means, if the connectivity bit is 0 the rest 

of the sub string will be disappeared. Therefore, 

the different individuals may have different 

length of strings. Finally, these substrings are 

arranged in an order, such a way to keep the 

substrings, which represent the connections 

coming to the same neuron, at nearby.  
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Figure 1: Representation of chromosome in [1] 

 

There are some drawbacks with this 

representation. As mentioned above the 

individuals may have different bit lengths and so 

that difficult to mate two of them straight away. 

Besides that, this is limited for some range of 

weight values; consequently, a small search 

space is utilized. Furthermore, this encoding 

scheme is not applicable to recurrent networks. 

Moreover, this representation does not allow 

add/delete neurons, hence the number of 

neurons is constant throughout the process. 

However, the other researches have 

demonstrated the importance of changing this 

parameter (i.e. number of hidden neurons). [19] 

is also use a similar type of genotype, which 

consist two types of genes. Neuron genes 

represent the input, output and hidden neurons 

while connection genes represent the 

connectivity. Each and every neuron has a 

particular number that want change throughout 

the process. The connection genes carry the 

information of connection input and output 

neuron number, weight, the availability of 

connection (connectivity bit), and innovation 

number (this is explained later).  

Since evolutionary programming usually 

does not use an encoding scheme, [2] and [3] 

have used real number values to represent the 

individuals. If the number of input and output 

neurons are m and n respectively, and maximum 

number of hidden neurons is N, then size of 

(m+N+n) x (m+N+n) two matrices are used. 

One is a binary matrix, which represents the 

connectivity between the neurons, and other one 

is weight matrix, which represents the values of 

particular connections. In [3] these two matrices 

are upper triangular matrices, because the 

presented algorithm doesn’t applicable for 

recurrent neural networks. Then, another N 

dimension vector is used to denote the existence 

of the hidden neurons. The components of the 

vector can be either value 1 or 0. If a particular 

neuron exists it indicates as value ‘1’ and if it 

doesn’t exist it indicates as ‘0’.  Since 

evolutionary programming uses asexual 

reproduction, only (no crossover operations) this 

notation suits well.  

 
B. Initialization of the Population 

Maniezzo [1] generates an initial population 

randomly, constrained to the given range of 

granularity and the given number of neurons. 

The other researchers [2] and [3] randomly 

select the number of hidden neurons and the 

number of connection links, from uniform 

distributions over user defined ranges. Then, the 

weight values are also generated from a uniform 

distribution over a small range. [3] does a 

further modification after generating the initial 

population. It trains the population partially 

using BP and then if the error is reduced in a 

particular individual then it is marked as 

“success” or otherwise as “failure”. [19] 

initialize the networks without hidden neurons. 

The population begins with the simplest 

network and the hidden neuron are added 

according to the performance.  

 
C. Fitness Function 

For supervised learning there are three 

possible ways to measure the fitness [2]. 

Summation of square error (1), Summation of 

absolute error (2), or Summation of exponential 

error (3) of the nth individual can be used to 

measure the fitness of the particular individual. 

ti is the targeted output of ith labeled data point 

used for training, and   is the actual output for 

the particular input. The superscript  denotes 

an individual of the population. 
 

 

 

 
 

Yao  and et al [3] uses a more advance 

method to evaluate the individuals. It calculates 

the mean square error percentage and 

normalizes by the factors of number of output 

neurons and the range of the output values. This 

method is adopted from [4].  If the number of 

output neurons is n the number of data points 

used for validation is T, and the maximum and 

minimum values of the outputs are maxO  

and minO , the error for individual  can be 

calculated as follows (4); 
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D. Parent Selection 

Maniezzo [1] has used a very primary 

parent selection method; i.e. randomly pair the 

individuals of the existing population. Then, 

each and every pair will undergo a crossover 

operation. The mutation operations are 

implemented on each individual with a pre-

defined probability. However, [3] uses a rank 

based method to select a parent. Every 

individual of the population is given a rank from 

0 to (M-1) from the descending order of the 

fitness, i.e. the ascending order of the calculated 

error. It has reduced the computational load by 

avoiding taking the reciprocal of the error to 

calculate the fitness value. The probability of 

the  th individual to be selected is (5); 

 

 
 

The main drawback of this method is; it 

assumes a uniform distribution of error values, 

even though it is not. The others [2] use a very 

simple method to select the parents. The fittest 

half of the existing population is used to 

produce the offspring of the next generation.  

