
Grammatical Differential Evolution
Michael O’Neill

Natural Computing Research and Applications Group,
University College Dublin

Ireland
Email: M.ONeill@ucd.ie

Anthony Brabazon
Natural Computing Research and Applications Group,

University College Dublin
Ireland

Email: Anthony.Brabazon@ucd.ie

Abstract— This proof of concept study examines the possibility
of specifying the construction of programs using Differential
Evolution, and represents a new form of grammar-based genetic
programming, Grammatical Differential Evolution (GDE). In
GDE each individual member of the population represents a
specific choice of program construction rules, where these rules
are specified using a Backus-Naur Form grammar. The results
demonstrate that it is possible to generate programs using the
Grammatical Differential technique.

Keywords: Grammatical evolution, differential evolution, au-
tomatic program generation.

I. INTRODUCTION

This paper details an investigation examining the possibility of
specifying the automated construction of a computer program
using a Differential Evolution learning model. In the Gram-
matical Differential Evolution (GDE) approach developed in
this study, each vector represents choices of program construc-
tion rules specified as production rules of a Backus-Naur Form
grammar.

GDE is grounded in the linear program representation
adopted in Grammatical Evolution (GE) [1], which uses
grammars to guide the construction of syntactically correct
programs, specified by variable-length genotypic binary or
integer strings. The search heuristic adopted with the canonical
GE methodology is a variable-length Genetic Algorithm. In the
GDE technique presented here, a particle’s real-valued vector
is used in the same manner as the genotypic binary string in
canonical GE.
The remainder of the paper is structured as follows. Before
describing the mechanism of GDE in section 4, introductions
to the salient features of Differential Evolution (DE) and
Grammatical Evolution (GE) are provided in sections 2 and
3 respectively. Section 5 details the experimental approach
adopted and results, section 6 provides some discussion of
the results, and finally section 7 details conclusions and future
work.

II. DIFFERENTIAL EVOLUTION

Differential evolution (DE) (Storn and Price, 1995 and 1997;
Price 1999; Storn 1999) is a population-based search al-
gorithm. The algorithm draws inspiration from the field of
Evolutionary Computation, as it embeds implicit concepts of
mutation, recombination and fitness-based selection, to evolve

from an initial randomly generated population to a solution to
a problem of interest. It also borrows principles from Social
Algorithms through the manner in which new individuals are
generated. Unlike the binary chromosomes typical of GAs,
an individual in DE is generally comprised of a real-valued
chromosome.

Although several DE algorithms exist we only describe one
version of the algorithm based on the DE/rand/1/bin scheme
(Storn and Price, 1995). The different variants of the DE
algorithm are described using the shorthand DE/x/y/z, where
x specifies how the base vector to be perturbed is chosen
(rand if it is randomly selected or best if the best individual
is selected), y is the number of difference vectors used, and z
denotes the crossover scheme used (bin for crossover based on
independent binominal experiments, and exp for exponential
crossover).

At the start of this algorithm, a population of N , d-
dimensional vectors Xj = (xi1, xi2, . . . , xid), j = 1, . . . , n,
is randomly initialised and evaluated using a fitness function
f . During the search process, each individual (j) is iteratively
refined. The modification process has three steps:

1) Create a variant solution, using randomly selected mem-
bers of the population.

2) Create a trial solution, by combining the variant solution
with j (crossover step).

3) Perform a selection process to determine whether the
trial solution replaces j in the population.

Under the mutation operator, for each vector Xj(t), a variant
solution Vj(t + 1) is obtained using equation 1:

Vj(t + 1) = Xm(t) + F (Xk(t)−Xl(t)) (1)

where k, l, m ∈ 1, . . . , N are mutually different, randomly
selected indices, and all the indices 6= j (Xm is referred
to as the base vector, and Xk(t) − Xl(t) is referred to as
a difference vector). Variants on this step include the use
of more than three individuals from the population, and/or
the inclusion of the highest-fitness point in the population
as one of these individuals (Storn and Price, 1995). The
difference between vectors Xk and Xl is multiplied by a
scaling parameter F (typically, F ∈ (0, 2]). The scaling factor
controls the amplification of the difference between Xk and
Xl, and is used to avoid stagnation of the search process.

Xj
*

Xj

Xk

Xm

Vj (t+1)

(F=0.5)

Xj
*

Xl

Fig. 1. A representation of the Differential Evolution variety-generation
process. The value of F is set at 0.50. In a simple 2-d case, the child of
particle Xj can end up in any of three positions. It may end up at either of
the two positions X∗

j , or at the position of particle Vj(t + 1).