 
E. Reproduction Operators 

Each and every parent undergoes for 3 type 

of mutations in [1]. Granularity bit mutations, 

connectivity bit mutations, and weight bit 

mutations are executed with three user defined 

mutation probabilities. The n point crossover 

operator is used for sexual reproduction. 

Although individuals may have different lengths 

of bit strings to represent them, all of them are 

stored in maximum possible fixed length 

memories. That is the string length of an 

individual with maximum possible granularity 

and maximum connectivity.  For example, if the 

maximum possible connections are 5 and 

maximum granularity is 3 then, then the 

maximum possible length will be 22, with two 

bits to represent the granularity. The individuals 

with less number of bits just don’t use the rest of 

bits to represent their network. The crossover 

operator is implemented using these fixed length 

bit strings, so that no problem of mating 

different size of individuals. However, one 

drawback of this operator is the lacking of 

compositionality property. Compositionality is 

the meaningfulness of a portion of a string.  

Some researchers [2], [3] use asexual 

reproduction only. Two types of mutations are 

performed in order to obtain a valued offspring; 

i.e. parametric mutations and structural 

mutations. Rather using fixed probabilities like 

[1], [2] yield the probabilities by uniform 

distributions. First it calculates a ‘temperature 

value’ (T) for particular parent using its fitness 

value. If the maximum attainable fitness value is  

 and fitness of the  individual is  then,  
 

 
 

gives the temperature value for that parent. 

Then it calculates an instantaneous temperature 

value (   for every mutation operator 

implementation.  
 

 
 

where  is a random variable chosen 

from a uniform distribution over the interval 

[0,1]. The weights are updated choosing a 

random variable from a normal distribution; 
 

 
where,   is a user-defined proportion. 

There are four kinds of structural mutations used 

in [2] and [3], those are; adding a hidden 

neuron, deleting a hidden neuron, adding a 

connection link and deleting a connection link. 

[2] apply these mutations on parents with 

particular number calculated using pre-defined 

interval of   for each four structural 

mutation type. This particular number for each 

individual is given in eq.(9). 
 

 
 

The researcher [3] uses a hybrid training 

method of back propagation(BP) and simulated 

annealing(SA), for parametric mutation. When a 

parent is selected, if it is marked as “success” 

then it undergoes for further BP training and no 

further any mutation is done. Else if it is marked 

as “failure” then it is trained using SA and 

update whether success or failure. If it’s success 

then no further mutations are performed, but if 

it’s still “failure” structural mutations are 

performed followed by partial BP training in the 
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sequence of hidden neurons deletion, connection 

links deletion, connection links addition and 

hidden neuron addition. These structural 

mutations are executed according to the survivor 

selection method described in the next subtopic. 

The number of hidden neurons and connection 

links to be deleted is random values chosen 

from small uniform distributions defined by the 

practitioner. These generated numbers of 

neurons are deleted uniformly at random.  The 

connection links are deleted according to the 

importance of a connection. The importance of a 

connection is evaluated by a variable called 

‘test’ of that particular connection. When T 

number of validation patterns is used, if the 

particular connection has a weight of  then; 

 
 

where    and .  

 is the average value of over T number of 

validation patterns. According to this test value, 

the connections are deleted. Same value is used 

for addition of connection links and these 

adding connections are selected from the 

connections, which are currently with zero 

weights. In neuron addition, a process called 

“cell division” is used. An existing neuron is 

spitted into two parts and following weight 

vector updating is carried out.  

 

       

         (10) 

      

 

Where  and  are weight vectors of 

new neurons and  is a mutation parameter 

which may be either fixed value or random 

value.  

One of the main disadvantages of these 

structural mutations is the generational gap. 

That means the huge behavioural differences 

between the parents and the offspring. [2] 

introduces the new hidden neurons without any 

connections and connections with zero weights 

preventing radical jumps in fitness values in 

these two types of mutations. But, it claims that 

in addition of connection links/neurons these 

sudden changes are inevitable. After all four 

types of structural mutations, [3] use a partial 

training with BP to avoid these sudden 

behavioural changes. Additionally, the added 

connection links are initialized with small 

weight values in [3], in contrast to zero initial 

weights  in [2], because of the partial training 

with BP. 