Following the creation of the variant solution, a trial solution
Uj(t + 1) = (uj1, uj2, . . . , ujd) is obtained from equation 2.

Ujn(t + 1) =

{
Vjn, if (rand ≤ CR) or (j = rnbr(i)) ;
Xjn, if (rand > CR) and (j 6= rnbr(i)).

(2)
where n = 1, 2, . . . , d, rand is drawn from a uniform random
number generator in the range (0,1), CR is the user-specified
crossover constant from the range (0,1), and rnbr(i) is a
randomly chosen index chosen from the range (1, 2, . . . , n).
The random index is used to ensure that the trial solution
differs by at least one component from Xi(t). The resulting
trial solution replaces its predecessor, if it has higher fitness
(a form of selection), otherwise the predecessor survives
unchanged into the next iteration of the algorithm (equation
3).

Xi(t + 1) =

{
Ui(t + 1), if f(Ui(t + 1)) < f(Xi(t));
Xi(t), otherwise.

(3)

Fig. 1 provides a graphic of the adaptive process described
above.

The DE algorithm has three parameters, the population
size (N), the crossover rate (CR), and the scaling factor (F).
Higher values of CR tend to produce faster convergence of the
population of solutions.

III. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language [1], [2],
[3], [4], [5], and can be considered a form of grammar-
based genetic programming. Rather than representing the
programs as parse trees, as in GP [6], [7], [8], [9], [10], a
linear genome representation is used. A genotype-phenotype
mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits)
the information to select production rules from a Backus Naur
Form (BNF) grammar. The grammar allows the generation of

programs in an arbitrary language that are guaranteed to be
syntactically correct, and as such it is used as a generative
grammar, as opposed to the classical use of grammars in
compilers to check syntactic correctness of sentences. The user
can tailor the grammar to produce solutions that are purely
syntactically constrained, or they may incorporate domain
knowledge by biasing the grammar to produce very specific
forms of sentences.

BNF is a notation that represents a language in the form
of production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals (the
primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A
simple example BNF grammar is given below, where <expr>
is the start symbol from which all programs are generated.
These productions state that <expr> can be replaced with
either one of <expr><op><expr> or <var>. An <op>
can become either +, -, or *, and a <var> can become either
x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to con-
struct a program by applying production rules, selected by the
genome, beginning from the start symbol of the grammar. In
order to select a production rule in GE, the next codon value
on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon V alue % Num. Rules

where % represents the modulus operator.
Given the example individuals’ genome (where each 8-bit

codon is represented as an integer for ease of reading) in Fig.2,
the first codon integer value is 220, and given that we have 2
rules to select from for <expr> as in the above example, we
get 220 % 2 = 0. <expr> will therefore be replaced with
<expr><op><expr>.

Beginning from the the left hand side of the genome, codon
integer values are generated and used to select appropriate
rules for the left-most non-terminal in the developing program
from the BNF grammar, until one of the following situations
arise: (a) A complete program is generated. This occurs when
all the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the BNF
grammar. (b) The end of the genome is reached, in which
case the wrapping operator is invoked. This results in the
return of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum num-
ber of wrapping events has occurred during this individuals
mapping process. (c) In the event that a threshold on the

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 2. An example GE individuals’ genome represented as integers for ease of reading.

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 3. A comparison between Grammatical Evolution and the molecular biological processes of transcription and translation. The binary string of GE is
analogous to the double helix of DNA, each guiding the formation of the phenotype. In the case of GE, this occurs via the application of production rules to
generate the terminals of the compilable program. In the biological case by directing the formation of the phenotypic protein by determining the order and
type of protein subcomponents (amino acids) that are joined together.

number of wrapping events has occurred and the individual
is still incompletely mapped, the mapping process is halted,
and the individual assigned the lowest possible fitness value.
Returning to the example individual, the left-most <expr> in
<expr><op><expr> is mapped by reading the next codon
integer value 240 and used in 240 % 2 = 0 to become
another <expr><op><expr>. The developing program now
looks like <expr><op><expr><op><expr>. Continuing
to read subsequent codons and always mapping the left-most
non-terminal the individual finally generates the expression
y*x-x-x+x, leaving a number of unused codons at the end
of the individual, which are deemed to be introns and simply
ignored. Fig.3 draws an analogy between GE’s mapping pro-
cess and the molecular biological processes of transcription
and translation. A full description of GE can be found in [1].