[19] uses two structural mutations only; i.e. 

addition of connection and addition of hidden 

neuron. Connections are added with random 

weight values. The new hidden neurons are 

added by splitting the existing connections. The 

new neuron will get an input connection with a 

weight of 1 and output connection with weight 

of old connection weight. Preserving the old 

weight value will reduce the generational gap 

between the parents and the offspring. 

Whenever one of these mutations are occurred, 

a new gene is added to the chromosome, which 

leads to vary the size among the individuals. 

Every new gene is given a number called 

“innovation number” which is incremented in 

every single mutation. This number of a 

particular gene, want change in the entire 

process. Hence, the historical data will be 

preserved and can be utilized whenever needed. 

This feature is not available in any other 

method. These data is used to line up the 

individuals with different sizes in order to 

implement the crossover operation.  

 

3. Optimization Techniques in Deep 
Convolution Networks 

The techniques that have been used in shallow 

neural networks have been further advanced and 

applied in deep neural networks. Especially, 

normalization techniques which were used to 

normalize the inputs in conventional neural 

networks, has been extended to weight 

normalization as well as intermediate output 

normalization. Further, different momentum 

algorithms have been derived to speed up the 

convergence of deep networks, the next couple 

of sections sum up the common approaches that  

have been practiced to smooth and speed up the 

learning process of deep networks. Here, the 

paper focuses only on convolutional neural 

networks (CNN) because it has been recognized 

as a key approach for object recognition. 

 
A. Normalization Techniques  

In deep networks, input to each layer is 

affected by parameters of previous layers, as 

network parameters changes (by training), even 

small changes to the network get amplified 

down the network. This leads to change in the 
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statistical distribution of inputs to following 

layers from previous layers, therefore hidden 

layers will keep trying to adapt to that new 

distribution, hence slows down the convergence 

and make it difficult for training. This may lead 

to requirement of low learning rates and careful 

parameter initialization. This is known as 

internal covariant shift. As a general solution, it 

introduced to normalize the data (by mean and 

variance) and several normalization techniques 

have been tried out. 

 

1) Normalization 

Normalize data by both mean and variance 

is a major technique, which simply is to 

transform to make data with zero mean and unit 

variance hence de-correlated, through a series of 

linear transformations. The process centers, the 

data around value zero by subtracting the mean 

and then divide by the standard deviation for 

scaling. In general, subtracting the mean across 

every individual feature in the data, and make 

geometric interpretation of centering the cloud 

of data, around the origin along every dimension 

(k). To normalize the data dimensions so that 

they are of approximately the same scale, divide 

each dimension (k) by its standard deviation 

after they have been zero centered. This is also 

known as simplified whitening process. This 

simplified whitening only removes mostly the 

first order covariant shift, but for removing 

higher order shift requires complex techniques 

have been introduced. 

 

2) Local contrastive normalization 

Local contrastive normalization (LCN) 

performs a local competition among adjacent 

features (like pixels) in feature maps and 

between features at the same spatial location on 

different feature maps. LCN applies after 

introducing the non-linearity (ReLu) for 

whitened data. 

For example, let us consider a local field of 

3x3-area portion (9 pixels) to clarify the 

process. First, for each pixel in a feature map, 

find its adjacent pixels (radius is 1 in this case), 

so there are 8 pixels around the target pixel in 

the middle (do the zero padding if the target is at 

the edge of the feature map). Then, compute the 

mean of these 9 pixels (8 neighbor pixels and 

the target pixel itself), subtract the mean for 

each one of the 9 pixels. Next, compute the 

standard deviation of these 9 pixels. In addition, 

judge whether the standard deviation is larger 

than 1. If larger than 1, divide the target pixel’s 

value by the standard deviation. Otherwise, keep 

the target value as what they are (after mean 

subtraction). At last, save the target pixel value 

to the same spatial position of a blank feature 

map as the input of the next layer of the deep 

CNN. 

LCN introduces a competition among the 

output of adjacent convolution kernel. This 

normalization technique is useful when it deals 

with ReLU neurons because ReLU neurons 

have unbounded activations and needs local 

responsive normalization to normalize that. For 

detecting high frequency features with a large 

response, normalizing around the local 

neighborhood of the excited neuron, it becomes 

even more sensitive as compared to its 

neighbors [12].  

 

3) Batch Normalization 

Batch normalization (BN) is a learnable 

whitening process that normalizes the inputs to 

each following hidden layer so that their 

distribution kept fairly constant as training 

proceeds, hence improves training and allows 

faster convergence. About input distributions, 

BN algorithm addresses the changing 

distributions issue which known as internal 

covariant shift and allows using higher learning 

rates. These learnable hyper parameters in BN 

transformation are learned through back 

propagation during online or mini-batch 

training. Furthermore, Batch normalization 

reduces effects of exploding and vanishing 

gradients while regularize the model. Without 

BN, low activations of one layer can lead to 

lower activations in the next layer, and then 

even lower ones in the next layer and so on [11].  

At the beginning batch normalization 

initialize (with mini batches) by normalizing the 

data using calculated mini batch mean and 

variance hence standard deviation Not just 

normalizing each input of a layer may change 

what the layer can represent. To address this, it 

introduced a transformation, for each 

normalization, a pair of parameters, which scale 

and shift the normalized value. These 

parameters are learnable during the training 

using back propagation and by setting them 

equal to standard deviation and mean 

respectively it could even recover original 

activations. These learned parameters in 

transformation depend on all the training 

examples in the mini batch. Also, learning 
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ensures that as the model trains, layers can 

continue learning on input distributions that 

exhibit less internal covariate shift, thus 

accelerating the training.  
 

B. Momentum Updates 

1) Vanilla momentum update 

Momentum is one of the key approaches 
that have been applied to faster the convergence 
of deep networks getting out of local minima.  
With momentum m, the weight update at a 
given time t, m adds a fraction of the previous 
weight update to the current one as shown in 
eq.20. When the gradient keeps moving into the 
same direction, m increases the size of the steps 
toward the minima. On contrast, when the 
gradient changes the direction compared to 
previous few steps, momentum help to smooth 
out variation.  
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2) Nesterov momentum update 

Nesterov momentum is a derivative of 

momentum updates, which performs well in 

convex functions as in eq.21 and eq.22. The 

basic idea of Nesterov momentum is to compute 

the gradient of the future approximate position 

than the current position of the parameter. This 

accelerated momentum   helps to rush the 

network to its convergence [5, 9].   
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C. Effective Receptive Field 

Particularly in CNN, behaviour of a unit 

depends only on a region of the input, which is 

called a receptive filed of the unit. Theoretically, 

size of the receptive field of an output unit can 

be increased by stacking more layers to make 

much deeper network, or by sub-sampling, 

which increases the size of receptive field. 

Deeper analysis into receptive fields has shown 

that pixels in a receptive field do not contribute 

equally to response of the output unit.  Indeed, 

the central pixels in the receptive field make 

much larger impact on the response rather than 

the boundary pixels. These pixels, which make 

larger impact on the output, is known as 

effective receptive field (ERF) [6]. Further, 

these effective receptive fields are Gaussian 

distributed and growing bigger in size during the 

training.  Since ERF are smaller at initial stages, 

and causes problems for the tasks that require a 

larger receptive field, the weights are suggested 

to initialize in lower scale at the center and in 

higher scale at the outside.  However, an 

architectural change to CNN has also been 

suggested in terms of defining convolution 

window which emphasis the need of defining 

window, which connect larger area with some 

sparse connection, rather than defining small 

local convolution window [10].  

http://www.erogol.com/dilated-convolution/ 

 
D. Dropout training  

Model combination always improves the 
performance of neural networks. With large 
neural networks, averaging the outputs of many 
separately trained nets is expensive.  Training 
many different architectures is hard, because 
finding optimal hyper-parameters requires a lot 
of computation. Large networks normally 
require large amounts of training data and there 
may not be enough data available to train 
different networks on different subsets of the 
data. Dropout is a technique that prevents over-
fitting and provides a way of approximately 
combining exponentially many different neural 
network architectures efficiently. Dropout refers 
to dropping out units (hidden and visible) in a 
neural network. Training a network with 
dropout and using the approximate averaging 
method at test time has led to significantly lower 
generalization error [15].  

 
E.  Annealing Learning Rate 

In deep networks, many researchers have 

tried to anneal the learning rate over time. 