IV. GRAMMATICAL DIFFERENTIAL EVOLUTION

Grammatical Differential Evolution (GDE) adopts a Differen-
tial Evolution learning algorithm coupled to a Grammatical
Evolution (GE) genotype-phenotype mapping to generate pro-
grams in an arbitrary language.

The standard GE mapping function is adopted with the
real-values in the vectors being rounded up or down to the
nearest integer value, for the mapping process. In the current
implementation of GDE, fixed-length vectors are adopted
within which it is possible for a variable number of elements

to be required during the program construction genotype-
phenotype mapping process. A vector’s values may be used
more than once if the wrapping operator is used, and in the
opposite case it is possible that not all elements will be used
during the mapping process if a complete program comprised
only of terminal symbols is generated before reaching the end
of the vector. In this latter case, the extra element values are
simply ignored and considered introns that may be switched
on in subsequent iterations.

V. EXPERIMENTS & RESULTS

A diverse selection of benchmark programs from the literature
on genetic programming are tackled using GDE to demonstrate
proof of concept for the method. The parameters adopted
across the following experiments are a popsize of 500, the
algorithm is run for 60 iterations, strlen=100, F=0.8, CR=0.8,
gene values bound to the range [0 → 255]. Four versions of
DE are used, and results are reported for all four GDE variants.

The same problems are also tackled with Grammatical
Evolution in order to get some indication of how well GDE is
performing at program generation in relation to the more tradi-
tional variable-length Genetic Algorithm-driven search engine
of standard GE. A standard population size of 500 running
for 60 generations is adopted for Grammatical Evolution. The
remaining parameters for Grammatical Evolution are roulette
selection, steady state replacement, one-point crossover with
probability of 0.9, and a bit mutation with probability of 0.01.

A. Santa Fe Ant trail

The Santa Fe ant trail is a standard problem in the area of
GP and can be considered a deceptive planning problem with
many local and global optima [11]. The objective is to find a
computer program to control an artificial ant so that it can find
all 89 pieces of food located on a non-continuous trail within
a specified number of time steps, the trail being located on a
32 by 32 toroidal grid. The ant can only turn left, right, move
one square forward, and may also look ahead one square in
the direction it is facing to determine if that square contains a
piece of food. All actions, with the exception of looking ahead
for food, take one time step to execute. The ant starts in the
top left-hand corner of the grid facing the first piece of food
on the trail. The grammar used in this problem is different to
the ones used later for symbolic regression and the multiplexer
problem in that we wish to produce a multi-line function in
this case, as opposed to a single line expression. The grammar
for the Santa Fe ant trail problem is given below.

<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if(food_ahead()) { <line> }

else { <line> }
<op> ::= left(); | right(); | move();

B. Quartic Symbolic Regression

The target function is f(a) = a + a2 + a3 + a4, and 100
randomly generated input-output vectors are created for each
call to the target function, with values for the input variable
drawn from the range [0,1]. The fitness for this problem is
given by the reciprocal of the sum, taken over the 100 fitness
cases, of the absolute error between the evolved and target
functions. The grammar adopted for this problem is as follows:

<expr> ::= <expr> <op> <expr> | <var>
<op> ::= + | - | * | /
<var> ::= a

C. 3 Multiplexer

An instance of a multiplexer problem is tackled in order
to further verify that it is possible to generate programs using
Grammatical Swarm. The aim with this problem is to discover
a boolean expression that behaves as a 3 Multiplexer. There
are 8 fitness cases for this instance, representing all possible
input-output pairs. Fitness is the number of input cases for
which the evolved expression returns the correct output. The
grammar adopted for this problem is as follows:

<mult> ::= guess = <bexpr> ;
<bexpr> ::= (<bexpr> <bilop> <bexpr>)

| <ulop> (<bexpr>)
| <input>

<bilop> ::= and | or
<ulop> ::= not
<input> ::= input0 | input1 | input2

D. Mastermind

In this problem the code breaker attempts to guess the
correct combination of colored pins in a solution. When an
evolved solution to this problem (i.e. a combination of pins)

is to be evaluated, it receives one point for each pin that
has the correct color, regardless of its position. If all pins
are in the correct order than an additional point is awarded
to that solution. This means that ordering information is only
presented when the correct order has been found for the whole
string of pins.
A solution, therefore, is in a local optimum if it has all the
correct color, but in the wrong positions. The difficulty of this
problem is controlled by the number of pins and the number
of colors in the target combination. The instance tackled here
uses 4 colors and 8 pins with the following values 3 2 1 3 1
3 2 0. The grammar adopted is as follows.