Knowing when to decay the learning rate is very 

tricky. Decaying the learning rate slowly can 

cost high computational time and on the other 

hand decaying the learning rate aggressively 

may not help the system to reach the global 

minimum. Step decay, and exponential decay 

are common types of implementing the decay. 

Step decay reduces the learning rate by some 

factor every few epochs. Exponential decay 

reduces the learning rate exponentially over the 

number of iteration. Adaptive learning rates 

such as Adagrad [13], RMSprop and Adam [14] 

are some of the significant learning rates that 

have been proposed to improve the performance 

of Deep neural networks. 
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4. Evolutionary Strategies in Deep 
Convolution Networks 

Optimizing topological structure of deep neural 

networks has become more challenging task as 

the increase of the depth of the network. No 

longer it is feasible to find the optimum 

structure for deep networks for a given problem 

manually and has opened up new branch in deep 

networks to look into the possibility of 

automating the task. As we discuss in early 

sections, many approaches have been proposed 

to optimize the deep networks, however 

Evolutionary Computing (EC) based approaches 

are being called back to overcome the difficulty. 

Application of EC into reinforcement learning 

on Atari games [17], and EC into Long-Short-

Term-Memory (LSTM) on image capturing and 

language modeling [16] are some of the 

significant recent applications which could 

confirm the possibility of improving efficiency 

of deep networks using EC based techniques.  

Among them, few researchers have 

attempted to improve the topological structure 

of deep CNN. Miikkulainen et al [16] has 

evolved a CNN network which could reach the 

convergence after 30 epochs and it is compared 

to 4 times faster than the manually defined 

approach for the same problem set (CIFAR-10). 

In their approach, a convolution layer has been 

defined as a node in chromosome in 

evolutionary programming. Problem was solved 

as multi-population problem that evolves  

structure and then hyper-parameters for the 

assembled network.   However, in this approach 

optimizing of hyper-parameters were done after 

the network structure was assembled by genetic 

programming. Suganuma et al[18] has applied 

Cartesian genetic programming to evolve the 

CNN in image classification task. In addition to 

convolution blocks, batch normalization and 

residual blocks have been considered in 

evolving the topological structure. However, the 

hyper-parameters of the network have been 

optimized after assembling the network. 

 

5. Discussion 

As the performances of deep neural networks 

increases, in general the number of layers in 

deep neural networks is also increases. That is 

the more the number of layers; the more 

accuracy has been recorded. Optimizing the 

deep neural network’s topological structure for a 

given data set has become a challenging task for 

neural network researchers. Therefore, many 

researchers are now exploring the possibility of 

applying genetic programming or evolutionary 

algorithm to evolve deep neural networks.  

In conventional neural networks, this has 

been mainly achieved by applying evolutionary 

algorithm. In there, the network hyper-

parameters are encoded into genes of 

chromosomes, and then have tried to optimize 

the parameters based on a defined fitness-

function. Or else, the network topological 

structure has been tried to encode into 

chromosomes of genetic algorithm and tried to 

optimize the network topological structure.  

However, these approaches are not good enough 

to optimize the deep neural networks, because 

compared to conventional neural networks, deep 

neural networks has variety of architectures 

combing many different modules or layers. For 

example, residual layer, normalization layer, 

inception module, etc. Therefore, new 

approaches have been investigated to optimize 

the deep neural networks’ topological structure 

or hyper-parameters. Few researches have 

encoded the modules of deep neural networks 

into chromosomes and tried optimize the neural 

network structure. However, those techniques 

are required further researches to evaluate their 

performances thoroughly. 

Here the paper proposes to optimize the 

deep neural network structures as a collective 

intelligence of genetic programming: 

representing deep neural networks in terms of 

acyclic graph in detail (into neuronal level and 

connection) using genetic programming. As per 

the concept governed by swarm intelligence, 

each module or layer in the network is identified 

as a local genetic program. Hence the entire 

network can be considered as multiple genetic 

programs. Each entity is trying to optimize its 

behaviour locally under the constraint of 

optimizing overall behaviour of entire network. 

In this way, we can approach the deep neural 

network optimization problem, as emergent 

feature of collective multi-genetic programs.   
 

References 

[1] V. Maniezzo, “Genetic evolution of the topology and 

weight distribution of neural networks,” IEEE Trans. 

Neural Netw., vol. 5, no. 1, pp. 39–53, Jan. 1994. 

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An 

evolutionary algorithm that constructs recurrent neural 

networks,” IEEE Trans. Neural Netw., vol. 5, no. 1, 

pp. 54–65, Jan. 1994. 

[3] X. Yao and Y. Liu, “A new evolutionary system for 

evolving artificial neural networks,” IEEE Trans. 



Dias et al. 
 

 

 

SLAAI - International Conference on Artificial Intelligence   University of Moratuwa, Sri Lanka       31st October 2017  

37 

Neural Networks., vol. 8, no. 3, pp. 694–713, May 

1997. 

[4]  “1994-21.pdf.” 

[5] Yu Nesterov, “A method for unconstrained convex      

 minimization problem with the rate of convergence, 

vol.  269, pp. 543–547, 1983.  

[6] W.Luo, Y. Li, R. Urtasun, and R. Zemel, 

Understanding the Effective Receptive Field in Deep 

Convolutional Neural Networks, 29th Conference on 

Neural Information Processing Systems (NIPS 2016), 

Barcelona,Spain.  

[7] D.Mishkin, N.Sergievskiy, and J.Matas, Systematic 

Evaluation of Convolution Neural Network advances 

on the ImageNet, Computer Vision and Image 

Understanding, 161 (2017) 11-19. 

[8] E.A. Smirnov, D.M. Timoshenko, and S.N. 

Andrianov, Comparison of Regularization Methods 

for ImageNet Classification with Deep Convolutional 

Neural Networks, Conference on Intelligence and 

Biometrics, 6 (2014) 89-94. 

[9] I.Sutskever, Martens, J,G.Dahl and G.Hinton, On the 

importance of initialization and momentum in Deep 

Learning, in proceeding of the 30th International 

Conference on Machine Learning, 2013. 

[10] F.Yu and V.Koltun, Multi-Scale context aggregation 

by dilated convolutions, ICLR, 2016. 

[11] S. Joffe and C. Szegedy, Batch Normalization: 

Accelerating Deep Network Training by Reducing 

Internal Covariate Shift, 2015. 

[12] A Krizhevsky, I Sutskever, and G. Hinton, ImageNet 

Classification with Deep Convolutional Neural 

Networks, 2015. 

[13] J. Duchi, E. Hazan, and E.Singer, Adaptive 

Subgradient Methods for Online Learning and 

Stochastic Optimization, JMLR, 12(Jul):2121−2159, 

2011 

[14] D.P. Kingma, and J. Ba, Adam: A Method for 

Stochastic Optimization, International Conference for 

Learning Representations, San Diego, 2015. 

[15] H.Wu and X.Gu, Towards dropout training for 

convolutional neural networks, Neural Networks, 71 

(2015) 1-10. 

[16] R.Miikkulainen, J.Liang, E.Meyerson, A.Rawal, et. 

at., Evolving Deep Neural Networks, 2017. 

[17] T. Salimans, J. Ho, Xi Chen, S. Sido and I. Sutskever, 

Evolution Strategies as a Scalable Alternative to 

Reinforcement Learning, 2017. 

[18] M.Suganuma, S.Shirakawa, and T.Nagao, A Genetic 

Programming Approach to Designing Convolutional 

Neural Network Architectures, Neural and 

Evolutionary Computing, August 2017. 

[19] K. O. Stanley and R. Miikkulainen, “Evolving Neural 

Networks through Augmenting. 


	A. Representation of Individuals
	B. Initialization of the Population
	C. Fitness Function
	D. Parent Selection
	E. Reproduction Operators
	A. Normalization Techniques
	B. Momentum Updates
	1) Vanilla momentum update
	Momentum is one of the key approaches that have been applied to faster the convergence of deep networks getting out of local minima.  With momentum m, the weight update at a given time t, m adds a fraction of the previous weight update to the current ...
	2) Nesterov momentum update
	C. Effective Receptive Field
	D. Dropout training
	Model combination always improves the performance of neural networks. With large neural networks, averaging the outputs of many separately trained nets is expensive.  Training many different architectures is hard, because finding optimal hyper-paramet...
	E.  Annealing Learning Rate