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

Table I provides a summary and comparison of the perfor-
mance of Grammatical Differential Evolution, Grammatical
Evolution and Grammatical Swarm on each of the problem do-
mains tackled. In three out of the four problems Grammatical
Evolution outperforms GDE, Grammatical Swarm outperforms
Grammatical Evolution on one problem instance, and there is
a tie between the methods on the Mastermind problem. The
key finding is that the results demonstrate proof of concept
that GDE can successfully generate solutions to problems of
interest.

VI. CONCLUSIONS & FUTURE WORK

This study demonstrates the feasibility of generating computer
programs using Grammatical Differential Evolution over four
different problem domains. While a performance comparison
to Grammatical Evolution has shown that GDE is outper-
formed on three of the problems analyzed, the ability of GDE
to generate solutions without optimization of the algorithm’s
parameters is very encouraging for future development of the
GDE. Future work will involve further investigation of the
performance of GDE variants, and further parameter opti-
mization for each GDE variant. Another interesting avenue
is the development of a variable-length Differential Evolution
algorithm to remove GDE’s fixed length structure, and the
investigation of the impact using a continuous encoding over
the discrete encoding variant applied in this study.

REFERENCES

[1] O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer Aca-
demic Publishers.

[2] O’Neill, M. (2001). Automatic Programming in an Arbitrary Lan-
guage: Evolving Programs in Grammatical Evolution. PhD thesis,
University of Limerick, 2001.

[3] O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans.
Evolutionary Computation. Vol. 5, No.4, 2001.

[4] O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover
in Grammatical Evolution. Genetic Programming and Evolvable
Machines, Vol. 4 No. 1. Kluwer Academic Publishers, 2003.

[5] Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution:
Evolving Programs for an Arbitrary Language. Proc. of the First
European Workshop on GP, 83-95, Springer-Verlag.

[6] Koza, J.R. (1992). Genetic Programming. MIT Press.
[7] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of

Reusable Programs. MIT Press.
[8] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic

Programming – An Introduction; On the Automatic Evolution of
Computer Programs and its Applications. Morgan Kaufmann.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Iteration

Grammatical Differential Evolution

GDE/best/1/exp
GDE/rand/1/bin

GDE/rand-to-best/1/exp
GDE/rand-to-best/1/bin

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Iteration

Grammatical Differential Evolution

GDE/best/1/exp
GDE/rand/1/bin

GDE/rand-to-best/1/exp
GDE/rand-to-best/1/bin

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Iteration

Grammatical Differential Evolution

GDE/best/1/exp
GDE/rand/1/bin

GDE/rand-to-best/1/exp
GDE/rand-to-best/1/bin

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Iteration

Grammatical Differential Evolution

GDE/best/1/exp
GDE/rand/1/bin

GDE/rand-to-best/1/exp
GDE/rand-to-best/1/bin

Fig. 4. Plot of the mean best fitness on the quartic (top left), 3 multiplexer (top right), Santa Fe ant (bottom left) and Mastermind (bottom right) problems.

TABLE I
A COMPARISON OF THE RESULTS OBTAINED FOR GRAMMATICAL DIFFERENTIAL EVOLUTION TO GRAMMATICAL SWARM AND GRAMMATICAL

EVOLUTION ACROSS ALL THE PROBLEMS ANALYZED.

Santa Fe ant Multiplexer Symb.Regression Mastermind
GDE/rand/1/bin 10 23 6 0
GDE/best/1/exp 7 27 4 0

GDE/rand-to-best/1/exp 9 27 4 0
GDE/rand-to-best/1/bin 7 25 5 0

GS 11 23 5 3
GE 17 15 24 3

[9] Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic
Programming 3: Darwinian Invention and Problem Solving. Morgan

Kaufmann.

[10] Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza,

G. (2003). Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers.

[11] Langdon, W.B., and Poli, R. (1998). Why Ants are Hard. In Genetic
Programming 1998: Proc. of the Third Annual Conference, Univer-
sity of Wisconsin, Madison, Wisconsin, USA, pp. 193-201, Morgan
Kaufmann.

